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Abstract. In the [1], [4], [3] and [2] there were examined the Bavrin’s families (of holomorphic functions
on bounded complete n− circular domains G ⊂Cn) in which the Temljakov operator L f was presented as a
product of a holomorphic function h with a positive real part and the (0, k)−symmetrical part of the function
f ,

(
k ≥ 2 is a positive integer

)
. In [17] there was investigated the family of the above mentioned type, where

the operator LL f was presented as a product of the same function h ∈ CG and (0, 2)-symmetrical part of
the operator L f .
These considerations can be completed by the case of the factorization LL f by the same function h and
the (0, k)-symmetrical part of operator L f . In this article we will discuss the above case. In particular, we
will present some estimates of a generalization of the norm of m-homogeneous polynomials Q f ,m in the
expansion of function f and we will also give a few relations between the different Bavrin’s families of the
above kind.

1. Introduction

Poincare [15] pointed that the Riemann mapping theorem is false in Cn,n > 1. For this reason it is very
natural to consider the holomorphicity in Cn on domains from a sufficiently wide class. The results in this
paper concern the bounded complete circular domains, because such domains play the same role for Taylor
series in Cn as open discs in one dimensional case.

We say that a domain G ⊂ Cn,n ≥ 2, is complete n−circular if zλ=(z1λ1, ..., znλn) ∈ G for each z = (z1, ..., zn) ∈
G and every λ = (λ1, ..., λn) ∈ Un, where U is the unit disc {ζ ∈ C : |ζ| < 1}. From now, by G will be denoted
a nonempty bounded complete n−circular domain in Cn.

Note that the Minkowski function µG : Cn
→ [0,∞) of the form

µG(z) = in f {t > 0:
1
t

z ∈ G}, z ∈ Cn,
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gives the possibility to redefine the bounded n-circular domain G and its boundary ∂G as follows:

G = {z ∈ Cn : µG(z) < 1}, ∂G = {z ∈ Cn : µG(z) = 1}.

By HG(1) and HG, let us denote the set of all holomorphic functions f : G −→ C, normalized by f (0) = 1
and without any normalization, respectively.

We will use the Temljakov linear operator L : HG −→ HG defined in [1] by

L f (z) = f (z) +D f (z)(z), z ∈ G,

where D f (z) (w) is the value of the Frechet derivative D f (z) of f at the point z on a vector w (D f (z) is the
row vector

[
∂ f (z)
∂z1
, ...,

∂ f (z)
∂zn

]
and w is a column vector). Of course L is invertible and

L
−1 f (z) =

1∫
0

f (zt)dt, z ∈ G.

Many authors (see eg. [1], [6], [7], [8], [13], [18]) considered some Bavrin’s subfamilies XG of the family
HG(1). In the definition of these families the main role is played by the family CG,

CG = { f ∈ HG(1) : Re f (z) > 0, z ∈ G}.

By a Bavrin’s family XG we mean a collection of functions f ∈ HG(1) whose the Temljakov transform L f
has a functional factorization L f = h · 1, where h ∈ CG and 1 is from a fixed subfamily ofHG(1). Below, we
recall the factorizations which define a few well known Bavrin’s families XG, like

MG : L f = h · f , h ∈ CG,

NG : L(L f ) = h · L f , h ∈ CG,

RG : L f = h · Lφ, φ ∈ NG, h ∈ CG.

Let us note that functions of these families were used to construct biholomorphic mappings in Cn (see eg.
[9], [11], [14]). It is known that familiesMG, NG, RG correspond with the well-known classes S⋆, Sc, Scc

of univalent starlike, convex and close-to-convex normalized functions in the unit disc U. For instance: if
f belongs to the classMG, then the function

F(ζ) = ζ f
(
ζ

z
µG(z)

)
, ζ ∈ U

belongs to the family S⋆ for z ∈ G \ {0}.

Bavrin showed (see e.g.[1]) thatNG ⊊MG.He proved also the following higher dimensional version of the
well-known Alexander theorem: if f ∈ NG than L f ∈ MG and conversely, if f ∈ MG then L−1 f ∈ NG.

In [3] the authors defined the familyM2
G

in the following way: A function f ∈ HG(1) belongs toM2
G

if there
exists a function h ∈ CG such that

L f (z) = h(z) f0,2(z), z ∈ G,

where f0,2 is the even part of f in the unique partition f = f0,2 + f1,2 of f onto the sum of even and odd
functions. In [17] the classN2

G
was introduced as follows: A function f ∈ HG(1) belongs toN2

G
if there exists

a function h ∈ CG such that
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LL f (z) = h(z)
(
L f

)
0,2 (z), z ∈ G.

In [2] the author investigated the family Mk
G
, k ∈ N, k ≥ 2, by application a functional decomposition

with respect to the group of kth roots of unity.

Let k ≥ 2 be an arbitrarily fixed integer, ε = εk = exp 2πi
k and a set D ⊂ Cn be k − symmetric (εD = D).

For j = 0, 1, ..., k − 1 we define the spaces F j,k = F j,k(D) of functions
(
j, k

)
− symmetrical, i.e., all functions

f : D→ C such that
f (εz) = ε j f (z) , z ∈ D.

The following result from [12] was used in this and the aforementioned article:

Theorem A For every function f : D → C there exists exactly one sequence of functions f j,k ∈ F j,k,
j = 0, 1, ..., k − 1, such that

f =
k−1∑
j=0

f j,k (1)

Moreover,

f j,k (z) =
1
k

k−1∑
l=0

ε− jl f
(
εlz

)
, z ∈ G. (2)

By the uniqueness of the partition (1) the functions f j,k will be called(
j, k

)
− symmetrical components of the function f . Since every bounded complete n-circular domainG ⊂ Cn

is k-symmetric set, it is obvious that f0,k ∈ HG(1) for f ∈ HG(1).

We say (see [2]) that a function f ∈ HG(1) belongs toMk
G
, k ∈ N, k ≥ 2, if there exists a function h ∈ CG

such that

L f (z) = h(z) f0,k(z), z ∈ G. (3)

The family Mk
G

corresponds to the well-known class S∗k [16] of normalized univalent functions, starlike
with respect to k -symmetric points.

These considerations can be completed by the case of the factorizationLL f by the same function h and the
(0, k)-symmetrical part of operator L f .

It is known ([2]) that for every function f ∈ HG (1)

(L f )0,k = L( f0,k). (4)

Let us define the classN k
G

k ∈N, k ≥ 2 as a family of functions f ∈ HG (1) for which there exists a function

h ∈ CG such that

LL f (z) = h(z)L f0,k(z), z ∈ G. (5)

2. Main results

Between functions from the class Mk
G

, N k
G

there holds the following generalization of the Alexander’s
relation:
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Theorem 2.1. Let k ∈N, k ≥ 2. If f ∈ N k
G
, then L f ∈ Mk

G
and conversely, if f ∈ Mk

G
, then L−1 f ∈ N k

G
.

Proof. If f ∈ N k
G

k ∈ N, k ≥ 2, then f ∈ HG(1), L f ∈ HG(1) and there exists h ∈ CG such that the condition
(5) holds, where f0,k is (0, k)-symmetrical part of f . In view of (4) the condition (5) can be written in the form

L
(
L f (z)

)
= h(z)

(
L f

)
0,k (z), z ∈ G,

therefore, by (3) L f ∈ Mk
G
.

Now, let f belongs to the classMk
G
, i.e. f ∈ HG(1) and there exists h ∈ CG such that the condition (3) holds.

Hence,
L

(
LL

−1 f (z)
)
= h(z)LL−1 f0,k(z), z ∈ G,

LL

(
L
−1 f (z)

)
= h(z)L

(
(L−1 f )0,k(z)

)
, z ∈ G.

Therefore, L−1 f ∈ N k
G
. □

Let us observe that N k
G

k ∈ N, k ≥ 2 are nonempty classes. Indeed, the function f = 1 belongs to N k
G
,

because it satisfies the factorization (5) with h = 1 ∈ CG.

It is known that the constructs of functions of several complex variables are very difficult. We will give an
example of non-trivial hypergeometric function belonging to the classN k

G
.

Example It is known that the function H(a, b, c, ζ) of the form

H(a, b, c, ζ) =
∞∑
ν=0

(a)ν (b)ν
(c)ν

ζν

ν!
, a, b, c,∈ C, ζ ∈ U, (6)

where (a)ν = a(a + 1)...(a + ν − 1), ν = 1, 2, . . . and (a)0 = 1 is called the hypergeometrical function.

Let I : Cn
→ C be a linear operator of the form

I (z) =
1

µG (̂I)
Î (z) ,

where

Î (z) =
n∑

j=1

z j, z = (z1, ..., zn) ∈ Cn. (7)

and

µG (̂I) = sup
w∈Cn\{0}

∣∣∣∣̂I (w)
∣∣∣∣

µG(w)
= sup

v∈∂G

∣∣∣∣̂I(v)
∣∣∣∣ . (8)

The quantity µG (̂I) is called a G-balance of the linear functional Î.

The G-balance of the form (8) coincides with the ∆ = ∆(G) - characteristic of the domain G, which was
introduced by Bavrin (see [1]) by the formula ∆ = supz=(z1,z2,...,zn)∈G

∣∣∣∑n
j=1 z j

∣∣∣ . If G is a convex bounded

complete n-circular domain, then µG (̂I) =∥ Î ∥ .

To show that function

f (z) = H(
1
k
,

2
k
, 1 +

1
k
, Ik (z)), z ∈ G, k ∈N, k ≥ 2 (9)

belongs to the classN k
G

, we will use the following known propositonerties of the hypergeometrical function:
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Remark 2.2. If H(a, b, c, ζ), a, b, c,∈ C, ζ ∈ U, is the hypergeometrical function of the form (6), then

(i) ζ d
dζH(a, b, c, ζ) = aH(a + 1, b, c, ζ) − aH(a, b, c, ζ);

(ii) H(a, b, c, ζ) = H(b, a, c, ζ);

(iii) H(l, b, b, ζ) = (1 − ζ)−l .

To determine the transform L f of function f , let us write

f (z) = T (I (z)) , z ∈ G,

where T :U → C is defined in the following way:

T (ζ) = H
(1

k
,

2
k
, 1 +

1
k
, ζk

)
, ζ ∈ U, k ∈N, k ≥ 2. (10)

Now, we will find explicit form of L f .We start with the following equality

L f (z) =
d

dζ
(ζT (ζ)) |ζ=I(z).

Next, in view of the form (10) of T, we have at ζ ∈ U

d
dζ

(ζT (ζ)) = H
(1

k
,

2
k
, 1 +

1
k
, ζk

)
+ ζ

d
dζ

(
H

(1
k
,

2
k
, 1 +

1
k
, ζk

))
=

= H
(1

k
,

2
k
, 1 +

1
k
, ζk

)
+ ζ

d
dζk

dζk

dζ

(
H

(1
k
,

2
k
, 1 +

1
k
, ζk

))
=

= H
(1

k
,

2
k
, 1 +

1
k
, ζk

)
+ kζk d

dζk

(
H

(1
k
,

2
k
, 1 +

1
k
, ζk

))
.

Thus, by propositonerty 2.2 (i), we have for ζ ∈ U

d
dζ

(ζT (ζ)) =
(
H

(1
k
+ 1,

2
k
, 1 +

1
k
, ζk

))
.

Hence, using propositonerty 2.2 (ii) and (iii) of H,we conclude that

d
dζ

(ζT (ζ)) =
1(

1 − ζk) 2
k

, ζ ∈ U.

Finally,

L f (z) =
1(

1 − Ik (z)
) 2

k

, z ∈ G.

In the paper [4] the authors showed, that function

1 (z) =
1(

1 − Ik (z)
) 2

k

, z ∈ G,

so according to the Theorem 2.1, the function of the form (9) belongs to theN k
G
.

Now, we consider an extremal problemma for the familyN k
G
.
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It is known that each function f ∈ HG (1) can be developed into series of m-homogeneous polynomials
Q f ,m, m ∈N of the form

f (z) = 1 +
∞∑

m=1

Q f ,m(z), z ∈ G (11)

where
Q f ,m(z) =

∑
α1+...+αn=m

cα1...αn zα1
1 . . . z

αn
n , z = (z1, . . . , zn) ∈ Cn,

and the coefficients cα1...αn , αl ∈N ∪ {0}, l = 1, . . . ,n are defined by the partial derivatives as follows:

cα1...αn =
1

α1! · . . . · αn!
∂α1+...+αn f
∂zα1

1 . . . ∂z
αn
n

(0)

Bearing in mind that for the considered domains G, µG is a seminorm in Cn and it is a norm in Cn in the
case if G is also convex, we will use a generalization µG(Q f ,m) of the norm of m-homogeneous polynomials
Q f ,m. Putting for m ∈N

µG(Q f ,m) = sup
w∈Cn\{0}

∣∣∣Q f ,m(w)
∣∣∣

(µG(w))m

and using the m-homogeneity of Q f ,m and the maximum principle for modulus of holomorphic functions
of several variables we have

µG(Q f ,m) = sup
ν∈∂G

∣∣∣Q f ,m(ν)
∣∣∣ = sup

u∈G

∣∣∣Q f ,m(u)
∣∣∣

It is easy to see that ∣∣∣Q f ,m(w)
∣∣∣ ≤ µG(Q f ,m)(µG(w))m, w ∈ Cn, m ∈N,

and the above estimate generalizes the well-known inequality∣∣∣Q f ,m(w)
∣∣∣ ≤∥ Q f ,m ∥ · ∥ w ∥m, w ∈ Cn, m ∈N.

By the above considerations and in view of the fact that every complete n-circular domain is balanced,
the quantities µG(z) and µG(Q f ,m) are called G-balance of the point z and G-balances of m-homogeneous
polynomials Q f ,m, respectively.

In the next theorem we give the sharp estimates of G-balances of m-homogeneous polynomials which
appear in the Taylor series development of the form (11).

Theorem 2.3. If the expansion of the function f ∈ N k
G

into a series of m−homogeneous polynomials Q f ,m has the
form (11) then for the G−balances µG(Q f ,m) of polynomials Q f ,m there hold the following sharp estimates:

µG(Q f , m) ≤


2

m(m+1)

m
k −1∏
p=1

(
1 + 2

pk

)
for m = k, 2k, 3k, ...

2
(m+1)2

⌊
m
k ⌋∏

p=1

(
1 + 2

pk

)
for remaining m ∈N

, (12)

where
⌊
q
⌋
− means the integral part of the number q.

We agree, as usual, that the product
l2∏

l=l1
al is equal to 1 for l2 < l1.



R. Długosz et al. / Filomat 36:6 (2022), 2073–2082 2079

Proof. Let f ∈ N k
G

be arbitrarily fixed. Then from the generalization of Alexander’s theorem (see Theorem
2.1) L f ∈ Mk

G
. If f has the form (11), then

L f (z) = 1 +
∞∑

m=1

(m + 1) Q f ,m(z), z ∈ G.

Hence, we have

µG(QL f , m) = sup
z∈G

∣∣∣QL f , m(z)
∣∣∣ = sup

z∈G

∣∣∣(m + 1) Q f , m(z)
∣∣∣ = (m + 1)µG(Q f , m) . (13)

It is known ([4]) that for 1 ∈ Mk
G

, there hold the following sharp estimates of the G−balances µG(Q1,m) of
polynomials Q1,m:

µG(Q1, m) ≤


2
m

m
k −1∏
p=1

(
1 + 2

pk

)
for m = k, 2k, 3k, ...

2
m+1

⌊
m
k ⌋∏

p=1

(
1 + 2

pk

)
for remaining m ∈N

. (14)

In view of (13) and (14) the proof is complete. □

The next lemmama will show the connection between the familiesN k
G

andMG.

Lemma 2.4. Let k ∈N, k ≥ 2. For every function f ∈ N k
G

its (0, k)-symmetrical part f0,k belongs toNG. Moreover,
f0,k ∈ N k

G
.

Proof. Let f ∈ N k
G

and let z be arbitrarily fixed. There exists the function h ∈ CG such that (5) holds. In view
of the propositonerties of Gwe have f0,k ∈ HG(1) and

f0,k
(
εlz

)
= f0,k (z) .

Hence, we obtain the system of equations of the form

LL f (εlz) = h(εlz)L f0,k(z), z ∈ G, l = 0, 1, ..., k − 1.

Summing up the above equalities, we have

1
k

k−1∑
l=0

LL f (εlz) = L f0,k(z)
1
k

k−1∑
l=0

h(εlz)

and according to theorem A

(LL f )0,k (z) = h0,k (z)L f0,k(z).

From (4) we obtain
(LL f )0,k (z) = LL( f0,k(z))

and
LL( f0,k (z)) = h0,k (z)L f0,k(z).

Note that if h ∈ CG, then h0,k ∈ CG, so f0,k fulfils the condition defining the familyNG.
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Since f0,k is (0, k)-symmetrical part of f and L f0,k is a (0, k)-symmetrical part of L f then the condition(
L f0,k(z)

)
0,k = L f0,k(z) holds and by (4) there exists the function h ∈ CG such that

LL f0,k (z) = h (z)L
(

f0,k(z)
)

0,k .

Hence, f0,k ∈ N k
G
. □

In the proof of next theorem, we will use the following result form the paper [10]:

Theorem B Let G ⊂ Cn be a bounded complete n-circular domain. Let us assume that F ∈ HG(1), H ∈ MG and ρ is
a relation defined as follows

FρH⇐⇒ Re
F(z)
H(z)

> 0, z ∈ G. (15)

If (LF)ρ(LH), then FρH.

Theorem 2.5. For every k ∈N, k ≥ 2 there holds the inclusion

Nk
G
⊊Mk

G
.

Proof. Since, the relation N2
G
⊊M2

G
is true (see [17] ), we can assume that k > 2.

First, we will prove that Nk
G
⊂ M

k
G

. Let f belongs to Nk
G
. It means that f ∈ HG(1) and L f ∈ HG(1) and (see

the lemmama 2.4) f0,k ∈ NG, so f0,k ∈ MG. Let as put F = L f and H = f0,k. The condition (5) is equivalent to
inequality ReLL f (z)

L f0,k(z) > 0, so in the terminology of Theorem B, LFρLH. Hence, we have that FρH, which is

equivalent to the condition ReL f (z)
f0,k(z) > 0, z ∈ G. It gives that f ∈Mk

G
.

Now, we will show that Nk
G
,Mk

G
. For this purpose, let us remind that for the function f ∈ Nk

G
there hold

the sharp estimates µG(Q f , m) given by (12), while for function f ∈ Mk
G

these estimates are presented in the
formula (14). Therefore, the function f ∈Mk

G
that meets equality (14) does not belong to Nk

G
. □

Next results concern the topological propositonerties of the familyN k
G
.

Theorem 2.6. The familyN k
G

is not convex for any k ∈N, k ≥ 2.

Proof. Let us consider the mapping f = 1
2
(

f1 + f2
)
,where

f1 (z) = H(
1
k
,

2
k
, 1 +

1
k
, Ik (z)), z ∈ G,

f2 (z) = f1(
k√

−1z), z ∈ G.

(in both above formulas the branches of the power function x
1
k are such that 1

1
k = 1 and the root is arbitrarily

fixed) In view of the earlier consideration, the functions f1, f2 ∈ N k
G
.

Now, we will show that f does not belong to the family N k
G
. To this aim, we will show that L f does not

belong to the familyMk
G

.
We have

f1 (z) = L−1

 1(
1 − Ik (z)

) 2
k

 , z ∈ G,

f2 (z) = L−1

 1(
1 + Ik (z)

) 2
k

 , z ∈ G,
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hence
L f (z) =

1
2

[(
1 − zk

)− 2
k
+

(
1 + zk

)− 2
k
]
, z ∈ G

and

L f (z)
f0,k (z)

=
1

1 − z2k

(
1 + zk

) 2
k+2
+

(
1 − zk

) 2
k+2

(
1 + zk) 2

k +
(
1 − zk) 2

k

, z ∈ G.

Denoting by a an elemmaent of k√i, with Ar1a∈
(
0, π2

)
, we get the continuity L f

f0,k
at a point ẑ=(a, 0, ..., 0) ∈ ∂G.

We will also show that

Re
L f (̂z)
f0,k

(̂
z
) < 0.

Since

Re
L f (̂z)
f0,k

(̂
z
) = −Im

i
2
k − 1

i
2
k + 1

,

we use the fact that the homography ζ−1
ζ+1 transforms the unit circle onto the imaginary axis, wherein the

upper semicircle onto the upper semiaxis. The above propositonerty gives the equality

i
2
k − 1

i
2
k + 1

= bi, b > 0,

because the point i
2
k = a2 belongs to the upper unit semicircle.

Therefore, Re L f
f0,k

is negative at the point ẑ ∈ ∂G. Hence, from continuity of the functions Re L f
f0,k

at the point

ẑ,we obtain that ReL f
f0,k

is negative also in some points z ∈ G close to the above point ẑ ∈ ∂G. Summing up,
we proved thatL f <Mk

G
.Hence, f does not belong to the familyN k

G
, k ≥ 2. Therefore,N k

G
is not convex. □

Now, we give a topological propositonerty of the familyN k
G
, k ≥ 2 in the spaceHG of holomorphic mappings

f : G −→ Cn with a topology introduced by the closure operation.

We say, as usual, that a mapping f belongs to the closure Y of a set Y ⊂ HG if there exists a sequence
of mappings fν ∈ Y convergent to f almost uniformly in G, i.e., convergent uniformly on every compact
subset ofG. Of course, it sufficies to guarantee the uniform convergence on every domain rG ⊂ G, r ∈ (0, 1).

The announced topological propositonerty of the familyN k
G
, k ≥ 2,we present in the following:

Theorem 2.7. The family Nk
G
, k ≥ 2, is a path connected set in HG with a topology given by the closure operation.

Hence, Nk
G
, k ≥ 2, is also connected.

Proof. There is enough to use the fact thatN k
G

is a subset ofMk
G

and estimates µG(Q f , m) ≤ 1, m ∈ N in the
familyMk

G
and the proof of the path - connectness is similar to the investigations in [4]. □
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