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Abstract. Finding the sparse solution to under-determined or ill-condition equations is a fundamental
problem encountered in most applications arising from a linear inverse problem, compressive sensing,
machine learning and statistical inference. In this paper, inspired by the reformulation of the ℓ1-norm
regularized minimization problem into a convex quadratic program problem by Xiao et al. (Nonlinear
Anal Theory Methods Appl, 74(11), 3570-3577), we propose, analyze, and test a derivative-free conjugate
gradient method to solve the ℓ1-norm problem arising from the reconstruction of sparse signal and image in
compressive sensing. The method combines the MLSCD conjugate gradient method proposed for solving
unconstrained minimization problem by Stanimirović et al. (J Optim Theory Appl, 178(3), 860-884) and
a line search method. Under some mild assumptions, the global convergence of the proposed method is
established using the backtracking line search. Computational experiments are carried out to reconstruct
sparse signal and image in compressive sensing. The numerical results indicate that the proposed method
is stable, accurate and robust.

1. Introduction

Let w ∈ Rn be a sparse or a nearly sparse original signal, A ∈ Rk×n(k < n) be a linear map and b be an
observed data. The relation between the signal w and the observed data b is given by:

b = Aw. (1)
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In most of the applications where sparsity constraint plays a significant role, we are dealing with an ill-
conditioned or under-determined system of linear equations [1]. In this article, we focus our attention on
finding sparse solutions to an under-determined linear system arising from compressive sensing (CS). In
CS, it is possible to regain the sparse signal w from the linear system (1), by finding the solution of the
ℓ0-regularized problem:

min
w
{∥w∥0 | Aw = b}, (2)

where ∥w∥0 denotes the nonzero components in w. However, the ℓ0-norm is not a proper norm and is not
computationally implementable. Base on these, researchers developed alternative model by replacing the
ℓ0-norm with ℓ1-norm. Thus, solving the basis Pursuit problem formulated as:

min
w
{∥w∥1 | Aw = b}. (3)

Here, ∥w∥1 =
∑n

i=1 |wi| is the ℓ1-norm of w. Under some mild assumptions, Donoho [2] proved that solution(s)
of problem (2) also solves (3). In most application, the observed value b usually contains some noise, thus
the problem (3) can be relaxed to the penalized least squares problem

min
w

f (w) :=
1
2
∥Aw − b∥22 + τ∥w∥1, (4)

where τ > 0, balancing the tradeoff between sparsity and residual error. Problems of the form (4) have
become familiar over the past three decades, particularly in compressive sensing context. Interested readers
may refer to the recent papers (see, [3] and [4]) for more details.

Many approaches abound in the literature for solving (4): iterative shrinkage thresholding algorithm (IST)
[5], fast iterative shrinkage thresholding algorithm (FISTA) [6], fixed-point continuous search method [7],
gradient projection method [8]. Quite recent, Figueiredo, Nowak, Wright [8] first developed a gradient
projection method to solve the penalized least squares problem (4). Thereafter, Xiao et al. [9, 10] proposed
a conjugate gradient projection method and a spectral gradient method to solve problem (4), respectively.
Unlike IST and FISTA, in order to solve problem (4), the problem was first transformed into a monotone
system of equations.

Referring to [8], we briefly present a review on the reformulation procedure of (4) into a convex quadratic
problem.

1.1. Reformulation of the Model
In the following, we give a short overview of the reformulation of (4) into a convex quadratic problem by
Figuredo et al.[8].

Consider any vector w ∈ Rn, w can be rewritten as follows

w = u − v, u ≥ 0, v ≥ 0,

where u ∈ Rn, v ∈ Rn and ui = (wi)+, vi = (−wi)+ for all i ∈ [1,n] with (·)+ = max{0, ·}. Therefore, the ℓ1-norm
could be represented as ∥w∥1 = eT

nu + eT
nv, where en is an n-dimensional vector with all element one. Thus,

(4) can be written as

min
u,v
{
1
2
∥b − A(u − v)∥2 + τeT

nu + τeT
nv : u, v ≥ 0}. (5)

Moreover, from [8], with no difficulty, (5) can be rewritten as the quadratic problem with box constraints.
That is,

min
z

1
2

zTHz + cTz, z ≥ 0, (6)
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where z =
[
u
v

]
, c = τe2n +

[
−y
y

]
, b = AT y, H =

[
ATA −ATA
−ATA ATA

]
.

Simple calculation shows that H is a semi-definite positive matrix. Hence, (6) is a convex quadratic problem,
and equivalent to

G(z) = min{z,Hz + c : z ∈ E} = 0, (7)

where E = R2n
+ is a convex set. The function G is vector-valued and the ”min” interpreted as componentwise

minimum. From [[11], Lemma 3] and [[9], Lemma 2.2], we know that the mapping G is Lipschitz continuous
and monotone. Hence, algorithms for solving (7) can be used to effectively solve (4).

The model (7) is a special class of optimization problem that has been discussed extensively by several
authors with well known numerical methods developed. For instance Newton method, Quasi-Newton
method, trust region method, Levenberg Marquardt method and projection method (see [12–16] and refer-
ences therein). However, these methods need to compute and store the Jacobian matrix as well as solving
linear equation at every iteration. These reasons make them unsuitable for large-scale problems. To over-
come this drawback, several researchers have proposed derivative-free methods for solving (7). These
methods incorporates conjugate gradient (CG) methods for solving unconstrained optimization problem
with the projection technique of Solodov and Svaiter [17]; yielding efficient methods for solving (7) which
do not need to compute and store the Jacobian matrix at every iteration. For more relevant contributions on
CG methods and derivative free methods, interested readers can refer to [18–41] and the references therein.

Motivated by the approximate equivalence between problem (4) and a system of equations, we propose,
analyze, and test a derivative-free conjugate gradient method to solve the ℓ1-norm problem arising from
the reconstruction of sparse signal and image in compressive sensing. The method combines the mixed
LSCD conjugate gradient method (MLSCD) proposed for solving unconstrained minimization problem by
Stanimirović et al. [42] and a line search method. Under some mild assumptions, the global convergence
of the proposed method is established using the backtracking line search. Computational experiments are
carried out to reconstruct sparse signal and image in compressive sensing. The numerical results indicate
that the proposed method is stable, accurate and robust.

The paper is organised as follows: In Sections 2 and 3 of this paper, we focus on the motivation of the
method, and prove that it converge globally. We perform some numerical experiments and analyze the
experimental results in Section 4.
Notation. Unless stated otherwise, throughout this article, the symbol ∥ · ∥ denotes for Euclidean norm
on Rn. Furthermore, the projection map denoted as PE, which is a mapping from Rn onto the nonempty
convex set E, is defined as

PE(w) = arg min{∥w − y∥ y ∈ E}.

It has the well known nonexpansive property, that is,

∥PE(w) − PE(y)∥ ≤ ∥w − y∥,∀ w, y ∈ R2n. (8)

2. Algorithm

In this section, we present our framework after recalling the MLSCD conjugate gradient method by Stan-
imirović et al. [42]. Consider the following unconstrained optimization problem

min{ f (w)|w ∈ Rn
},

where the function f is assumed to be continuoisly differentiable from Rn into R and the gradient ∇ f (wk)
is available. The iterative scheme of the conjugate gradient method by Stanimirović et al. [42] generates a
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sequence of iterate wk using the following recursive relation:

wk+1 = wk + αkdk, k ≥ 0,

where αk is the step-length and the search direction dk is updated by

dk :=

−∇ f (wk) + δk

(
I − ∇ f (wk)∇ f (wk)T

∥∇ f (wk)∥2

)
dk−1 if k > 0,

−∇ f (wk) if k = 0.
(9)

δk is a parameter defined as:

δk := δMLSCD
k := max

{
0, min

{
δLS

k , δ
CD
k

} }
:= max

{
0, min

{ yT
k−1∇ f (wk)

−∇ f (wk−1)Tdk−1
,
∥∇ f (wk)∥2

−∇ f (wk−1)Tdk−1

} }
,

where yk−1 := ∇ f (wk)−∇ f (wk−1). In what follows, we describe a derivative-free MLSCD conjugate gradient
method (DF-MLSCD) for solving (7).

Algorithm 2.1. (DF-MLSCD)
Input. Choose any arbitrary initial point w0 ∈ E, the positive constants: Tol ∈ (0, 1), ξ ∈ (0, 1), κ > 0 , γ > 0. Set
k := 0.

Step 0. Compute G(wk). If ∥G(wk)∥ ≤ Tol, stop. Otherwise, compute the search direction dk by

dk :=

−G(wk) if k = 0,

−G(wk) + δk

(
I − G(wk)G(wk)T

∥G(wk)∥2

)
sk−1, if k > 0,

(10)

where sk = αkdk,

δk := δEMLSCD
k := max

{
0, min

{
δLS

k , δ
CD
k

}}
:= max

{
0, min

{ yT
k−1G(wk)

−G(wk−1)Tdk−1
,
∥G(wk)∥2

−G(wk−1)Tdk−1

}}
,

and yk−1 = G(wk) − G(wk−1).

Step 1. Determine the step-length αk = κξi for i = 0, 1, 2, · · · , satisfying the following line-search

−G(wk + αkdk)Tdk ≥ γαk∥dk∥
2. (11)

Step 2. Compute

zk = wk + αkdk. (12)

Step 3. If zk ∈ E and ∥G(zk)∥ ≤ Tol, stop. Otherwise, compute the next iterate by

wk+1 = PE[wk − ϱkG(zk)], (13)

where

ϱk =
G(zk)T(wk − zk)
∥G(zk)∥2

. (14)

Step 4. Finally we set k := k + 1 and return to step 0.
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Lemma 2.2. Let δk be any CG parameter. Then, the search direction dk defined by (10) satisfies

G(wk)Tdk = −∥G(wk)∥2, ∀k ≥ 0. (15)

Proof. For k = 0, multiplying both sides of (10) by G(w0)T, we have

G(w0)Td0 = −∥G(w0)∥2.

Also for k ≥ 1, multiplying both sides of (10) by G(wk)T, we get

G(wk)Tdk = −∥G(wk)∥2 + δkG(wk)Tsk−1 −
δk∥G(wk)∥2G(wk)Tsk−1

∥G(wk)∥2

= −∥G(wk)∥2 + δkG(wk)Tsk−1 − δkG(wk)Tsk−1

= −∥G(wk)∥2.

3. Convergence Analysis

In order to establish the global convergence of the DF-MLSCD method for solving (7), we need the following
assumption.

Assumption 3.1.

(A1) The mapping G is Lipschitz continuous, that is, there exists a constant L > 0 such that

∥G(w) − G(y)∥ ≤ L∥w − y∥ ∀w, y ∈ R2n. (16)

(A2) The mapping G is monotone. That is,

(G(w) − G(y))T(w − y) ≥ 0, ∀w, y ∈ R2n. (17)

Lemma 3.2. Let {zk} and {wk} be sequences generated by (12) and (13) in Algorithm 2.1. Using (16) and (17), the
following statements hold

(i) {wk} and {zk} are bounded.
(ii) limk→∞ ∥zk − wk∥ = 0

(iii) limk→∞ ∥wk+1 − wk∥ = 0

Proof. (i) Since G is monotone from (17), for any solution w∗ of problem (7), we have

G(zk)T(wk − w∗) = G(zk)T(wk − zk) + G(zk)T(zk − w∗)

≥ G(zk)T(wk − zk) + G(w∗)T(zk − w∗)

= G(zk)T(wk − zk) (18)

≥ γα2
k · ∥dk∥

2 (19)

= γ∥wk − zk∥
2
≥ 0. (20)

Note that, inequality (19) is obtained from the line search.
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From (8), it holds that ,

∥wk+1 − w∗∥ = ∥PE[wk − ϱkG(zk)] − w∗∥2

≤ ∥wk − ϱkG(zk) − w∗∥2

= ∥wk − w∗∥2 − 2ϱkG(zk)T(wk − w∗) + ϱ2
k∥G(zk)∥2

≤ ∥wk − w∗∥2 − 2ϱkG(zk)T(wk − zk) + ϱ2
k∥G(zk)∥2 (21)

= ∥wk − w∗∥2 −
(G(zk)T(wk − zk))2

∥G(zk)∥2

≤ ∥wk − w∗∥2 −
γ2
∥wk − zk∥

4

∥G(zk)∥2
(22)

≤ ∥wk − w∗∥2, (23)

where (21) and (22) follows from (18) and (20), respectively.
Also from (23), we have

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2, ∀k ≥ 0,

which shows that the sequence {wk} is bounded. Furthermore, by (16), we have

∥G(wk)∥ = ∥G(wk) − G(w∗)∥ ≤ L∥wk − w∗∥ ≤ L∥w0 − w∗∥.

Letting M = L∥w0 − w∗∥, we get

∥G(wk)∥ ≤M. (24)

By Assumption (A2) and Cauchy-Schwarz inequality, we have that

G(zk)T(wk − zk) = (G(zk) − G(wk))T(wk − zk) + G(wk)T(wk − zk)
≤ ∥G(wk)∥∥wk − zk∥

Therefore,

∥G(wk)∥∥wk − zk∥ ≥ G(zk)T(wk − zk) ≥ γ∥wk − zk∥
2,

where the last inequality can be implied from (20). Thus, it is easy to obtain that

γ∥wk − zk∥ ≤ ∥G(wk)∥ ≤M,

which implies that {zk} is bounded.
(ii) Using the continuity of G, we know that there exist a constant M1 > 0 such that

∥G(zk)∥ ≤M1 ∀k ≥ 0.

It follows from (22) that

γ2
∥wk − zk∥

4

∥G(zk)∥2
≤ ∥wk − w∗∥2 − ∥wk+1 − w∗∥2. (25)

Adding (25) for k ≥ 0, we obtain

γ2

M2
1

∞∑
k=0

∥wk − zk∥
4
≤

∞∑
k=0

(∥wk − w∗∥2 − ∥wk+1 − w∗∥2) ≤ ∥w0 − w∗∥2 < ∞. (26)

Inequality (26) implies that

lim
k→∞
∥wk − zk∥ = 0. (27)

Hence, second assertion holds.
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(iii) From (8) we have

∥wk+1 − wk∥ = ∥PE[wk − ϱkG(zk)] − wk∥ ≤ ∥ϱkG(zk)∥.

Then by (14) and Cauchy-Schwartz inequality, we obtain

∥wk+1 − wk∥ ≤ ∥wk − zk∥,

which shows that the third assertion holds.

Lemma 3.3. Let the search direction sequence {dk} be obtained by (10) in Algorithm 2.1. If there exist positive
constant κ0 such that

∥G(wk)∥ ≥ κ0 ∀k ≥ 0, (28)

holds, then the sequence {dk} is bounded.

Proof. First, notice that,

δk := δEMLSCD
k := max

{
0, min

{ yT
k−1G(wk)

−G(wk−1)Tdk−1
,
∥G(wk)∥2

−G(wk−1)Tdk−1

}}
≤

∥G(wk)∥2

| − G(wk−1)Tdk−1|
.

Thus,

|δk| ≤
∥G(wk)∥2

| − G(wk−1)Tdk−1|
≤

M2

κ0
.

Then from (10), it holds that

∥dk∥ ≤ ∥G(wk)∥ + 2|δk| · ∥sk−1∥

≤M + 2
M2

κ0
αk−1∥dk−1∥,

for all k ∈ N. Having in view of (27), it follows that for every κ1 > 0 there exist κ0 such that αk−1∥dk−1∥ < κ1
for every k > κ0. Choosing κ1 = κ0 and J = max{∥d0∥, ∥d1∥, · · · ∥dk0∥, J1}where J1 =M(1 + 2M), it holds

∥dk∥ ≤ J ∀k ∈N.

Theorem 3.4. Let the sequence {zk} and {wk} be generated by (12) and (13) in Algorithm 2.1. From (16) and (17),
we have

lim inf
k→∞

∥G(wk)∥ = 0. (29)

Proof. Suppose the conclusion (29) does not hold, then (28) holds which implies that the sequence {dk} is
bounded. That is, there exist a positive constant Λ such that

∥dk∥ ≤ Λ, ∀k ≥ 0.

From (21), αk
ξ does not satisfy (11). Thus, we have

−G(wk +
αk

ξ
dk)Tdk < γ

αk

ξ
∥dk∥

2.
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It follows from Lemma 2.2 that

∥G(wk)∥2 ≤ −G(wk)Tdk

≤ (G(wk +
αk

ξ
dk) − G(wk))Tdk − G(wk +

αk

ξ
dk)Tdk

≤ L
αk

ξ
∥dk∥

2 + γ
αk

ξ
∥dk∥

2 (30)

≤
αk

ξ
(L + γ)∥dk∥

2.

Inequality (30) is obtained by using (16) and the Cauchy-Schwartz inequality. Therefore, it holds that

αk∥dk∥
2
≥
ξ∥G(wk)∥2

(L + γ)
≥
ξκ2

0

(L + γ)
> 0,

which contradicts (27). Thus, (29) holds.

4. Numerical experiments

In this section, two types of experiments are carried out. Algorithm 2.1 is tested on signal and image
recovery problems. All the algorithms are coded in MATLAB and run on an HP PC (CPU 2.4 GHz, RAM
8.0GB) with Windows 10 operating system.

• Algo.1: Algo.1, the new method (Algorithm 2.1).

• Algo.2: CGD, the method proposed by Xiao et al. [10].

• Algo.3: PCG, the method proposed in [43].

• Algo.4 and Algo.5: Algorithm 4.1a and Algorithm 4.1b proposed in [44].

4.1. Recovery of sparse signals
Here, our main goal is to reconstruct a length n sparse signal from k observation. To validate the effectiveness
of Algo.1 in recovering sparse signal in compressive sensing, Algo.1 is compared with four different
algorithms which include Algo.2, Algo.3, Algo.4 and Algo.5. The numerical results are reported in Table 1,
where the quality of the restoration is assessed by the mean of squared error (MSE) calculated according to

MSE :=
1
n
∥w − w̄∥2,

where w is the original signal and w̄ is the restored signal. In this experiment, a random Gaussian matrix
A is generated using the command rand(n,k) in MATLAB where the original signal contains 26 randomly
non-zero elements and the selected size of the signal is chosen with n = 212 and k = 210. Furthermore, noise
is appropriately added to the measurement, that is

b = Aw + δ

where δ is the Gaussian noise distributed as N(0, 10−4). The initial process starts at w0 = ATb where the
merit function used is given by f (w) = 1

2∥b − Aw∥2 + τ∥w∥. The process terminates when

| fk − fk−1|

| fk−1|
< 10−5,

where fk denotes the function value at wk. Note, for this test we only observe the convergence behavior
of each method to obtain a similar accuracy solution. The parameter τ in the merit function is selected as
τ = 0.005∥ATb∥∞ which is inline with the suggestion given in [45].
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Figure 1: Reconstruction of the sparse signal by the various methods
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Figure 2: Comparison results of the various algorithms. From left to right: the changed trend of MSE goes along with the number
of iterations or CPU time in seconds, and the changed trend of the objective function values accompany the number of iterations
or CPU time in seconds.

In Figure 2, we give a visual illustration of the performance of each method relative to their convergence
behavior from the view of merit function values and relative error as the iteration number and computing
time increases. To demonstrate the effectiveness of the Algo.1, the experiment is carried out ten times
using different noise samples. The detail of the test instances is reported in Table 1. Figure 1 is a visual
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illustration of the results of the reconstruction of the sparse signal. From Table 1, we can observe that the
disturbed signal is restored almost exactly by the five methods, this is reflected by their MSE. However,
Algo.1 performs better than the compared methods in terms of iterations and CPU time.
Note. The parameters used for the implementation of our algorithm for the signal recovery problem are as
follows: γ = 0.0001, κ = 1, ξ = 0.9.

Table 1: Result of the sparse signal reconstruction by the various algorithms
Algo.1 Algo.2 Algo.3 Algo.4 Algo.5

SN ITER CPU MSE ITER CPU MSE ITER CPU MSE ITER CPU MSE ITER CPU MSE

1 79 2.77 1.57E-06 129 3.72 1.54E-06 234 6.56 1.59E-06 119 3.27 1.56E-06 91 2.72 1.54E-06
2 75 2.13 1.47E-06 127 3.48 1.43E-06 181 5.25 8.40E-06 110 4 1.45E-06 89 2.33 1.43E-06
3 79 2.34 3.42E-06 125 3.42 3.37E-06 243 6.77 3.46E-06 128 3.52 3.41E-06 86 2.41 3.37E-06
4 73 1.97 3.32E-06 116 2.97 3.25E-06 224 5.42 3.30E-06 120 2.97 3.27E-06 77 1.88 3.25E-06
5 74 1.97 1.76E-06 125 3.41 1.73E-06 225 5.97 1.78E-06 106 3.17 1.75E-06 87 2.22 1.73E-06
6 75 2.14 2.20E-06 124 3.31 2.16E-06 221 5.67 2.21E-06 115 2.91 2.18E-06 85 2.14 2.16E-06
7 77 2.25 2.03E-06 129 3.97 2.01E-06 207 5.97 5.96E-06 120 3.23 2.03E-06 89 2.83 2.01E-06
8 78 1.95 3.27E-06 123 3.09 3.22E-06 232 5.89 3.32E-06 122 2.86 3.25E-06 85 2.11 3.22E-06
9 77 2.16 3.11E-06 119 3.34 3.04E-06 199 5.36 3.11E-06 117 3.17 3.07E-06 80 2.19 3.04E-06

10 69 2.06 2.10E-06 110 2.97 2.08E-06 224 6.09 2.12E-06 115 3.08 2.10E-06 71 1.83 2.08E-06
Average 75.6 2.174 2.43E-06 122.7 3.368 2.38E-06 219 5.895 3.52E-06 117.2 3.218 2.41E-06 84 2.266 2.38E-06

4.2. Image restoration

We present experimental results demonstrating the performance of the proposed algorithm and comparing
it with some related methods (Algo.2, [10] and Algo.6, [46]). The test images for the experiments are;
Tiffany (512×512), Lena (512×512), Barbara (720×576),Malamute (1616×1080),Mars (1280×1024),Abdul
(800 × 800) and Poom (720 × 720) degraded by Gaussian blur and Gaussian noise.

Figure 3: The original test images

All classical test images are obtained http://hlevkin.com/06testimages.htm. In this experiment, a ma-
trix A (partial DWT matrix) whose k rows are randomly selected from the m × m DWT matrix. This type
of matrix A requires no storage and helps in speeding up the matrix-vector multiplications involving A
and AT. Therefore, making it possible to test large-size images without storing any matrix. For fairness in
comparing the algorithms, the iterative process of all algorithms start at w0 = ATb and terminates when
the relative change between successive iterates falls below 10−5. The quality of the restored images are
evaluated in terms of Signal-to-ratio (SNR), Peak Signal to noise ratio (PSNR) [47]) and Structural similarity
index (SSIM [48]).

For comparison, we present restoration results obtained by the various methods in restoring the degraded
images. Experimental results from Table 2 indicates that the quality of the restored images by Algo.1 is
better than the restored image by Algo.2 and Algo.6. Larger PSNR, SNR and SSIM value indicate that the
restored images by Algo.1 are closer to the original ones than those by Algo.2 and Algo.6 in almost all cases.
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Note. The parameters used for the implementation of our algorithm for the image restoration problem are
as follows: γ = 0.0001, κ = 0.5, ξ = 0.05.

Figure 4: The image restoration of some of the test images: blurred and noisy image (10% noise) (left), image restored by Algo.1
(middle left), Algo.2 (middle right) and Algo.6 (right)
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Table 2: Test results on image restoration

Algo.1 Algo.2 Algo.6

Noise Images SNR PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM

10%

Tiffany 20.95 22.78 0.9134 20.93 22.76 0.9126 20.87 22.70 0.9114
Lena 16.75 22.08 0.9128 16.70 22.04 0.9118 16.62 21.95 0.9101
Barbara 13.64 20.06 0.6283 13.62 20.04 0.6269 13.56 19.98 0.6238
Malute 15.32 21.74 0.5842 15.30 21.72 0.5823 15.25 21.67 0.5799
Mars 14.69 24.58 0.7885 14.68 24.57 0.7883 14.65 24.54 0.7873
Airoplane 18.41 21.10 0.6789 18.36 21.05 0.6738 18.23 20.92 0.6682
Poom 16.73 22.86 0.7751 16.70 22.83 0.7725 16.64 22.77 0.7698
Abdul 14.27 20.85 0.8159 14.22 20.80 0.8128 14.10 20.68 0.8077

Average 16.35 22.01 0.7621 16.31 21.98 0.7601 16.24 21.90 0.7573

20%

Tiffany 20.34 22.17 0.8838 20.29 22.13 0.8817 20.21 22.05 0.8792
Lena 16.25 21.58 0.8977 16.18 21.52 0.8961 16.04 21.38 0.8936
Barbara 13.32 19.74 0.5990 13.28 19.70 0.5960 13.22 19.64 0.5920
Malute 14.84 21.26 0.5191 14.80 21.22 0.5157 14.73 21.15 0.5103
Mars 14.21 24.10 0.7729 14.18 24.07 0.7722 14.14 24.03 0.7710
Airoplane 18.00 20.68 0.5598 17.92 20.61 0.5519 17.74 20.42 0.5422
Poom 16.09 22.22 0.6682 16.04 22.17 0.6630 15.97 22.10 0.6574
Abdul 13.88 20.46 0.7468 13.81 20.39 0.7415 13.68 20.26 0.7333

Average 15.87 21.53 0.7059 15.81 21.48 0.7023 15.72 21.38 0.6974

Conclusion

In this paper, we have proposed a derivative-free gradient projection algorithm for solving the ℓ1-norm
regularized problems for reconstructing sparse signal and image restoration in compressive sensing. The
method combines the line search method and the MLSCD conjugate gradient method. Furthermore, we
have shown that the proposed derivative-free algorithm converges globally. We have presented numerical
experiments on the recovery of sparse signal and image restoration. These experiments illustrate clearly the
effectiveness of our approach in reconstructing sparse signal and image in compressive sensing compared
to related methods.
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