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Abstract. It is well known that not all operators satisfy Weyl type theorems simultaneously. In this paper,
we denote an operator matrix and consider how eight Weyl type theorems hold for it when certain entry
operators satisfy Weyl type theorems. Moreover, we characterize its spectral structure. Finally, the relevant
conclusions are promoted to infinite dimensional Hamilton operator.

1. Introduction

Throughout this paper, let X be a separable Hilbert space and let B(X) denote the set of all bounded
linear operators from X to X. If T ∈ B(X), we write T∗, N(T), R(T), p(T) and q(T) for the adjoint operator,
the null space, the range space, ascent and descent, respectively. Let α(T) = dimN(T), β(T) = codimR(T).
If T ∈ B(X) is such that R(T) is closed and α(T) < ∞, then T is called upper semi-Fredholm operator.
If β(T) < ∞, then T is a lower semi-Fredholm operator. Let the set of all upper (lower) semi-Fredholm
operators is written as F+(X) (F−(X)). Let F(X) := F+(X) ∩ F−(X) (F±(X) := F+(X) ∪ F−(X)) denote the set
of all Fredholm (semi-Fredholm) operators. The index of Fredholm operator T ∈ B(X), denoted ind(T), is
given by ind(T) = α(T) − β(T). The class of all Weyl operators is defined by W(X) = {T ∈ F(X) : ind(T) = 0},
and the set of all upper semi-Weyl operators is given by W+(X) := {T ∈ F+(X) : ind(T) ≤ 0}. The set of
all Browder operators is denoted by B(X) = {T ∈ F(X) : p(T) = q(T) < ∞}, the set of all upper semi-
Browder operators and lower semi-Browder operators are defined by B+(X) = {T ∈ F+(X) : p(T) < ∞} and
B−(X) = {T ∈ F−(X) : q(T) < ∞} respectively.

The essential spectrum σe(T), the Weyl spectrum σw(T), the Browder spectrum σb(T), the essential
approximate point spectrumσea(T) and the Browder essential approximate point spectrumσab(T) are defined
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by

σe(T) = {λ ∈ C : T − λI < F(X)},
σw(T) = {λ ∈ C : T − λI <W(X)},
σb(T) = {λ ∈ C : T − λI < B(X)},
σea(T) = {λ ∈ C : T − λI <W+(X)},
σab(T) = {λ ∈ C : T − λI < B+(X)}.

We define the following subset of the spectrum:

π00(T) = {λ ∈ isoσ(T) : 0 < α(T − λI) < ∞},
πa

00(T) = {λ ∈ isoσa(T) : 0 < α(T − λI) < ∞},
p00(T) = σ(T) \ σb(T),
pa

00(T) = σa(T) \ σab(T),

where iso△ is the set of all isolated points of △.
In 1909, H. Weyl [13] shown that the complement in the spectrum of the “Weyl spectrum”with hermitian

operators coincides with the isolated points of spectrum which are eigenvalues of finite multiplicity, and this
findings was called Weyl’s theorem. Whereafter, Weyl’s theorem has been extended and transformed by
many authors. In this article, we focus our attention on Weyl type theorems which includes Weyl’s theorem,
a-Weyl’s theorem, Browder’s theorem, a-Browder’s theorem, property (w), property (aw), property (b) and
property (ab). Specifically defined as follows:

Definition 1.1. Let T ∈ B(X). We say that
(1) Weyl’s theorem holds for T if σ(T)\σw(T) = π00(T).
(2) a-Weyl’s theorem holds for T if σa(T)\σea(T) = πa

00(T).
(3) Browder’s theorem holds for T if σ(T)\σw(T) = p00(T).
(4) a-Browder’s theorem holds for T if σa(T)\σea(T) = pa

00(T).
(5) T has the property (w) if σa(T)\σea(T) = π00(T).
(6) T has the property (aw) if σ(T)\σw(T) = πa

00(T).
(7) T has the property (b) if σa(T)\σea(T) = p00(T).
(8) T has the property (ab) if σ(T)\σw(T) = pa

00(T).

The following diagram show the relationship between various Weyl type theorems

a-W ⇒ W ⇐ (w) ⇒ (b) ⇒ a-B

⇓ ⇓ ⇓ ⇓

a-B ⇒ B ⇐ (aw) ⇒ (ab) ⇒ B,

where the abbreviations W, a-W, B, a-B, (w), (aw), (b) and (ab) to signify that an operator T ∈ B(X) obeys
Weyl’s theorem, a-Weyl’s theorem, Browder’s theorem, a-Browder’s theorem, property (w), property (aw),
property (b) and property (ab). We refer the reader to [1, 3, 5, 10] for more details about Weyl type theorems.

It is well known that, not all operators satisfy these theorems and properties simultaneously.

Example 1.2 ([14]). Let

T =
[

T1 0
0 −T∗1

]
,

where T1 : l2(N)→ l2(N), for any x = (x1, x2, x3, · · · ) ∈ l2(N), we denote

T1x := (0,
x1

2
,

x2

3
, · · · ),
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then
T∗1x = (

x2

2
,

x3

3
,

x4

4
, · · · ).

According to a simple calculation shows that

σ(T) = σa(T) = σw(T) = σb(T) = {0},

and
0 ∈ σab(T), πa

00(T) = {0}.

Therefore, T satisfy Browder’s theorem and property (ab), but property (aw) fails for T.

In general, Weyl type theorems may or may not hold for an operator matrix of the form
[

T1 T2
0 T3

]
for which

Weyl type theorems hold for entry operators T1 and T3, (see [10]).

Example 1.3 ([10]). Let

T =
[

T1 T2
0 T3

]
,

the operators T1, T2 and T3 on l2(N) are defined by

T1(x1, x2, x3, · · · ) = (0, x1, 0,
1
2

x2, 0,
1
3

x3, · · · ),

T2(x1, x2, x3, · · · ) = (0, 0, x2, 0, x3, 0, x4, · · · ),
T3(x1, x2, x3, · · · ) = (0, x2, 0, x4, · · · ).

Then
σ(T1) = σw(T1) = {0}, σ(T3) = σw(T3) = {0, 1},

and
π00(T1) = π00(T3) = ∅, p00(T1) = p00(T3) = ∅,

which says that Weyl’s theorem and Browder’s theorem hold for T1 and T3. Also a
straighforward calculation shows that

σ(T) = σw(T) = {0, 1}, π00(T) = {0}, and p00(T) = ∅,

which implies that Weyl’s theorem fails for T, while Browder’s theorem holds for T.

For this reason, many authors have been studied the Weyl type theorems for upper triangular operator
matrices(see[1, 5, 10]), and it is necessary to study that these Weyl type theorems are equivalent to each
other when the operator satisfy certain conditions. While, the study of operator matrices arises naturally
from the following fact: if T is a bounded linear operator on a Hilbert space and M is an invariant subspace
for T, then T has a 2 × 2 oparetor matrix representation of the form

T =
[

T1 T2
T3 T4

]
: M ⊕M⊥

−→M ⊕M⊥,

and one way to study operators is to see them as entries of simpler operators (see [11, p.1059]). This is a
working theory which is based on the problem that studied a class of operator matrices.

Recently, in[12], they provide several types of Hamilton type operator matrices including
[

T1 T2
0 JT∗1 J

]
. In this

paper, we focus on the operator matrix
[

T1 T2
0 JT∗1 J

]
where J is an unitary operator with J2 = −I. To simplify our

notation, we will henceforth identify M(T1,T2) = {
[

T1 T2
0 JT∗1 J

]
∈ B(X ⊕ X) : J is an unitary operator with J2 = −I}.

In this case, our aim is to use imformation about the entries T1 and T2 to investigate various Weyl type
theorems of operator matrix T.
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2. Preliminaries

The Hamilton system is an important branch in dynamical systems, all real physical processes with
negligible dissipations, no matter whether they are classical, quantum, or relativistic, and of finite or infinite
degress of freedom, can always be cast in the suitable Hamiltonian form. While infinite dimensional
Hamilton operators come from the infinite dimensional Hamilton systems, and have deep mechanical
background[4, 6, 7].

Definition 2.1 ([4, 12]). Let T : D(T) ⊆ X×X→ X×X be a densely defined closed operator. If T satisfies (JT)∗ = JT,
where J =

[
0 I
−I 0

]
, then T is called an infinite dimensional Hamilton operator.

Now we introduce a new class of operators related to Hamilton operator.

Definition 2.2 ([12]). An operator T ∈ B(X) is called a Hamilton type operator if there exists an unitary operator J
on X such that J2 = −I and (JT)∗ = JT. In this case, we say that T is a Hamilton type operator with unitary operator
J.

Clearly, infinite dimensional Hamilton operator is Hamilton type operator.

Definition 2.3 ([8]). Let T ∈ B(X). An operator T has the single-valued extension property, abbreviated SVEP, if,
for every open set G ⊆ C, the only analytic solution f : G→ X of the equation (T − λI) f (λ) = 0 for all λ ∈ G is the
zero function on G.

Lemma 2.4. Let T ∈ B(X) be a Hamilton type operator. We have:

(a) σ(T) = −σ(T∗), σa(T) = −σa(T∗).
(b) σw(T) = −σw(T∗), σb(T) = −σb(T∗).
(c) σe(T) = −σe(T∗), σea(T) = −σea(T∗).

Proof. The proof is similar to Theorem 2.2.3 in [14].

Lemma 2.5. Let J be an unitary operator with J2 = −I. Then the following assertions hold:

(a) T has the SVEP if and only if JTJ has the SVEP.
(b) If T is a Hamilton type operator with J, then
σa(JTJ) = σa(T∗), σe(JTJ) = σe(T∗).

Proof. (a) Since J is an unitary operator with J2 = −I, then it is easily seen that JTJ−λI = J(T+λI)J for every
λ ∈ C. Hence the assertion is immediate from Definition 2.3.

(b) To establish the assertion, it remains, by Lemma 2.4, to be seen that

σa(T) = −σa(JTJ), σe(T) = −σe(JTJ).

Because of the method is similar, we shall only prove the identity σa(T) = −σa(JTJ). Consider an arbitrary
λ ∈ σa(JTJ), then there exists {xn} ⊆ X with ∥ xn ∥= 1 such that

lim
n→∞

∥ (JTJ − λI)xn ∥= 0

for every n ∈N. Moerover, if T is Hamilton type operator, then it is clear that

lim
n→∞

∥ (T + λI)Jxn ∥= 0

and ∥Jxn∥ = 1, and therefore −λ ∈ σa(T). Hence σa(JTJ) ⊆ −σa(T).
On the other hand, we can obtain that

σa(T) = σa(JJTJJ) = σa(J(JTJ)J) ⊆ −σa(JTJ).

This completes the proof of (b).



W. H. Zhang et al. / Filomat 36:6 (2022), 2063–2071 2067

3. Main results

Theorem 3.1. Let T ∈ M(T1,T2). Suppose that T1 is Hamilton type operator and has the SVEP. Then the following
statements are equivalent:

(a) T1 satisfies Weyl’s theorem.
(b) T1 satisfies a-Weyl’s theorem.
(c) T1 has property (w).
(d) T1 has property (aw).
(e) T satisfies Weyl’s theorem.
(f) T satisfies a-Weyl’s theorem.
(g) T has property (w).
(h) T has property (aw).

Proof. If T1 has the SVEP, then T∗1 has the SVEP by Corollary 3.1 of [12]. Hence σ(T1) = σa(T1). Moreover,
we obtain that π00(T1) = πa

00(T1). Now observe that, we have σw(T1) = σea(T1). Indeed, σab(T1) = σea(T1) ∪
accσa(T1) holds for every T1 ∈ B(X), and therefore we need only to prove σw(T1) ⊆ σab(T1). If λ < σab(T1),
then T1 − λI ∈ F+(X), and p(T1 − λI) < ∞. Since T∗1 has the SVEP, it follows that q(T1 − λI) < ∞. Therefore,
we conclude that α(T1 − λI) = β(T1 − λI), hence λ < σw(T1).

Assume that T1 satisfies Weyl’s theorem, then

σ(T1)\σw(T1) = π00(T1).

It is immediate that
σa(T1)\σea(T1) = πa

00(T1),

σa(T1)\σea(T1) = π00(T1),

and
σ(T1)\σw(T1) = πa

00(T1).

This completes the proof of the implication, (a)⇔ (b)⇔ (c)⇔ (d).
Since T1 has the SVEP, we obtain from part (a) of Lemma 2.5, JT∗1 J has the SVEP. Hence T has the SVEP.

It is simple to show that, T∗ has the SVEP in terms of T∗ =
[ T∗1 0

T∗2 JT1 J

]
. Hence (e)⇔ (f)⇔ (g)⇔ (h).

We next claim that (a)⇔ (e). The following equations are ture by assumption and Lemma 2.5

σ(T) = σa(T) = σa(T) ∪ S(T∗1)
= σa(T1) ∪ σa(JT∗1 J)
= σa(T1) ∪ σa(T1)
= σ(T1),

σw(T) = σe(T) = σe(T) ∪ [S(T∗1) ∩ S(JT∗1 J)]
= σe(T1) ∪ σe(JT∗1 J)
= σe(T1) ∪ σe(T1)
= σw(T1),

where S(T) := {λ ∈ C : T has no SVEP at λ} . On the other hand, we observe that π00(T) = π00(T1). Indeed,
since σ(T) = σ(T1), it suffices to show that

0 < α(T − λI) < ∞⇔ 0 < α(T1 − λI) < ∞

for every λ ∈ isoσ(T).
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Given an arbitrary λ ∈ isoσ(T), we note that

N(T1 − λI) ⊕ {0} ⊆ N(T − λI).

Hence, we conclude that
0 < α(T − λI) < ∞⇒ 0 < α(T1 − λI) < ∞.

Conversely, let 0 < α(T1 − λI) < ∞ for λ ∈ isoσ(T1). Since T1 is Hamilton type operator, we obtain that

0 < α(T∗1 + λI) < ∞.

Let α(T∗1 + λI) = k < ∞, and consider a linearly independent set {e1, e2, · · · , ek} ⊆ N(T∗1 + λI). If
k∑

i=1
ai Jei = 0

for ai ∈ C, i = 1, 2, · · · , k, then

0 = J
k∑

i=1

ai Jei = −

k∑
i=1

aiei,

and therefore ai = 0 for all i = 1, 2, · · · , k. Thus {Je1, Je2, · · · , Jek} are linearly independent set in JN(T∗1 + λI).
Hence

α(JT∗1 J − λI) = k < ∞.

Moreover, if JT∗1 J − λI is injective, then it is easy to deduce that T1 − λI is also injective. So α(JT∗1 J − λI) > 0,
that is, 0 < α(T − λI) < ∞. Hence

0 < α(T1 − λI) < ∞⇒ 0 < α(T − λI) < ∞.

Therefore (a)⇔ (e).

Remark 3.2. In the above Theorem, T is Hamilton type operator with some unitary operators not necessarily J.

Corollary 3.3. It is true that any of T1 or T in the statements of Theorem 3.1 can be changed to T∗1 or T∗.

Proof. Hamilton type operator T ∈ B(X) satisfies Weyl’s theorem if and only if T∗ also satisfies. So we assert
that it is found by assumption. Indeed, it is simple to prove that π00(T) = −π00(T)∗ by a similar method in
[14]. Moreover if T satisfies Weyl’s theorem, then, from Lemma 2.4, we have

σ(T∗)\σw(T∗) = −π00(T) = π00(T∗).

Hence T∗ satisfies Weyl’s theorem. Therefore this completes the proof.

The following simple consequence of the preceding Theorem 3.1 will be useful in the study of the
spectral theory with operator matrix.

Corollary 3.4. Let T ∈M(T1,T2). If T∗1 has the SVEP, then

(a) σ(T) = σ(T1).
(b) σa(T) = σa(T1).
(c) σw(T) = σw(T1).
(d) σe(T) = σe(T1).

Corollary 3.5. Let T1 be a Hamilton type operator with J and has the SVEP. Then, Weyl’s theorem holds for T1 if
and only if a-Weyl’s theorem holds for T =

[
T1 T2
0 T1

]
.

Proof. Since T1 is Hamilton type operator with J, then T1 = JT∗1 J. Hence the proof follows from Theorem3.1.

Theorem 3.6. Let T ∈ M(T1,T2). Suppose that T2 is Hamilton type operator with J and T1 is Hamilton type opeator
with the SVEP. Then the following statements hold:
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(a) T1 satisfies Browder’s theorem.
(b) T1 satisfies a-Browder’s theorem.
(c) T1 has property (b).
(d) T1 has property (ab).
(e) T satisfies Browder’s theorem.
(f) T satisfies a-Browder’s theorem.
(g) T has property (b).
(h) T has property (ab).

Proof. Since T1 is Hamilton type operator and has the SVEP, we obtain that

σw(T1) = σb(T1) = σea(T1) = σab(T1),

it is means that T1 satisfies Browder’s theorem and a-Browder’s theorem. In the same way, we have

σa(T1)\σea(T1) = σ(T1)\σb(T1) = p00(T1)

and
σ(T1)\σw(T1) = σa(T1)\σab(T1) = pa

00(T1).

Hence T1 have property (b) and peoperty (ab).
In terms of the operator

T =
[

T1 T2
0 JT∗1 J

]
,

it is easy to obtain that both T and T∗ have the SVEP. Indeed, T is Hamilton type operator with J′ =
[

0 J
J 0

]
.

Therefore, we have
σw(T) = σb(T) = σea(T) = σab(T)

and
σ(T) = σa(T), p00(T) = pa

00(T).

Hence T satisfies Browder’s theorem, a-Browder’s theorem, property (b) and property (ab), respectively.

Corollary 3.7. Let T ∈M(T1,T2) where T1 and T∗1 have the SVEP. Then a-Browder’s theorem hold for T.

Proof. The proof is derived directly from Theorem3.6.

It comes naturally that the above-mentioned statements described in Theorem 3.1 and 3.6 be equivalent
under what conditions holds for T.

We now determine a few concepts applied in following statement. Let σT(x) = C\ρT(x) be the local
spectrum of T at x ∈ X, and define the local spectral subspace of T, XT(F) = {x ∈ X : σT(x) ⊆ F} for each
subset F of C. Assume that λ ∈ isoσ(T), let P{λ} denote the spectral projector determined by the set {λ} using
the usual holomorphic functional calculus. For more details see [8].

Theorem 3.8. Let T ∈ B(X). If XT({λ}) = N(T − λI) for each λ ∈ isoσ(T). Then T satisfies Weyl’s theorem if and
only if T satisfies Browder’s theorem.

Proof. Assume that T satisfies Browder’s theorem, then σw(T) ⊇ σ(T) \ π00(T). We will show that

σw(T) ⊆ σ(T) \ π00(T).

Let λ ∈ π00(T). Since XT({λ}) = N(T − λI), it follows that XT({λ}) is finite dimensional for each λ ∈ isoσ(T).
Since T has the SVEP at λ ∈ isoσ(T), then P{λ}(X) = XT({λ}). Therefore T − λI + P{λ} is invertible, moreover,
T−λI ∈W(X) by [2, Proposition 2]. Hence T satisfies Weyl’s theorem. On the other hand, if T ∈ B(X) obeys
Weyl’s theorem, then T satisfies Browder’s theorem.



W. H. Zhang et al. / Filomat 36:6 (2022), 2063–2071 2070

Corollary 3.9. Let T ∈M(T1,T2). Assume that T2 is Hamilton type operator with J and T1 is Hamilton type operator
with the SVEP, XT1 ({λ}) = N(T1 − λI). Then all of the statements described in Theorem 3.1 and Theorem 3.6 hold
for T and T1.

Remark 3.10. (a) The statements (a) to (d) of Theorem 3.1, the Hamilton type operator can be replaced by infinite
dimensional Hamilton operator.

(b) In Theorem 3.1, 3.6 and Corollary 3.4, 3.9, the conclusions still hold when the condition SVEP is changed to
Tσ − λ has finite ascent for all λ ∈ C, where Tσ ∈ {T,T1}.

(c) Theorems 3.1, 3.6, 3.8 remain true while corresponding conditions replace by the following statement:let
T =
[

T1 T2
0 −T∗1

]
∈ B(X⊕X), where T1 is an infinite dimensional Hamilton operator with J =

[
0 I
−I 0

]
which has the

SVEP, and T2 is self-adjoint operator.

Recall that an operator T ∈ B(X) is called isoloid if every λ ∈ isoσ(T) is an eigenvalue of T.

Theorem 3.11. Let T ∈M(T1,T2) where T1 and T∗1 have the SVEP.

(a) If T1 is isoloid and Weyl’s theorem hold for T1 and T∗1, then Weyl’s theorem holds for T.
(b) The following statements are equivalent:

(i) Weyl’s theorem holds for T.
(ii) a-Weyl’s theorem holds for T.

(iii) Property (w) holds for T.

Proof. (a) Since T1 is an isoloid operator with the SVEP, it follows from Corollary 2.5 by [5] that

σw(
[

T1 0
0 JT∗1 J

]
) = σw(T1) ∪ σw(JT∗1 J).

Therefore,
[

T1 0
0 JT∗1 J

]
satisfies Weyl’s theorem from Lemma 10 by [9]. Then T satisfies Weyl’s theorem from

Corollary 3.9 by [5].
(b) Assume that T satisfies Weyl’s theorem. Since T1 and T∗1 have the SVEP, it follows from Corollary 3.3

and the proof of Theorem 3.1 that

σa(T)\σea(T) = σ(T)\σw(T) = π00(T) = πa
00(T).

Hence a-Weyl’s theorem and property (w) hold for T, and so we have (i)⇒ (ii) and (ii)⇔ (iii). However, it
is obvious that (ii)⇒ (i).

Corollary 3.12. Let T1 be Hamilton type operator with J and has the SVEP. If T1 is isoloid and Weyl’s theorem holds
for T1, then a-Weyl’s theorem and property (w) hold for T =

[
T1 T2
0 T1

]
.
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