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Abstract. This work deals with the existence and multiplicity of solutions for p(x)-Laplacian Robin problem
without the well-known Ambrosetti-Rabinowitz type growth conditions. The uniqueness of solution is also
established under some new sufficient conditions.

1. Introduction

In recent years, the study of differential equations and variational problems with variable exponent
growth conditions has been an interesting topic. There are several applications concerning elastic materials,
image restoration (see [33]), thermorheological and electrorheological fluids (see [29]) and also mathematical
biology [16]. For the advances of the study of differential equations with variable exponents see the overview
paper [18].

In this paper, we discuss the existence and multiplicity of solutions for the following Robin problem
involving the p(x)−Laplacian

−∆p(x)u = f (x,u) in Ω,

|∇u|p(x)−2 ∂u
∂ν
+ β(x)|u|p(x)−2u = 0 on ∂Ω,

(1)

where Ω ⊂ RN is a bounded domain with smooth boundary, p ∈ C+(Ω) where

C+(Ω) :=
{
p ∈ C(Ω) : p− := inf

x∈Ω
p(x) > 1

}
,

β ∈ L∞(Ω) with β− := infx∈Ω β(x) > 0 , ∆p(x)u := div(|∇u|p(x)−2
∇u) denotes the p(x)-Laplace operator and

p∗(x) =
{ Np(x)

N−p(x) i f p(x) < N,
+∞ i f p(x) ≥ N.

The problem (1) is regarded in case of f ∈ C(Ω ×R) and 1 < p− ≤ p+ < ∞.
Now, let us assume that f satisfy the following conditions:
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(H1) There exist C > 0 and q ∈ C+(Ω) with p+ < q− ≤ q+ < p∗(x) for all x ∈ Ω, such that f verifies

| f (x, s)| ≤ C
(
1 + |s|q(x)−1

)
for all x ∈Ω and all s ∈R and f (x, t) = f (x, 0) = 0 ∀x ∈ Ω, t ≤ 0.

(H2) lim
t→0

f (x, t)
|t|p+−1 = l1 < ∞, lim

t→∞

f (x, t)t
|t|p+

= ∞.

(H3) For a.e x ∈ Ω, f (x,t)
tp+−1 is nondecreasing with respect to t ≥ 0.

So, we can report our first main result:

Theorem 1.1. 1) Assume (H1), (H2) and (H3) hold, then problem (1) has at least a nontrivial solution.
2)Suppose (H1)–(H3) are satisfied, for simplicity taking l1 = 0 in condition (H2).
Moreover, we assume that

(H4) f (x,−t) = − f (x, t) for all x ∈ Ω and t ∈ R.

If q− > p+, then problem (1) has a sequence of weak solutions {±uk}
∞

k=1 such that I(±uk)→ +∞ as k→ +∞.

A lot of works have been interested in the existence of solutions for elliptic problems in this direction.
For instance, we refer [1–6, 8, 10, 12, 14, 17, 20, 22–24]... and the reference therein. To be more closer to the
topic, let us mention some work on the subject.

From the variational point of view, the authors in [32], have studied Robin problems involving the
p-Laplacian, they proved at least four nontrivial solutions.

Papageorgiou and Radulescu studied in [25] the following problem

−∆p(x)u = λ f (x,u) in Ω,

|∇u|p(x)−2 ∂u
∂ν
+ α(x)|u|p(x)−2u = 0 on ∂Ω,

(2)

so by using the truncation techniques, they proved a bifurcation-type result describing the set of positive
solutions when the positive parameter λ varies.

In [8], by applying the sub-supersolution method and the variational method, the author obtained at
least two positive solutions for problem (1) under (H1) and the following conditions:

(AR) There exist M > 0 and θ > p+ such that

0 < θF(x, s) ≤ f (x, s)s, |s| ≥M, x ∈ Ω,

where F(x, t) =
∫ t

0 f (x, s)ds for x ∈ Ω and t ∈ R.
The works [7] and [20] considered problem (1) with a particular nonlinearity such that

f (x, t) = λV(x)|u|q(x)−2u .

For example, in [7], it shows the existence of a family of eigenvalues in a neighborhood of the origin.
Tsouli et al in [30] consider the following problem

−∆p(x)u = λ f (x,u) in Ω,

|∇u|p(x)−2 ∂u
∂ν
+ α(x)|u|p(x)−2u = 1(x,u) on ∂Ω,

(3)

Under Ambrosetti– Rabinowitz type conditions on the nonlinear terms f and 1, the authors obtained
some existence and multiplicity results for this problem.
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It is well known that (AR) condition defined by

(AR) p+F(x, s) ≤ f (x, s)s a.e x ∈ Ω,

plays a crucial rule to guarantee that every (PS) sequence of associated functional is bounded in X. The
interesting point lines in the fact that we do not need the usual Ambrosetti-Rabinowitz type condition (AR)
under various assumptions on f and by a different method, as well as the assumption (H2) is more weaken
than (AR) condition. That is why, according to our knowledge, the current work is a first contribution in
this direction with Robin boundary condition, then it is more interesting.

On other hand, we observe that the uniqueness for problem (1) have rarely been considered, then our
next theorem gives the uniqueness of solution.

Theorem 1.2. Suppose that the following assumption holds:
(H5) f (x,u) is nonincreasing with respect to the second variable, for all x ∈ Ω, and f (x, 0) ≥ 0 with f (x, 0) . 0

for all x ∈ Ω. Then problem (1) has a unique solution which is nontrivial.

Finally, we deal with the nonlinearity f (x,u) = εh(x)1(u), and ε > 0 is small enough, we give some
sufficient conditions to assure the existence of a positive solution to the problem provided h is sign-changing
in Ω. So we have the third main result,

Theorem 1.3. Assume that 1 : R→ R is continuous with 1(0) > 0, and
(H6) there exist ε > 0 and θ > 0 such that

λ
(
h+ − (1 + ε)h−

)
∈ Γ+, f or λ ∈ (0, θ],

where Γ+ = {h ∈ L∞(Ω) : A−1h(x) > 0}. (see the definition of A below in the proof)
Then, problem (1) has a positive solution.

The remainder of the paper is organized as follows. In Section 2, we will recall the definitions and some
properties of variable exponent Sobolev spaces. In Section 3, we shall establish the results of existence and
uniqueness of a solution for problem (1).

2. Preliminaries

In the sequel, let us define A = Ap(.) : W1,p(x)(Ω)→ (W1,p(x)(Ω))∗ by

A(u)v =
∫
Ω

|∇u|p(x)−2
∇u.∇v dx +

∫
∂Ω
β(x)|u|p(x)−2uv dσ, u v ∈W1,p(x)(Ω).

Denoting by T the inverse mapping of A, which means that A−1 = T : (W1,p(x)(Ω))∗ → W1,p(x)(Ω) is also
a strictly monotone homeomorphism, to lack of simplicity, noticing that T can be regarded as the solution
operator for the following problem

−∆p(x)u = b(x) in Ω,

|∇u|p(x)−2 ∂u
∂ν
+ β(x)|u|p(x)−2u = 0 on ∂Ω,

(4)

that is T(b(x)) is the solution of the last problem (4), for b ≥ 0 and b ∈ L∞(Ω).
Define Γ+ = {b ∈ L∞(Ω) : T(b) > 0}.
To discuss problem (4), we need some theory of variable exponent Lebesgue-Sobolev spaces. For

convenience, we only recall some basic facts which will be used later. For details, we refer to [11, 15, 19, 21,
26–28].
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For p ∈ C+(Ω), we designates the variable exponent Lebesgue space by

Lp(x)(Ω) =
{
u : Ω→ R is measurable and

∫
Ω

|u(x)|p(x)dx < +∞
}

equipped with the so called Luxemburg norm

|u|p(x) = inf
{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x)
dx ≤ 1

}
.

Proposition 2.1. If f : Ω × R → R is a carathéodory function and satisfies | f (x, t)| ≤ a(x) + b|t|
p1(x)
p2(x) for any

(x, t) ∈ Ω×R, where pi ∈ C+(Ω, i = 1, 2, a ∈ Lp2(x)(Ω), a(x) ≥ 0 and b ≥ 0 is a constant, then the Nemytsky operator
from Lp1(x)(Ω) to Lp2(x)(Ω) defined by N f (u)(x) = f (x,u(x)) is a continuous and bounded operator.

As in the constant exponent case, the generalized Lebesgue-Sobolev space W1,p(x)(Ω) is defined as

W1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

with the norm
∥u∥1 = |u|p(x) + |∇u|p(x).

With such norms, Lp(x)(Ω) and W1,p(x)(Ω) are separable, reflexive and uniformly convex Banach spaces.
Let α ∈ L∞(Ω), α− := inf∂Ω α(x) > 0 and for any u ∈W1,p(x)(Ω) define

∥u∥ = inf
{
τ > 0 :

∫
Ω

∣∣∣∣∇u
τ

∣∣∣∣p(x)
dx +

∫
∂Ω
α(x)

∣∣∣∣uτ ∣∣∣∣p(x)
dσx ≤ 1

}
.

According to Theorem 2.1 in [8], ∥.∥ is also a norm on W1,p(x)(Ω) which is equivalent to standard norm ∥.∥1.

Proposition 2.2. Let ρ(u) =
∫
Ω
|∇u|p(x)dx +

∫
∂Ω
α(x)|u|p(x) dσx. For u,un ∈W1,p(x)(Ω),n = 1, 2, ..., we have

1. ρ
(
u
/
|u|p(x)

)
= 1.

2. ∥u∥ < 1(= 1, > 1) ⇐⇒ ρ(u) < 1(= 1 > 1).
3. ∥u∥ < 1 =⇒ ∥u∥p+ ≤ ρ(u) ≤ ∥u∥p− .
4. ∥u∥ > 1 =⇒ ∥u∥p− ≤ ρ(u) ≤ ∥u∥p+ .
5. Then the following statements are equivalent each other:

(a) lim
n→∞
∥un − u∥ = 0.

(b) lim
n→∞

ρ(un − u) = 0.

(c) un → u in measure in Ω and lim
n→∞

ρ(un) = I(u).

For A ⊂ Ω, denote by p−(A) = inf
x∈A

p(x), p+(A) = sup
x∈A

p(x).

Recall the following embedding theorem.

Theorem 2.3. If q ∈ C+(Ω) and q(x) ≤ p∗(x) (resp. q(x) < p∗(x)) for x ∈ Ω, then there is a continuous (resp.compact)
embedding W1,p(x)(Ω) ↪→ Lq(x)(Ω).

Let us recall the following interesting result:

Proposition 2.4. Let X a Banach space. If J ∈ C1(X,R) is bounded from below and satisfies (PS) condition, then
c = infX J is a critical value of J.
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Related to problem (1), the associated functional I : X→ R is given by

I(u) =
∫
Ω

1
p(x)
|∇u|p(x) dx +

∫
∂Ω
β(x)

1
p(x)
|un|

p(x) dσ −
∫
Ω

F(x,u) dx.

From the continuous embedding

Wk,p(x)(Ω) ↪→ Ls(x)(Ω), ∀s(x) ∈ [1, p∗(x)],

which implies that I ∈ C1(Wk,p(x)(Ω),R).

Proposition 2.5. Putting

ϕ(u) =
∫
Ω

1
p(x)
|∇u)|p(x) dx +

∫
∂Ω
β(x)

1
p(x)
|u|p(x) dσ,

then ϕ ∈ C1(X,R) derivative operator ϕ′ of ϕ is

ϕ′(u).v =
∫
Ω

|∇u|p(x)−2
∇u.∇v dx +

∫
∂Ω
β(x)

1
p(x)
|u|p(x)−2uv dσ.

(i) The functional ϕ′ is of (S+) type, where ϕ′ is the Gâteaux derivative of the functional ϕ.
(ii) ϕ′ : X→ X∗ is a bounded homeomorphism and strictly monotone operator.

The proof is similar to that in [14] with slight modification.

3. proofs

Lemma 3.1. Assume that (H1), (H2) and (H3) hold, then
i) There exists v ∈ X with v > 0 such that I(tv)→ −∞ as t→∞.
ii) There exist α, δ > 0 such that I(u) ≥ δ for all u ∈ X with ∥u∥ = α.

Proof. i) In view of the condition (H2), we may choose a constant K > 0 such that

F(x, s) > K|s|p
+

uniformly in x ∈ Ω, |s| > CK. (5)

Let t > 1 large enough and v ∈ X with v > 0, from (5) we get

I(tv) ≤
∫
Ω

1
p(x)
|∇tv|p(x) dx +

∫
∂Ω
β(x)

1
p(x)
|tv|p(x) dσ −

∫
|tv|>CK

F(x, tv)dx −
∫
|tv|≤CK

F(x, tv)dx

≤ tp+ 1
p−

( ∫
Ω

|∇v|p(x) dx +
∫
∂Ω
β(x)|v|p(x) dσ

)
− Ktp+

∫
Ω

|v|p
+

dx −
∫
|tv|≤CK

F(x, tv)dx

≤ tp+ 1
p−

( ∫
Ω

|∇v|p(x) dx +
∫
∂Ω
β(x)|v|p(x) dσ

)
− Ktp+

∫
Ω

|v|p
+

dx + C1,

where C1 > 0 is a constant, taking K sufficiently large to ensure that

1
p−

( ∫
Ω

|∇v|p(x) dx +
∫
∂Ω
β(x)|v|p(x) dσ

)
− K

∫
Ω

|v|p
+

dx < 0

which implies that

I(tv)→ −∞ as t→ +∞.
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ii ) for ∥ u ∥< 1 we have

I(u) ≥
1

p+
( ∫
Ω

|∇u|p(x) dx +
∫
∂Ω
β(x)|u|p(x) dσ

)
−

∫
Ω

F(x,u) dx

≥
1

p+
∥u∥p

+

−

∫
Ω

F(x,u) dx.

Furthermore, in view of (H1) and (H2),

| f (x,u)| ≤ ε|u|p
+
−1 + C(ε)|u|q(x)−1, ∀(x,u) ∈ Ω ×R.

By the continuous embedding from X into Lq(x)(Ω) and Lp+ (Ω) there exist c1, c2 > 0 such that

|u|Lp+ (Ω) ≤ c1∥u∥, |u|Lq+ (Ω), |u|Lq− (Ω) ≤ c2∥u∥ (6)

for all u ∈ X. Hence

∫
Ω

F(x,u) dx ≤

∫
Ω

ε
p+
|u|p

+

dx +
∫
Ω

C(ε)
q(x)
|u|q(x) dx (7)

≤ εcp+

1 ∥u∥
p+ + cq−

2
C(ε)
q−
∥u∥q

−

for all x ∈ Ω and all u ∈ R.
Therefore,

I(u) ≥
(

1
p+
− C(ε)cq−

2 ∥u∥
q−−p+

− εcp+

1

)
∥u∥p

+

,

since 1 < p+ < q−, then for r sufficiently small we take σ > 0 such that

I(u) ≥ σ, ∀u ∈ X with ∥u∥ = r.

Lemma 3.2. For the functional I and for any (un)n ∈ X and t ∈]0, 1[, then we have

I(tun) ≤
tp−

p−
[1
n
+

∫
Ω

1
p−

f (x,un)un dx
]
−

∫
Ω

F(x,un) dx.

Proof. Consider a function ψ such that

ψ(t) =
1

p−
tp− f (x,un)un − F(x, tun),

then

ψ′(t) = tp−−1 f (x,un)un − f (x, tun)un

= tp−−1un

(
f (x,un) −

f (x, tun)
tp−−1

)
,

which means that ψ′(t) ≥ 0 for t ∈]0, 1] and ψ′(t) ≤ 0 when t ≥ 1, it follows that

ψ(t) ≤ ψ(1), ∀t > 0. (8)
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Since I′(un).un → 0 we can see, for any n > 1, that

−
1
n
< I′(un).un =

∫
Ω

|∇un|
p(x) dx +

∫
∂Ω
β(x)|un|

p(x) dσ −
∫
Ω

f (x,un)un dx <
1
n
. (9)

Using the formulas (8) and (9) we obtain

I(tun) =

∫
Ω

1
p(x)
|∇tun|

p(x) dx +
∫
∂Ω

β(x)
p(x)
|tun|

p(x) dσ −
∫
Ω

F(x, tun) dx

<
tp−

p−

[
1
n
+

∫
Ω

f (x,un)un dx
]
−

∫
Ω

F(x, tun) dx. (10)

Proof. [Proof of Theorem 1.1:] 1) To this end, let (un)n ⊂ X satisfying the proposition 2.4, then

I(un) =
∫
Ω

1
p(x)
|∇un|

p(x) dx +
∫
∂Ω

β(x)
p(x)
|un|

p(x) dσ −
∫
Ω

F(x,un) dx = c + o(1)

and (
1 + ∥un∥

)
∥ϕ′(un)∥ → 0

then

∥un∥ −

∫
Ω

f (x,un)un dx = o(1)

and also ∫
Ω

|∇un|
p(x)−2

∇un.∇φ +

∫
∂Ω
β(x)|un|

p(x)−2uφ dσ −
∫
Ω

f (x,un)φ = o(1)

∀φ ∈ X.
We prove that such (un)n is a bounded sequence in X.
Define

tn =
(2p+c)1/p+

∥un∥
∈]0, 1[

and
ωn = tnun.

Because ∥ωn∥ = (2p+c)1/p+ so ωn is bounded in X, therefore, up to a subsequence still denoted by ωn we have

ωn ⇀ ω in X

ωn → ω in Lq(x)(Ω), q(x) ∈ [p−, p∗(x))

and
ωn → ω a.e in Ω.

Suppose that ∥un∥ → ∞ and then we confirm that ω ≡ 0. Indeed, putting

Ω1 = {x ∈ Ω : ω(x) = 0}

and
Ω2 = {x ∈ Ω : ω(x) , 0}.

Easily we can see that |un(x)| → ∞ a.e in Ω2.
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From the assumption (H2) and for n large enough, we have that

f (x,un)un

|un|
p+ > k uni f ormely x ∈ Ω2

for k large enough. Thus,

2p+c = lim
n→∞
∥ωn∥

p+

= lim
n→∞

∫
Ω

| f (x,un)|
|un|

p+−1 |ωn|
p+ dx

> k lim
n→∞

∫
Ω2

|ωn|
p+ dx

= k
∫
Ω2

|ω|p
+

dx. (11)

The fact that 2p+c is constant and k is sufficiently large so we infer that |Ω2| = 0 and then ω ≡ 0 in Ω.
Furthermore, since ω = 0 and in view of the continuity of the Nemitskii operator we get

F(., ωn)→ 0 in L1(Ω)

what implies that
lim

n
F(x, ωn) dx = 0,

then,

I(ωn) ≥
1

p+
tp+
n

[ ∫
Ω

|∇un|
p(x) dx +

∫
∂Ω
|un|

p(x) dσ
]
− o(1)

≥
1

p+
2p+c − o(1) = 2c − o(1)

> c. (12)

On the other hand, for certain n > 1 we have

−1
n
<

p−

p+
⟨I′(un),un⟩ <

1
n
.

Hence,

I(un) =

∫
Ω

1
p(x)
|∇un|

p(x) dx
∫
∂Ω

|un|
p(x) dσ −

∫
Ω

F(x,un) dx

≥
1

p+
p+

p−

(
−1
n
+

∫
Ω

f (x,un)un dx
)
−

∫
Ω

F(x,un) dx (13)

that is,

I(un) +
1

np−
≥

∫
Ω

( 1
p−

f (x,un)un − F(x,un)
)

dx. (14)

Meanwhile, from Lemma 3.2,

I(tun) ≤
tp−

np−
+

∫
Ω

( 1
p−

f (x,un)un − F(x,un)
)

dx. (15)

By virtue of (14) and (15), we have

I(ωn) ≤
tp− + 1

np−
+ I(un)→ c,
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which is contradictory with (12). Therefore, (un)n is bounded in X.
Since (un)n is bounded and f (x, t) verifies the sub-critical growth condition, then by using the compact-

ness of Sobolev embedding and Proposition 2.5, it follows that there exists a subsequence of (un)n which
converges strongly to a nontrivial critical point of I and the proof of the first assertion is completed.

2) Since X is a reflexive and separable Banach space, it is worth to recall that there exist e j ∈ X and e∗j ∈ X∗

(j=1,2...) such that

e∗j(ei) =
{

1 i f i = j,
0 i f i , j.

X = span{e1, e2, ...}, X∗ = span{e∗1, e
∗

2, ...},

Xi = span{ei}, Yk =

k⊕
i=1

Xi, Zk =

∞⊕
i=1

Xi. (16)

Theorem 3.3 (Fountain Theorem, [31]). X is a Banach space, I ∈ C1(X,R) is an even functional an satisfies the
(P.S) condition, the subspaces Yk and Zk are defined in (16).

If for each k=1,2..., there exists ρk > dk > 0 such that
(a) max

u∈Yk ,∥u∥=ρk

I(u) ≤ 0.

(b) inf
u∈Zk ,∥u∥=dk

I(u)→∞ as k→∞.

Then I has an unbounded sequence of critical values.

Now, via Fountain Theorem, we are to prove that problem (1) has infinitely many solutions.

Lemma 3.4. Si q(x) ∈ C+(Ω), q(x) < p∗(x) for any x ∈ Ω, denote

βk = sup{|u|q(x); ∥u∥ = 1, u ∈ Zk},

then limk→∞ βk = 0.

(a) For u ∈ Zk such that ∥u∥ = rk > 1 (rk will be specified below), by condition (H1), we have

I(u) =
∫
Ω

1
p(x)
|∇u|p(x) dx +

∫
∂Ω
|un|

p(x) dσ −
∫
Ω

F(x,u) dx

≥
1

p+
∥u∥p

−

−

∫
Ω

C(|u| + |u|q(x))dx

≥
1

p+
∥u∥p

−

− C|u|q(ξ)
q(x) − C∥u∥, where ξ ∈ Ω,

≥

 1
p+ ∥u∥

p−
− C − C∥u∥ if |u|q(x) ≤ 1

1
p+ ∥u∥

p−
− C(βk∥u∥)q+

− C∥u∥ if |u|q(x) > 1

≥
1

p+
∥u∥p

−

− C(βk∥u∥)q+
− C∥u∥ − C

= rp−

k

(
1

p+
− Cβq+

k rq+−p−

k

)
− Crk − C.

We fix rk as follows
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rk =

Cq+βq+

k

1


1

p−−q+

,

then

I(u) ≥ rp−

k

(
1

p+
−

1
q+

)
− Crk − C.

Using Lemma 3.4 and the fact p+ < q+, it follows rk → +∞, as k → +∞. Consequently, I(u) → +∞ as
∥u∥ → +∞with u ∈ Zk.

(b)
Since dimYk < ∞ and all norms are equivalent in the finite-dimensional space, there exists dk > 0, for all

u ∈ Yk with ∥u∥ ≥ 1, we have

I(u) ≤ dk|u|
p+

p+ − 2dk|u|
p+

p+ + ε|u|
p+

≤ −C2∥u∥p
+

+ εC3∥u∥p
+

,

Therefore, for ε > 0 small enough and ρk large enough (ρk > rk), we get from the above that

ak := max{I(u) : u ∈ Yk, ∥u∥ = ρk} ≤ 0. □

Proof. [Proof of Theorem 1.2]:
a) Existence: From the fact that f ∈ C(Ω,R) and by (H5), there exists a constant m such that

f (x, 0) ≤ m, ∀x ∈ ∂Ω.

Then

∆p(x)u = m in Ω,

|∇u|p(x)−2 ∂u
∂ν
+ β(x)|u|p(x)−2u = 0 on ∂Ω,

(17)

has unique L∞ solution u1 which is nonegative (see [8].
Denote

f̃ (x,u) =


f (x, 0) i f u < 0,

f (x,u) i f 0 ≤ u ≤ u1,
f (x,u1) i f u > u1

Hence, −∞ < f̃ (x,u) ≤ m, ∀x ∈ Ω and u ∈ R. Thus,

|F̃(x,u)| ≤ K|u|, f or x ∈ Ω,

where F̃(x,u) =
∫ u

0 f̃ (x, s) ds.
Let us consider

ψ(u) =
∫
Ω

1
p(x)
|∇u|p(x) dx +

∫
∂Ω

β(x)
p(x)
|u|p(x) dσ −

∫
Ω

F̃(x,u) dx,

for u ∈W1,p(x)(Ω).
A standard argument shows that ψ ∈ C1(W1,p(x)(Ω),R), since p− > 1 and f̃ is bounded.
When ∥u∥ > 1 we have

ψ(u) ≥
1

p+
∥u∥p

−

− K1∥u∥,
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with K1 is a positive constant. Then ψ is coercive, and since it is sequentially weakly lower continuous, we
conclude that ψ has a global minimizer ũ ∈W1,p(x)(Ω) s.t ψ′(ũ) = 0. Thereby, ũ verifies∫

Ω

|∇ũ|p(x)−2
∇ũ.∇v dx +

∫
∂Ω
β(x)|ũ|p(x)−2ũv dσ −

∫
Ω

f̃ (x, ũ)v dx,

for all v ∈W1,p(x)(Ω).
Taking ũ− as test function and keeping in mind that f̃ (x,u) = f (x, 0), for u < 0, then we have∫

Ω

|∇ũ−|p(x) dx +
∫
∂Ω
β(x)|ũ−|p(x) dσ −

∫
Ω

f̃ (x, ũ−)ũ− dx = 0

As we have f̃ (x, ũ−)ũ− ≤ 0, so we get∫
Ω

|∇ũ−|p(x) dx +
∫
∂Ω
β(x)|ũ−|p(x) dσ ≤ 0,

which implies that ũ− = 0 and then ũ ≥ 0.
Meanwhile, f̃ (x, ũ) ≤ m, according to comparison principle [9], we have ũ ≤ u1. Hence,

f̃ (x, ũ) = f (x, ũ)

and then ũ is a solution of (1.1), which is nontrivial because f (x, 0) . 0.
b) Uniqueness:
Let recall the following formulas:
∀x, y ∈ RN

| x − y |γ≤ 2γ(| x |γ−2 x− | y |γ−2 y).(x − y) i f γ ≥ 2,

| x − y |2≤
1

γ − 1
(| x | + | y |)2−γ(| x |γ−2 x− | y |γ−2 y).(x − y) i f 1 < γ < 2,

where x.y is the inner product in RN.
Let u and v two solutions of (1.1), viewing the last inequalities, we have

0 ≤

∫
[u>v]

∣∣∣∣∇u|p(x)−2
∇u − |∇v|p(x)−2

∇v
)(
∇u − ∇v

)
dx +∫

∂Ω
β(x)

(
|u|p(x)−2u − |v|p(x)−2v

)(
u − v

)
dσ

≤

∫
Ω

∣∣∣∣∇u|p(x)−2
∇u − |∇v|p(x)−2

∇v
)
∇(u − v)+ dx +∫

∂Ω
β(x)

(
|u|p(x)−2u − |v|p(x)−2v

)(
u − v

)+
dσ

=

∫
Ω

(
f (x,u) − f (x, v)

)
(u − v)+ dx ≤ 0. (18)

Thus, ∇u(x) = ∇v(x) for a.e [u > v] = Ω1.
Let x ∈ Ω \ Ω1, then (u − v)+(x) = 0 and ∇(u − v)+(x) = 0 for a.e Ω \ Ω1 thereby, (u − v)+(x) = 0 and

∇(u − v)+(x) = 0 for a.e Ω, so (u − v)+ = 0 for a.e x ∈ Ω, that means u ≤ v f or a.e x ∈ Ω.
Similarly, we prove v ≤ u a.e x ∈ Ω, hence, u = v.

With similar arguments as those used in [13], we can obtain the following result,

Proposition 3.5. 1) For every b ∈ L∞(Ω), problem (4) has a unique solution T(b) and T(b) ∈ L∞.
2) The mapping T : L∞(Ω)→ L∞(Ω), is increasing, that is, when b(x) ≤ d(x) we have T(b(x)) ≤ T(c(x)) in Ω.
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Proof. [Proof of Theorem 1.3]:
Suppose that f (x,u) = εh(x)1(u).

Let us consider the function

1̃(u) =


1(1) f or u > 1,

1(−1) f or u < −1,
1(u) f or − 1 ≤ u ≤ 1,

and define G̃(u) =
∫ u

0 1(t) dt for u ∈ R.
Let put

ψε(u) =
∫
Ω

1
p(x)
|∇u|p(x) dx +

∫
∂Ω
β(x)

1
p(x)
|u|p(x) dσ − ε

∫
Ω

h(x)1(u), u ∈W1,p(x)(Ω).

From the definition of 1̃, there exists a positive constant C such that

1̃(u) < C, u ∈ R,

then
|G̃(u)| ≤ C|u|.

The fact that p− > 1 and h ∈ L∞(Ω), we can see that ψε is coercive and sequentially weakly lower semi-
continuous, since W1,p(x)(Ω) is reflexive, so ψε possess a global minimizer uε which is a weak solution of the
following problem

−∆p(x)u = εh(x)1(u) in Ω,

|∇u|p(x)−2 ∂u
∂ν
+ β(x)|u|p(x)−2u = 0 on ∂Ω.

(19)

We point out that when ε→ 0,we have |εh(x)1(u)| → 0 and |uε|L∞ (Ω)→ 0. Taking ε > 0 sufficiently small in
order to have |uε|L∞ (Ω) ≤ r < 1.
From the definition of 1̃we can see that 1̃(uε) = 1(uε) and accordingly uε is a solution of problem (1).

On the other side, from the continuity of 1, particulary in 0, there exists r > 0 such that

|1(s) − 1(0)| < 1(0)ϵ, f or |s| < r

with ϵk =
ε

k+ε , f or k ≥ 2
For ε > 0 is small enough and the last inequality, we have

εh(x)1(uε) = εh+(x)1(uε) − εh−(x)1(uε)

≥ ε(1 − ϵk)1(0)
(
h+(x) −

1 + ϵk

1 − ϵk
h−(x)

)
≥ ε(1 − ϵk)1(0)(h+(x) − (1 + ε)h−(x)). (20)

Hence, for ε ∈ (0, θ
(1−ϵk) f (0) ) we have that λ = ε(1 − ϵ)1(0) ≤ θ. In virtue of the assumption (H6),

ε(1 − ϵk)1(0)(h+(x) − (1 + ε)h−(x)) > 0.

In view of the comparison principle, uε is a positive solution of problem (1).

Acknowledgements: The author would like to thank the anonymous referee for the suggestions and helpful
comments.



A. Ourraoui / Filomat 36:6 (2022), 2105–2117 2117

References

[1] M. Allaoui, A. R. El Amrouss, A. Ourraoui, Existence results for a class of p(x)−Laplacian problems in RN . Computers &
Mathematics with Applications 69(7): (2015) 582-591.

[2] M. Allaoui, A. R. El Amrouss, A. Ourraoui, Existence of infinitely many solutions for a Steklov problem involving the p(x)-Laplace
operator, EJQTDE. 2014, No. 20, 1-10.

[3] C. O . Alves, S Liu, On superlinear p(x)-Laplacian equations in RN , Nonlinear Analysis: Theory, Methods & Applications 73 (8),
2566-2579.

[4] C. O . Alves, Existence of solution for a degenerate p(x)-Laplacian equation in RN , Journal of Math. Anal and Appl , 2008 , 345 ,
2 , 731-742.

[5] G.M. Bisci, P. Pucci, B. Zhang , Existence of Stationary States for A-Dirac Equations with Variable Growth, Advances in Applied
Clifford Algebras volume 25, (2015) pages385–402.

[6] G.Bonanno, A.Chinnı̀,Discontinuouselliptic problems involving the p(x)−Laplacian, Math.Nachr.284(2011)639-652.
[7] N.T. Chung, Some Remarks on a Class of p(x)−Laplacian Robin Eigenvalue Problems, Mediterr. J. Math. (2018) 15:147.
[8] S.G. Deng, Positive solutions for Robin problem involving the p(x)-Laplacian, J. 209 Math. Anal. Appl., 360(2009), 548.560.
[9] S.G. Deng, Q. Wang , S. Cheng, On the p(x)-Laplacian Robin eigenvalue problem, Applied Mathematics and Computation 217

(2011) 5643-5649.
[10] A. El Hamidi, Existence results to elliptic systems with nonstandard growth conditions, J. Math. Anal. Appl., 300 (2004), pp.

30-42.
[11] X.L.Fan, J.S.Shen , D.Zhao, Sobolev embedding theorems for spaces Wm,p(x)(Ω), J. Math. Anal. Appl. 262(2001) 749-760.
[12] X. Fan, Existence and uniqueness for the p(x)−Laplacian-Dirichlet problems, Math. Nachr. 284, No. 11–12, 1435 – 1445 (2011).
[13] X. L. Fan, On the sub-supersolution method for p(x)-Laplacian equations, J. Math. Anal. Appl. 330 (2007), 665-682.
[14] X.L. Fan , Q.H. Zhang, Existence of solutions for p(x)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003) 1843-1852.
[15] X. L. Fan , X. Han, Existence and multiplicity of solutions for p(x)-Laplacian equations inRN , Nonlinear Analysis TMA, 59 (2004)

173-188.
[16] G. Fragnelli, Positive periodic solutions for a system of anisotropic parabolic equations, J. Math. anal. Appl. 73 (2010), 110-121.
[17] B. Ge, Q.M. Zhou, Multiple solutions for a Robin-type differential inclusion problem involving the p(x)-Laplacian. Math. Meth.

Appl. Sci. 40(18) (2017), 6229-6238.
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[32] J. Zhang , X. Xue, Multiple Solutions of p−Laplacian with Neumann and Robin Boundary Conditions for Both Resonance and

Oscillation Problem, Boundary Value ProblemsVolume 2011, Article ID 214289, 19 pages.
[33] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Mathematics of the USSR-Izvestiya, vol.

9 (1987) 33-66.


