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Abstract. The study of the Dirichlet problem with arbitrary measurable data for harmonic functions in
the unit diskD is due to the dissertation of Luzin.

The paper [11] was devoted to the Dirichlet problem with continuous boundary data for quasilinear
Poisson equations in smooth (C1) domains.

The present paper is devoted to the Dirichlet problem with arbitrary measurable (over natural parame-
ter) boundary data for the quasilinear Poisson equations in any Jordan domains with rectifiable boundaries.

For this purpose, it is constructed completely continuous operators generating nonclassical solutions
of the Dirichlet boundary-value problem with arbitrary measurable data for the Poisson equations △U = G
with the sources G ∈ Lp, p > 1.

The latter makes it possible to apply the Leray-Schauder approach to the proof of theorems on the
existence of regular nonclassical solutions of the measurable Dirichlet problem for quasilinear Poisson
equations of the form △U(z) = H(z) · Q(U(z)) for multipliers H ∈ Lp with p > 1 and continuous functions
Q : R→ R with Q(t)/t→ 0 as t→∞.

Here the boundary values are interpreted in the sense of angular (along nontangential paths) limits
that are a traditional tool of the geometric function theory in comparison with variational interpretations
in PDE.

As consequences, we give applications to some concrete semi-linear equations of mathematical physics,
arising under modelling various physical processes such as diffusion with absorption, plasma states,
stationary burning etc.

1. Introduction

The research of boundary-value problems with arbitrary measurable data is due to the famous disserta-
tion of Luzin where he has studied the corresponding Dirichlet problem for harmonic functions in the unit
diskD := {z ∈ C : |z| < 1}.

In this connection, recall that the following deep result of Luzin was one of the main theorems of his
dissertation, see e.g. his paper [14], dissertation [15], p. 35, and its reprint [16], p. 78, adopted to the
segment [0, 2π].
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Theorem A. For any measurable function φ : [0, 2π] → R, there is a continuous function Φ : [0, 2π] → R
such that Φ′ = φ a.e. on [0, 2π].

Just on the basis of Theorem A, Luzin proved the next significant result of his dissertation, see e.g. [16],
p. 80, formulated in terms of angular (along nontangential paths) limits that then became a traditional tool
in the geometric function theory, see e.g. monographs [6], [12], [19] and [20].

Theorem B. Let φ : R → R be a 2π−periodic measurable function. Then there is a harmonic function u inD
such that u(z)→ φ(ϑ) for a.e. ϑ ∈ R as z→ eiϑ along any nontangential path.

Note that the Luzin dissertation was later on published only in Russian as book [16] with comments of
his pupils Bari and Men’shov already after his death. A part of its results was also printed in Italian [17].
However, Theorem A was published in English in the Saks book [24] as Theorem VII(2.3). Hence Frederick
Gehring in [7] has rediscovered Theorem B and his proof on the basis of Theorem A in fact coincided with
the original proof of Luzin.

Corollary 5.1 in [21] has strengthened Theorem B as the next, see also [22].

Theorem C. For each measurable function φ : ∂D → R, the space of all harmonic functions u : D → R with
the angular (along nontangential paths) limits φ(ζ) for a.e. ζ ∈ ∂D has the infinite dimension.

2. Definitions and preliminary remarks

First of all, recall that a completely continuous mapping from a metric space M1 into a metric space M2
is defined as a continuous mapping on M1 which takes bounded subsets of M1 into relatively compact ones
of M2, i.e. with compact closures in M2. When a continuous mapping takes M1 into a relatively compact
subset of M1, it is nowadays said to be compact on M1.

The notion of completely continuous (compact) operators is due essentially, in the simplest partial cases,
to Hilbert and Riesz F., see the corresponding comments of Section VI.12 in [4], and to Leray and Schauder
in the general case. Recall more some definitions and the fundamental result of the celebrated paper [13].

Leray and Schauder extend as follows the Brouwer degree to compact perturbations of the identity I in a
Banach space B, i.e. a complete normed linear space. Namely, given an open bounded setΩ ⊂ B, a compact
mapping F : B→ B and z < Φ(∂Ω), Φ := I − F, the (LeraySchauder) topological degree deg [Φ,Ω, z] of Φ in
Ω over z is constructed from the Brouwer degree by approximating the mapping F overΩ by mappings Fε
with range in a finite-dimensional subspace Bε (containing z) of B. It is showing that the Brouwer degrees
deg [Φε,Ωε, z] of Φε := Iε − Fε, Iε := I|Bε , in Ωε := Ω ∩ Bε over z stabilize for sufficiently small positive ε to a
common value defining deg [Φ,Ω, z] of Φ in Ω over z.

This topological degree algebraically counts the number of fixed points of F(·)−z inΩ and conserves the
basic properties of the Brouwer degree as additivity and homotopy invariance. Now, let a be an isolated
fixed point of F. Then the local (LeraySchauder) index of a is defined by ind [Φ, a] := deg[Φ,B(a, r), 0] for
small enough r > 0. ind [Φ, 0] is called by index of F. In particular, if F ≡ 0, correspondingly, Φ ≡ I, then the
index of F is equal to 1.

The fundamental Theorem 1 in [13] can be formulated in the following way:

Proposition 1. Let B be a Banach space, and let F(·, τ) : B→ B be a family of operators with τ ∈ [0, 1]. Suppose
that the following hypotheses hold:

(H1) F(·, τ) is completely continuous on B for each τ ∈ [0, 1] and uniformly continuous with respect to the
parameter τ ∈ [0, 1] on each bounded set in B;

(H2) the operator F := F(·, 0) has finite collection of fixed points whose total index is not equal to zero;
(H3) the collection of all fixed points of the operators F(·, τ), τ ∈ [0, 1], is bounded in B.
Then the collection of all fixed points of the family of operators F(·, τ) contains a continuum along which τ takes

all values in [0, 1].
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Let us go back to the discussion of the results of Luzin in Introduction.

Remark 1. Applying the Cantor ladder type functions, namely, continuous nondecreasing functions
C : [0, 2π] → R with C(0) = 0, C(2π) = 1 and C′(t) = 0 for a.e. t ∈ [0, 2π], see e.g. Section 8.15 in [8],
we may assume in Theorem A that Φ(0) = 0 = Φ(2π). On the same base, using uniform continuity of the
function Φ on [0, 2π] and applying sequentially fragmentations of the segment to arbitrarily small parts,
we may assume in Theorem A that |Φ(t)| < ε for every prescribed ε > 0 and, in particular, that |Φ(t)| < 1 for
all t ∈ [0, 2π]. Thus, in view of arbitrariness of ε > 0, there is the infinite collection of such Φ for each φ.
Furthermore, applying series of pair of (nondecreasing and nonincreasing) functions of the Cantor ladder
type on the segments [2−(k+1)π, 2−kπ], k = 1, 2, . . . it is easy to see that the space of such functions Φ has the
infinite dimension.

By the proof of Theorem B, see [15], [16] or [7], u(z) = ∂
∂ϑ U(z), where

U(reiϑ) =
1

2π

2π∫
0

1 − r2

1 − 2r cos(ϑ − t) + r2 Φ(eit) dt , (1)

i.e., for a function Φ from Theorem A, u can be calculated in the explicit form

u(reiϑ) = −
r
π

2π∫
0

(1 − r2) sin(ϑ − t)
(1 − 2r cos(ϑ − t) + r2)2 Φ(eit) dt . (2)

Remark 2. Later on, it was shown by Theorems 3 in [23] that the Luzin harmonic functions u(z) can be
represented as the Poisson–Stieltjes integrals

UΦ(z) =
1

2π

π∫
−π

Pr(ϑ − t) dΦ(eit) ∀ z = reiϑ, r ∈ (0, 1) , ϑ ∈ [−π, π] , (3)

where Pr(Θ) = (1 − r2)/(1 − 2r cosΘ + r2), r < 1,Θ ∈ R, is the Poisson kernel.
The corresponding analytic functions inD with the real parts u(z) can be represented as the Schwartz–

Stieltjes integrals

SΦ(z) =
1

2π

∫
∂D

ζ + z
ζ − z

dΦ(ζ) , z ∈ D , (4)

because of the Poisson kernel is the real part of the (analytic in the variable z) Schwartz kernel (ζ+z)/(ζ−z).
Integrating (4) by parts, see Lemma 1 and Remark 1 in [23], we obtain also the more convenient form of the
representation

SΦ(z) =
z
π

∫
∂D

Φ(ζ)
(ζ − z)2 d ζ , z ∈ D . (5)

3. On completely continuous Dirichlet operators

Here we essentially apply the logarithmic (Newtonian) potentialNG of sources G ∈ Lp(C), p > 1, with
compact supports given by the formula:

NG(z) :=
1

2π

∫
C

ln |z − w|G(w) d m(w) . (6)
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Recall that by Theorem 2 in [11], NG ∈ W2,p
loc(C) and △NG = G a.e., moreover, NG ∈ W1,q

loc(C) for q > 2 and,
consequently, NG is locally Hölder continuous. Furthermore, NG ∈ C1,α

loc(C) with α = (p − 2)/p if p > 2 and
with any α ∈ (0, 1) if p = ∞.

In addition, the collection {NG} is equicontinuous if the collection {G} is bounded by the norm in Lp(C)
and with supports inD and, in addition,

∥NG∥C ≤ M · ∥G∥p (7)

on each compact set S in C, where M is a constant depending only on S and, in particular, the restriction of
NG toD is a completely continuous bounded linear operator, see e.g. Theorem 1 in [11].

By Theorem C in Introduction, there is a space of harmonic functions u in the unit diskD of the infinite
dimension with the angular limits a.e. on ∂D

lim
z→ζ

u(z) = ψ(ζ) := φ(ζ) − φG(ζ) , φG(ζ) := NG(ζ) . (8)

Note that U := u + NG|D with such u are Hölder continuous solutions of the Poisson equation △U = G
a.e. in the class W2,p

loc(D) ∩W1,q
loc(D), q > 2, with the angular limits

lim
z→ζ

U(z) = φ(ζ) a.e. on ∂D . (9)

By Remarks 1 and 2 such a harmonic function u : D→ R can be obtained in the form of the real part of
the analytic function

SΨ(z) :=
z
π

∫
∂D

Ψ(ζ)
(ζ − z)2 d ζ , z ∈ D , (10)

whereΨ is an antiderivative of the function ψ from Theorem A in Introduction.
Consequently, such a harmonic function u can be represented in the form

u(z) = u0(z) − uG(z) , u0(z) := Re SΦ(z) , uG(z) := Re SΦG (z) , (11)

where Φ and ΦG are antiderivatives of φ and φG in Theorem A, respectively. Note that the harmonic
function u0 does not depend on the sources G at all.

By Remark 1 the Dirichlet problem always has many solutions for each boundary date φ and source G
in the sense of angular limits a.e. on ∂D. Of course, axiom of choice by Zermelo makes it possible to choose
one of such correspondence named further as a Dirichlet operator but the latter with such a random choice
can be completely discontinuous.

Let us choose such a function ΦG to guarantee that the correspondence G 7→ U = u +NG|D is a Dirichlet
operator DG that is completely continuous on compact sets in D and generates solutions of the Poisson
equation △U = G a.e. in the class W2,p

loc(D) ∩W1,q
loc(D), q > 2, with Dirichlet boundary condition (9).

Namely, the following function ΦG is an antiderivative for the function φG:

ΦG(ζ) :=

ϑ∫
0

NG(eiθ) dθ − S(ϑ) , ζ = eiϑ, θ , ϑ ∈ [0, 2π] , (12)

where S : [0, 2π]→ C is either zero or a singular function of the form

S(ϑ) := C(ϑ)

2π∫
0

NG(eiθ) dθ , ζ = eiϑ, θ , ϑ ∈ [0, 2π] , (13)
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with a singular function C : [0, 2π]→ [0, 1] of the Cantor ladder type, i.e., C is continuous, nondecreasing,
C(0) = 0, C(2π) = 1 and C′ = 0 a.e., see e.g. Section 8.15 in [8].

Setting uG = Re SΦG , it is easy to see by (7) that

|ΦG(ζ)| ≤ 4πM · ∥G∥p ∀ ζ ∈ ∂D (14)

and by (5) that, for constants Cr and C∗r depending only on r ∈ (0, 1),

|uG(z)| ≤ |SΦG (z)| ≤ Cr · ∥G∥p , ∀ z ∈ Dr , (15)

|uG(z1) − uG(z2)| ≤ |SΦG (z1) − SΦG (z2)| ≤ C∗r∥G∥p|z1 − z2|, z1, z2 ∈ Dr. (16)

Consequently, the operator uG := Re SΦG is completely continuous on compact sets inD by the Arzela-Ascoli
theorem, see e.g. Theorem IV.6.7 in [4]. Thus:

Lemma 1. Let φ : ∂D → R be measurable. Then there is a Dirichlet operator DG over sources G : D → C in
Lp(D), p > 1, generating locally Hölder continuous solutions U : D → R of the Poisson equation △U = G in the
class W2,p

loc ∩W1,q
loc(D), q > 2, with the Dirichlet boundary condition (9) in the sense of angular limits a.e. on ∂D, that

is completely continuous over Dr for each r ∈ (0, 1). Moreover, these solutions U belong to the class C1,α
loc(D) with

α = (p − 2)/p if p > 2 and with any α ∈ (0, 1) if p = ∞.

Remark 3. Note that the nonlinear operatorDG constructed above is not bounded except the trivial case
Φ ≡ 0 because then D0 = SΦ , 0. However, the restriction of the operator DG to Dr under each r ∈ (0, 1)
is bounded at infinity in the sense that max

z∈Dr
|DG(z)| ≤ M · ∥G∥p for some M > 0 and all G with large enough

∥G∥p. Note also that by Remark 1 we are able always to choose Φ for any φ, including φ ≡ 0, which is not
identically 0 in the unit diskD.

4. On the Dirichlet problem in the unit disk

In this section we study the solvability of the Dirichlet problem for semi-linear Poisson equations of the
form △U(z) = H(z) ·Q(U(z)) in the unit diskD. The Leray–Schauder approach, see Proposition 1 in Section
2, Lemma 1 and Remark 3 from the last section allow us to reduce the problem to the study of the Dirichlet
problem for the linear Poisson equation.

Note that hypothesis (H2) in Section 2 will be automatically satisfied in the proof of the next theorem
because the initial operator F(·) := F(·, 0) ≡ 0 and hence F has the only one fixed point (at the origin) and its
index is equal to 1.

Theorem 1. Let φ : ∂D → R be a measurable function. Suppose that H : D → R is a function in the class
Lp(D), p > 1, with compact support inD and Q : R→ R is a continuous function with

lim
t→∞

Q(t)
t
= 0 . (17)

Then there is a locally Hölder continuous solution U : D → R in the class W2,p
loc ∩W1,q

loc(D) with some q > 2 of
the semi-linear Poisson equation

△U(z) = H(z) ·Q(U(z)) a.e. inD , (18)

with the angular limits

lim
z→ζ

U(z) = φ(ζ) a.e. on ∂D . (19)

Furthermore, this solution U belongs to the class C1,α
loc(D) with α = (p − 2)/p if p > 2 and with any α ∈ (0, 1) if

p = ∞.
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Proof. If ∥H∥p = 0 or ∥Q∥C = 0, then any harmonic function in Theorem B gives the desired solution of
(18). Thus, we may assume that ∥H∥p , 0 and ∥Q∥C , 0. Set Q∗(t) = max

|τ|≤t
|Q(τ)|, t ∈ R+ := [0,∞). Then the

function Q∗ : R+ → R+ is continuous and nondecreasing and, moreover, by (17)

lim
t→∞

Q∗(t)
t
= 0 . (20)

By Lemma 1 and Remark 3 we obtain the family of operators F(G; τ) : Lp
H(D) → Lp

H(D), where Lp
H(D)

consists of functions G ∈ Lp(D) with supports in the support of H,

F(G; τ) := τH ·Q(D∗G) ∀ τ ∈ [0, 1] (21)

which satisfies hypothesis H1-H3 of Theorem 1 in [13], see Proposition 1. Indeed:
H1). First of all, by Lemma 1 the function F(G; τ) ∈ Lp

H(D) for all τ ∈ [0, 1] and G ∈ Lp
H(C) because the

function Q(D∗G) is continuous and, furthermore, the operators F(· ; τ) are completely continuous for each
τ ∈ [0, 1] and even uniformly continuous with respect to the parameter τ ∈ [0, 1].

H2). The index of the operator F(· ; 0) is obviously equal to 1.
H3). Let us assume that solutions of the equations G = F(G; τ) is not bounded in Lp

H(D), i.e., there is a
sequence of functions Gn ∈ Lp

H(D) with ∥Gn∥p → ∞ as n → ∞ such that Gn = F(Gn; τn) for some τn ∈ [0, 1],
n = 1, 2, . . .. However, then by Remark 3 we have that, for some constant M > 0,

∥Gn∥p ≤ ∥H∥p Q∗
(

M ∥Gn∥p

)
and, consequently,

Q∗( M ∥Gn∥p)
M ∥Gn∥p

≥
1

M ∥H∥p
> 0 (22)

for all large enough n. The latter is impossible by condition (20). The obtained contradiction disproves the
above assumption.

Thus, by Theorem 1 in [13] there is a function G ∈ Lp
H(D) with F(G; 1) = G, and by Lemma 1 the function

U := D∗G gives the desired solution of (18).

Remark 4. Moreover, by the proof of Theorem 1, U = D∗G, whereD∗G is the Dirichlet operator described
in the last section, Lemma 1, and the support of G is in the support of H and the upper bound of ∥G∥p
depends only on ∥H∥p and on the function Q.

In addition, the source G : D→ C is a fixed point of the nonlinear operator ΩG := h ·Q(D∗G) : Lp
H(D)→

Lp
H(D), where Lp

H(D) consists of functions G in Lp(D) with supports in the support of H.

5. The case of rectifiable domains

In this section we extend the result from the last section to arbitrary domains with rectifiable boundaries.

Theorem 2. Let D be a Jordan domain with a rectifiable boundary and let a function φ : ∂D→ R be measurable
over the natural parameter.

Suppose that H : D → R is in Lp(D) for p > 1 with compact support in D and Q : R → R is a continuous
function with

lim
t→∞

Q(t)
t
= 0 . (23)

Then there is a locally Hölder continuous solution U : D→ R in the class W2,p
loc ∩W1,q

loc(D) with some q > 2 of the
semi-linear Poisson equation

△U(ξ) = H(ξ) ·Q(U(ξ)) a.e. in D , (24)
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with the angular limits

lim
ξ→ω

U(ξ) = φ(ω) a.e. on ∂D . (25)

Furthermore, this solution U belongs to the class C1,α
loc(D) with α = (p − 2)/p if p > 2 and with any α ∈ (0, 1) if

p = ∞.

Proof. Let c be a conformal mapping of D onto D that exists by the Riemann mapping theorem, see e.g.
Theorem II.2.1 in [9]. Now, by the Caratheodory theorem, see e.g. Theorem II.3.4 in [9], c is extended to a
homeomorphism c̃ of D onto D. Set c∗ = c̃|∂D. If ∂D is rectifiable, then by the theorem of F. and M. Riesz
length c−1

∗ (E) = 0 whenever E ⊂ ∂D with |E| = 0, see e.g. Theorem II.C.1 and Theorems II.D.2 in [12].
Conversely, by the Lavrentiev theorem |c∗(E)| = 0 whenever E ⊂ ∂D and length E = 0, see [16], see also the
point III.1.5 in [20].

Hence c∗ and c−1
∗ transform measurable sets into measurable sets. Indeed, every measurable set is the

union of a sigma-compact set and a set of measure zero, see e.g. Theorem III(6.6) in [24], and continuous
mappings transform compact sets into compact sets. Thus, function φ : ∂D→ R is measurable with respect
to the natural parameter on ∂D if and only if the function φ̃ = φ ◦ c−1

∗ : ∂D→ R is so.
Now, set H̃ = |C′|2 ·H◦C, where C is the inverse conformal mapping C := c−1 : D→ D. Then it is clear by

the hypothesis of Theorem 2 that H̃ has compact support inD and belongs to the class Lp(D). Consequently,
by Theorem 1 there is a locally Hölder continuous solution Ũ : D → R in the class W2,p

loc ∩W1,q
loc(D) with

some q > 2 of the semi-linear Poisson equation

△Ũ(z) = H̃(z) ·Q(Ũ(z)) a.e. inD (26)

with the angular limits

lim
z→ζ

Ũ(z) = φ̃(ζ) a.e. on ∂D , (27)

and, furthermore, this solution Ũ belongs to the class C1,α
loc(D) with α = (p − 2)/p if p > 2 and with any

α ∈ (0, 1) if p = ∞.
Moreover, by Remark 4, Ũ = D∗

G̃
, where D∗

G̃
is the Dirichlet operator described in Section 3, see

Lemma 1, and the support of G̃ is in the support of H̃ and the upper bound of ∥G̃∥p depends only on
∥H̃∥p and on the function Q. In addition, the source G̃ : D → C is a fixed point of the nonlinear operator
ΩG̃ := H̃ · Q(D∗

G̃
) : Lp

H̃
(D) → Lp

H̃
(D), where Lp

H̃
(D) consists of functions G̃ in Lp(D) with supports in the

support of H̃.
Next, setting U = Ũ◦c, by simple calculations, see e.g. Section 1.C in [1], we obtain that△U = |c′|2 ·△Ũ◦c

and, consequently, the function U : D→ C is a locally Hölder continuous solution in the class W2,p
loc∩W1,q

loc(D)
with some q > 2 of the equation (24), and, furthermore, this solution U belongs to the class C1,α

loc(D) with
α = (p − 2)/p if p > 2 and with any α ∈ (0, 1) if p = ∞.

It remains to show that f has the angular limits as ξ→ ω ∈ ∂D and satisfies the boundary condition (25)
a.e. on ∂D. Indeed, by the Lindelöf theorem, see e.g. Theorem II.C.2 in [12], if ∂D has a tangent at a point
ω, then arg [c∗(ω) − c(ξ)] − arg [ω − ξ]→ const as ξ→ ω. In other words, the images under the conformal
mapping c of sectors in D with a vertex atω ∈ ∂D is asymptotically the same (up to shift and turn) as sectors
inD with a vertex at ζ = c∗(ω) ∈ ∂D. Consequently, nontangential paths in D are transformed under c into
nontangential paths in D and inversely a.e. on ∂D and ∂D, respectively, because the rectifiable boundary
∂D has a tangent a.e. and c∗ and c−1

∗ keep sets of the length zero. Thus, (27) implies (25).

Remark 5. Moreover, by the proof △U = G a.e., where the support of G is in the support of H and the
upper bound of ∥G∥p depends only on ∥H∥p, the function Q and the domain D.

In addition, G = G̃ ◦ c and U = D∗
G̃
◦ c, where c is a conformal mapping of D onto D, G̃ : D → C

is a fixed point of the nonlinear operator Ω̃G∗ := H̃ · Q(D∗G∗ ) : Lp
H̃

(D) → Lp
H̃

(D), where Lp
H̃

(D) consists of
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functions G∗ in Lp(D) with supports in the support of H̃ := H ◦ C · C′, C = c−1,D∗
G̃

is the Dirichlet operator
described in Section 3 and associated with φ̃ = φ ◦ c−1

∗ . Here c∗ : ∂D→ ∂D is the homeomorphic boundary
correspondence under the mapping c.

6. The Dirichlet problem in physical applications

Theorem 2 on the Dirichlet boundary-value problem with arbitrary measurable boundary data over the
natural parameter in Jordan domains with rectifiable boundaries can be applied to mathematical models of
physical and chemical absorption with diffusion, plasma states, stationary burning etc.

The first circle of such applications is relevant to reaction-diffusion problems. Problems of this type
are discussed in [5], p. 4, and, in detail, in [2]. A nonlinear system is obtained for the density U and the
temperature T of the reactant. Upon eliminating T the system can be reduced to equations of the type (24),

△U = σ ·Q(U) (28)

with σ > 0 and, for isothermal reactions, Q(U) = Uβ where β > 0 that is called the order of the reaction. It
turns out that the density of the reactant U may be zero in a subdomain called a dead core. A particularization
of results in Chapter 1 of [5] shows that a dead core may exist just if and only if β ∈ (0, 1) and σ is large
enough, see also the corresponding examples in [10]. In this connection, the following statement may be of
independent interest.

Corollary 1. Let D be a Jordan domain in C with a rectifiable boundary and let a function φ : ∂D → R be
measurable over the natural parameter.

Suppose that H : D→ R is a function in the class Lp(D) for p > 1 with compact support in D.
Then there is a locally Hölder continuous solution U : D→ R in the class W2,p

loc ∩W1,q
loc(D) with some q > 2 of the

semi-linear Poisson equation

△U(ξ) = H(ξ) ·Uβ(ξ) , 0 < β < 1 , a.e. in D (29)

with the angular limits

lim
ξ→ω

U(ξ) = φ(ω) a.e. on ∂D . (30)

Furthermore, this solution U belongs to the class C1,α
loc(D) with α = (p − 2)/p if p > 2 and with any α ∈ (0, 1) if

p = ∞.

Note also that certain mathematical models of a thermal evolution of a heated plasma lead to nonlinear
equations of the type (28). Indeed, it is known that some of them have the form △ψ(u) = f (u) withψ′(0) = ∞
and ψ′(u) > 0 if u , 0 as, for instance, ψ(u) = |u|q−1u under 0 < q < 1, see e.g. [5]. With the replacement
of the function U = ψ(u) = |u|q · sign u, we have that u = |U|Q · sign U, Q = 1/q, and, with the choice
f (u) = |u|q2

· sign u, we come to the equation △U = |U|q · sign U = ψ(U).

Corollary 2. Under hypotheses of Corollary 1, there is a locally Hölder continuous solution U : D → R in the
class W2,p

loc ∩W1,q
loc(D) with some q > 2 of the semi-linear Poisson equation

△U(ξ) = H(ξ) · |U(ξ)|β−1U(ξ) , 0 < β < 1 , a.e. in D (31)

such that all the conclusion of Corollary 1 hold, i.e., U is a regular nonclassical solution of the Dirichlet problem for
(31) in the given sense.

Finally, we recall that in the combustion theory, see e.g. [3], [18] and the references therein, the following
model equation

∂u(z, t)
∂t

=
1
δ
· △u + eu , t ≥ 0, z ∈ D, (32)
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takes a special place. Here u ≥ 0 is the temperature of the medium and δ is a certain positive parameter.
We restrict ourselves here by the stationary case, although our approach makes it possible to study the
parabolic equation (32), see [10]. Namely, the corresponding equation of the type (24) is appeared here with
the function Q(u) = e−|u| that is bounded at all.

Corollary 3. Under hypotheses of Corollary 1, there is a locally Hölder continuous solution U : D → R in the
class W2,p

loc ∩W1,q
loc(D) with some q > 2 of the semi-linear Poisson equation

△U(ξ) = H(ξ) · e−U(ξ) a.e. in D (33)

such that all the conclusion of Corollary 1 hold, i.e., U is a regular nonclassical solution of the Dirichlet problem for
(33) in the given sense.
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