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Abstract. The aim of this paper is to study a contact Riemannian submersion π : M → B between
almost contact metric manifolds such that its total space M admits an η−Ricci soliton. Here, we obtain
some necessary conditions for which any fiber of π and the manifold B are η−Ricci soliton, Ricci soliton,
generalized quasi-Einstein, quasi-Einstein, η−Einstein or Einstein. Finally, we study the total space M of π
equipped with a torqued vector field and give some characterizations for any fiber and the manifold B of
such a submersion π.

1. Introduction

One of the current theories in modern physics is the study of Einstein’s theory of general relativity.
Besides, quasi-Einstein manifolds arose during the study of exact solutions of the Einstein field equations.

A non-flat Riemannian manifold (M, 1) is said to be a generalized quasi-Einstein, if the Ricci tensor of
(M, 1) satisfies

Ric(E,F) = a1(E,F) + bα(E)α(F) + cβ(E)β(F), (1)

where a, b, c are the functions and α, β non-zero 1-forms, such that 1(E,U) = α(E) and 1(E,V) = β(E), for
unit vector fields U,V, tangent to M. For the equation (1), if the scalar b or c is zero, then M becomes a
quasi-Einstein manifold. Also, if both of the scalars b and c are zero in (1), M becomes an Einstein (for more
details, we refer to [2, 5, 8]).

On the other hand, the concept of Ricci flow was introduced by R. S. Hamilton in 1982 to obtain a
canonical metric on a smooth manifold. For the metrics on a manifold, the Ricci flow is an evolution
equation

∂
∂t
1(t) = −2Ric

which is called the heat equation. Also, he showed that the self similar solutions of such a flow are Ricci
solitons which are as natural generalizations of Einstein metrics [14].
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A Riemannian manifold (M, 1) is said to be a Ricci soliton, if there exists a smooth vector field (so-called
potential field) ν, such that

1
2
Lν1 + Ric + λ1 = 0

is satisfied. Here, Lν1 is the Lie-derivative of the metric tensor 1with respect to ν, Ric is the Ricci tensor of
M and λ is a constant. A Ricci soliton is denoted by (M, 1, ν, λ) and called shrinking, steady or expanding
according as λ > 0, λ = 0 or λ < 0, respectively.

A more general notion of η−Ricci soliton was introduced by J.T. Cho and M. Kimura in [10]. According
to their definition, a Riemannian manifold (M, 1) is called η−Ricci soliton if there exists a smooth vector
field νwhich satisfies

1
2

(Lν1)(E,F) + Ric(E,F) + λ1(E,F) + µη(E)η(F) = 0, (2)

for any E,F ∈ Γ(TM). Here λ and µ are functions and η is a 1-form. Note that if µ = 0, then the η−Ricci
soliton becomes a Ricci soliton.

Considering the geometric importance of these notions, the study of η−Ricci solitons has considerably
increased in many context for the last decades: on paracontact manifolds [1, 17], on Sasakian manifolds
[16], on Kenmotsu manifolds [20], on warped product manifolds [3], etc.

In the present paper, our goal is to classify any fiber and the manifold B of contact Riemannian sub-
mersion π. First, we give the Ricci tensors on the distributions H and V for such a submersion and by
taking the potential field of η−Ricci soliton horizontal or vertical, we obtain that such a fiber or B is Einstein,
η−Einstein, generalized quasi-Einstein, Ricci soliton or η−Ricci soliton. In the last section, we study the
total space M of π equipped with a torqued vector field T and obtain some characterizations for contact
Riemannian submersions.

2. Preliminaries

The authors recall the following notations from [4, 12, 13, 15]:

A Riemannian manifold M of dimension (2m + 1) has an almost contact structure (ϕ, ξ, η) if it admits a
vector field ξ (the so-called characteristic vector field), a 1-form η and a field ϕ of endomorphisms of the
tangent spaces satisfying:

η(ξ) = 1, ϕ2 = −I + η ⊗ ξ. (3)

As a consequence of (3), we note that ϕ(ξ) = 0 and η ◦ ϕ = 0.

If M is endowed with an almost contact structure (ϕ, ξ, η), then it is called an almost contact manifold. Also,
a Riemannian metric 1 on M which satisfies

1(ϕX, ϕY) = 1(X,Y) − η(X)η(Y), (4)

for any vector fields X,Y. In this case, M has an almost contact metric structure and 1 is said to be a metric
compatible with the almost contact structure (ϕ, ξ, η) and the almost contact metric manifold is denoted by
(M, ϕ, ξ, η, 1).

On the other hand, the concept of Riemannian submersion between Riemannian manifolds is very
popular in Theoretical Physics as well as Differential Geometry, particularly, in general relativity and
Kaluza-Klein theory. For this reason, Riemannian submersions have been studied intensively (see [18, 19]).

Now, we recall the following concepts:
Let (Mm, 1) and (Bn, 1

′

) be Riemannian manifolds andπ : (M, 1)→ (B, 1′ ) be a surjective C∞-map. Ifπ has
maximal rank at any point of M, then π is called a C∞-submersion. A fiber over any x ∈ B, π−1(x), is a closed
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r−dimensional submanifold of M, r = m − n. For any p ∈ M, putting Vp = kerπ∗p, we have an integrable
distribution V which corresponds to the foliation of M determined by the fibers of π. Therefore, one has
Vp = Tpπ−1(x) such that V is called the vertical distribution. Also, H be the complementary distribution of
V determined by 1. Then, we have the orthogonal decomposition Tp(M) = Vp ⊕Hp, p ∈M, such that H is
called the horizontal distribution. We note that for any X′ ∈ Γ(TB), the basic vector field π−related to X′

is
named the horizontal lift of X′

. Here, π∗X is denoted by the vector field X′

to which X is π−related.
A map π between Riemannian manifolds M and B is called a Riemannian submersion, if the following

conditions hold:
(i) π has a maximal rank,
(ii) The differential π∗p preserves the length of the horizontal vector fields at each point of M.

For any E ∈ Γ(TM), we denote vE and hE the vertical and horizontal components of E, respectively. A
Riemannian submersion π : (M, 1)→ (B, 1′ ) has the following properties:

(i) 1(X,Y) = 1
′

(X′

,Y′ ) ◦ π,
(ii) h[X,Y] is the basic vector field π-related to [X′

,Y′ ],
(iii) h(∇XY) is the basic vector field π-related to ∇

′

X′
Y′ ,

(iv) for any vertical vector field V, [X,V] is the vertical,

where ∇ and ∇
′

denote the Levi-Civita connections of M and B, respectively and X, Y are the basic vector
fields, π-related to X′

,Y′ .

Moreover, the tensor fields T and A are said to be the fundamental tensor fields on the manifold M
which are defined by

T (E,F) = TEF = h(∇vEvF) + v(∇vEhF),
A(E,F) = AEF = v(∇hEhF) + h(∇hEvF),

for any E,F ∈ Γ(TM).
The fundamental tensor fields T andA on M satisfy the following properties:

1(TEF,G) = −1(TEG,F) (5)
1(AEF,G) = −1(AEG,F) (6)

and

TVW = TWV, (7)

AXY = −AYX =
1
2

v[X,Y], (8)

for any E,F,G ∈ Γ(TM), V,W ∈ Vp and X,Y ∈Hp, p ∈M.

Note the fact that the vanishing of the tensor fieldT orA has some geometric meanings. For instance, if
the tensorA vanishes identically on M, the horizontal distribution H is integrable. If the tensorT vanishes
identically, any fiber of π is a totally geodesic submanifold of M.

Using the fundamental tensor fields T andA, one can see that

∇VW = TVW + ∇̂VW, (9)
∇VX = h(∇VX) + TVX, (10)
∇XV = AXV + v(∇XV), (11)
∇XY = h(∇XY) +AXY, (12)
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where ∇ and ∇̂ are the Levi-Civita connections of M and any fiber of π respectively, for any V,W ∈ V and
X,Y ∈H .

The mean curvature vector field H on any fiber of Riemannian submersion π is given by

N = rH, (13)

such that

N =

r∑
j=1

TU j U j (14)

where r denotes the dimension of any fiber of π and {U1,U2, ...,Ur} is an orthonormal basis of V .

Using the equality (14), we get

1(∇EN ,X) =
r∑

j=1

1
(
(∇ET )(U j,U j),X

)
for any E ∈ Γ(TM) and X ∈H .

Denote the horizontal divergence of the horizontal vector field X by δ̌(X) given by

δ̌(X) =

n∑
i=1

1(∇Xi X,Xi), (15)

where {Xi}1≤i≤n is an orthonormal frame of H , such that n is also the dimension of B.

On the other hand, any fiber of π is totally umbilical, if

TUW = 1(U,W)H, (16)

is satisfied. Here, H is the mean curvature vector field of π in M, for any U,W ∈ V .

Furthermore, the Ricci tensor Ric on M satisfies

Ric(X,Y) = Ric
′

(X
′

,Y
′

) ◦ π −
1
2

{
1(∇XN ,Y) + 1(∇YN ,X)

}
(17)

+2
n∑

i=1

1(AXXi,AYXi) +
r∑

j=1

1(TU j X,TU j Y)

Ric(U,W) = R̂ic(U,W) + 1(N ,TUW) −
n∑

i=1

1
(
(∇XiT )(U,W),Xi

)
(18)

−

n∑
i=1

1(AXi U,AXi W)

where {Xi} and {U j} are the orthonormal basis of H and V respectively, for any X,Y ∈H and U,V ∈ V .

2.1. Contact Riemannian submersions
Let M2m+1 and B2n+1 be C∞−Riemannian manifolds with the almost contact metric structures (ϕ, ξ, η, 1)

and (ϕ
′

, ξ
′

, η
′

, 1
′

) respectively.

A Riemannian submersion π : (M2m+1, 1) → (B2n+1, 1
′

) is called a contact Riemannian submersion if the
following conditions hold:

a) π∗ξ = ξ
′

,
b) π∗ ◦ ϕ = ϕ

′

◦ π∗.
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For the contact Riemannian submersion π : (M2m+1, 1)→ (B2n+1, 1
′

), the following properties are satisfied:

1. ϕX is the basic vector field π−related to ϕ
′X′

,

2. h(S(X,Y)) is the basic vector field π−related to S′ (X′

,Y′ ),

3. h((∇Xϕ)Y) is the basic vector field π−related to (∇
′

X′
ϕ
′

)Y′ ,

where S = Nϕ + 2dη ⊗ ξ and S′ = N′

ϕ′
+ 2dη′ ⊗ ξ′ are the normality tensor fields of the manifolds M, B such

that Nϕ and N′

ϕ′
are the Nijenhius tensors of ϕ and ϕ

′

, respectively and X, Y are basic vector fields on M,

π−related to X′

,Y′ on B, respectively. Also, we here note that the vertical distribution V and horizontal
distribution H of dimension 2r and 2n + 1, respectively, such that r = m − n.

Considering above properties, note that the followings are satisfied:

(i) The distributions V and H are ϕ−invariant,

(ii) The characteristic vector field ξ is horizontal,

(iii) Since ξ is horizontal, we have η(U) = 0 for any U ∈ V and this implies Vp ⊂ kerηp, for any p ∈ M (for
details, see [12]).

3. Contact Riemannian Submersions whose total space admits an η−Ricci Soliton

Now, we recall the following lemma from [11]:

Lemma 3.1. Let π : (M, 1) → (B, 1′) be a Riemannian submersion between Riemannian manifolds.The followings
are equivalent to each other:

(i) the vertical distribution V is parallel,

(ii) the horizontal distribution H is parallel,

(iii) the fundamental tensor fields T andA vanish, identically.

Throughout this paper, we assume the following:

Assumption: A contact Riemannian submersion π : (M, 1)→ (B, 1′ ) is defined between almost contact metric
manifolds (M, ϕ, ξ, η, 1) and (B, ϕ′ , ξ′ , η′ , 1′ ).

We note that {Xi, ξ}1≤i≤2n and {U j}1≤ j≤2r are the local orthonormal frames of H and V , respectively and using
(17)-(18), we can give the following:

Lemma 3.2. Let π : (M, 1)→ (B, 1′ ) be a contact Riemannian submersion between manifolds. Then, the Ricci tensor
of M satisfies
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Ric(U,W) = R̂ic(U,W) + 1(N ,TUW) −
2n∑
i=1

{
1
(
(∇XiT )(U,W),Xi

)
(19)

+1(AXi U,AXi W)
}
− 1
(
(∇ξT )(U,W), ξ

)
− 1(AξU,AξW),

Ric(X,Y) = Ric
′

(X
′

,Y
′

) ◦ π −
1
2

(
LN1

)
(X,Y) (20)

+2
2n∑
i=1

1(AXXi,AYXi) + 21(AXξ,AYξ) +
2r∑
j=1

1(TU j X,TU j Y),

Ric(X, ξ) = Ric
′

(X
′

, ξ
′

) ◦ π −
1
2

(
LN1

)
(X, ξ) + 2

2n∑
i=1

1(AXXi,AξXi) (21)

2r∑
j=1

1(TU j X,TU jξ),

Ric(ξ, ξ) = Ric
′

(ξ
′

, ξ
′

) ◦ π − 1(∇ξN , ξ) + 2
2n∑
i=1

1(AξXi,AξXi) (22)

+

2r∑
j=1

1(TU jξ,TU jξ),

where Ric′ and R̂ic denote the Ricci tensors of B and any fiber of π respectively, for any U,V ∈ V and X,Y ∈ H ,
π−related to X′

,Y′ .

Using the equalities (19)-(22) in Lemma 3.2, we have the following characterizations:

Theorem 3.3. Let (M, 1,V, λ) be an η−Ricci soliton with vertical potential field V and let π : (M, 1) → (B, 1′ ) be a
contact Riemannian submersion. If one of the conditions in Lemma 3.1 is satisfied, then any fiber of π admits a Ricci
soliton with potential field V.

Proof. Since M admits an η−Ricci soliton with vertical potential field V, from (2), we can write

1
2

{
1(∇UV,W) + 1(∇WV,U)

}
+ Ric(U,W) + λ1(U,W) + µη(U)η(W) = 0, (23)

for any U,W ∈ V . Also η(U) = η(W) = 0, because ξ is horizontal. Using (9) in (23), it follows

1
2

{
1(∇̂UV,W) + 1(∇̂WV,U)

}
+ Ric(U,W) + λ1(U,W) = 0. (24)

Applying (19) to the equation (24), it gives

1
2

(LV1)(U,W) + R̂ic(U,W) + 1(N ,TUW) −
2n∑
i=1

{
1((∇XiT )(U,W),Xi)

+1(AXi U,AXi W)
}
− 1((∇ξT )(U,W), ξ) − 1(AξU,AξW) (25)

+λ1(U,W) = 0.

Since one of the conditions in Lemma 3.1 is satisfied, the eq. (25) is equivalent to

1
2

(LV1̂)(U,W) + R̂ic(U,W) + λ1̂(U,W) = 0,

which means any fiber of π is a Ricci soliton.
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Example 3.4. Let (M, J, 1) be an almost Hermitian manifold and (M′

, ϕ
′

, ξ
′

, η
′

, 1
′

) be an almost contact metric
manifold. We consider the Riemannian product manifold M ×M′ and we set

ϕ̄(X,X
′

) = (JX, ϕ
′

X
′

),
η̄(X,X

′

) = η
′

(X
′

),
ξ̄ = (0, ξ

′

),

for any (X,X′

) ∈ Γ(TM × TM′

). Then, (ϕ̄, ξ̄, η̄, 1̄) is an almost contact metric structure on M ×M′ , where

1̄((X,X
′

), (Y,Y
′

) = 1(X,Y) + 1
′

(X
′

,Y
′

),

for any (X,X′

), (Y,Y′ ) ∈ Γ(TM × TM′

).
Now, we consider a projection map

π : M ×M
′

→M
′

(x, x
′

) → x
′

.

Thus, we have

π∗(ϕ̄(X,X
′

)) = π∗(JX, ϕ
′

X
′

) = ϕ
′

X
′

= ϕ
′

(π∗(X,X
′

)),

for any (X,X′

) ∈ Γ(TM × TM′

). Then, it follows

π∗ϕ̄ = ϕ
′

π∗

(for details, see [9]).

Let M = S6(1) be a hypersphere with radius 1 centered at the origin O. It is known that S6 has the canonical nearly
Kaehlerian structure. Also, let M′

= S5(
√

5
2 ) be a hypersphere with radius

√
5

2 centered at the origin O of the almost
Hermitian manifold (R6, J, <, >), where J and <,> is the standart complex structure and Euclidean metric on R6,
respectively.

Let N be a unit normal vector field of S5(
√

5
2 ). Then, JN ∈ Γ(TS5) and we set

ξ
′

= −JN
JX = ϕ

′

X + η
′

(X)N.

Therefore, one can see that (ϕ
′

, ξ
′

, η
′

, 1
′

) is an almost contact metric structure on S5(
√

5
2 ). We here note that 1′ is the

induced metric on S5(
√

5
2 ) from R6.

On the other hand, we consider the Riemannian product

Mn = Sn1 (r1) × Sn2 (r2) × ... × Snp (rp),

where n1,n2, ...,np ≥ 2 and n1−1
r2

1
= n2−1

r2
2
= ... =

np−1
r2

p
. Chen and Deshmukh showed that (Mn, 1̄, x⊤, λ) is a shrinking

Ricci soliton. Here, x⊤ is the tangential part of position vector field x with respect to origin (see [6]).
Considering all the above statements, we have

π : S6(1) × S5(

√
5

2
)→ S5(

√
5

2
)

is a contact Riemannian submersion such that the total space S6(1) × S5(
√

5
2 ) is a Ricci soliton.

Theorem 3.5. Let (M, 1,V, λ) be an η−Ricci soliton with vertical potential field V and let π : (M, 1) → (B, 1′ ) be a
contact Riemannian submersion. If one of the conditions in Lemma 3.1 is satisfied, then B is an η−Einstein.
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Proof. Case I. For any horizontal vector fields X,Y , ξ, we can write

1
2

{
1(∇XV,Y) + 1(∇YV,X)

}
+ Ric(X,Y) + λ1(X,Y) + µη(X)η(Y) = 0. (26)

Also, using (11) in Lie derivative, one has

1(∇XV,Y) + 1(∇YV,X) = 1(AXV,Y) + 1(AYV,X) (27)

and using the equalities (6) and (8) in (27), then

(LV1)(X,Y) = 0

is found. Using (20) in the Eq. (26), it gives

Ric′ (X′

,Y′ ) ◦ π − 1
2 (LN1)(X,Y) + 2

∑2n
i=1 1(AXXi,AYXi) + 21(AXξ,AYξ)

+
∑2r

j=1 1(TU j X,TU j Y) + λ1(X,Y) + µη(X)η(Y) = 0. (28)

Since one of the conditions in Lemma 3.1 is satisfied, the Eq. (28) becomes

Ric
′

(X
′

,Y
′

) ◦ π + λ1(X,Y) + µη(X)η(Y) = 0.

The last equation is equivalent to(
Ric

′

(X
′

,Y
′

) + λ1
′

(X
′

,Y
′

) + µη
′

(X
′

)η
′

(Y
′

)
)
◦ π = 0,

which gives

Ric
′

(X
′

,Y
′

) + λ1
′

(X
′

,Y
′

) + µη
′

(X
′

)η
′

(Y
′

) = 0, (29)

where X,Y , ξ ∈H are π−related to X′

,Y′ ∈ Γ(TB).

Case II. For any horizontal vector field X , ξ, the Eq. (2) becomes

1
2

(
1(∇XV, ξ) + 1(∇ξV,X)

)
+ Ric(X, ξ) + λ1(X, ξ) + µη(X)η(ξ) = 0. (30)

Using (11) in (30), one obtains

1
2

(
1(AXV, ξ) + 1(AξV,X)

)
+ Ric(X, ξ) + λ1(X, ξ) + µη(X)η(ξ) = 0. (31)

Considering the equalities (6), (8) in (31), it gives

Ric(X, ξ) + λ1(X, ξ) + µη(X)η(ξ) = 0.

Indeed, applying (21) to the last equality, it follows

Ric′ (X′

, ξ
′

) ◦ π − 1
2

(
LN1

)
(X, ξ) + 2

∑2n
i=1 1(AXXi,AξXi) (32)

+
∑2r

j=1 1(TU j X,TU jξ) + λ1(X, ξ) + µη(X)η(ξ) = 0.

From Lemma 3.1, the equation (32) is equivalent to

Ric
′

(X
′

, ξ
′

) ◦ π + λ1(X, ξ) + µη(X)η(ξ) = 0,

which means

Ric
′

(X
′

, ξ
′

) + λ1
′

(X
′

, ξ
′

) + µη
′

(X
′

)η
′

(ξ
′

) = 0, (33)

where ξ ∈H , π−related to ξ
′

∈ Γ(TB).

Case III. Finally, choosing X = Y = ξ, the Eq. (2) gives

1(∇ξV, ξ) + Ric(ξ, ξ) + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0. (34)



E. Kılıç, Ş.Eken Meriç / Filomat 36:6 (2022), 1895–1910 1903

Using (11) in (34), one has

1(AξV, ξ) + Ric(ξ, ξ) + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0. (35)

Indeed, using (22) in (35), it follows

1(AξV, ξ) + Ric′ (ξ′ , ξ′ ) ◦ π − 1(∇ξN , ξ) + 2
∑2n

i=1 1(AξXi,AξXi) (36)

+
∑2r

j=1 1(TU jξ,TU jξ) + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0.

SinceAξξ vanishes identically and one of the conditions in Lemma 3.1 is satisfied, the Eq. (36) is equivalent
to

Ric
′

(ξ
′

, ξ
′

) ◦ π + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0,

which gives

Ric
′

(ξ
′

, ξ
′

) + λ1
′

(ξ
′

, ξ
′

) + µη
′

(ξ
′

)η
′

(ξ
′

) = 0. (37)

As a result of the equalities (29), (33) and (37), it is obtained that the almost contact metric manifold B is an
η−Einstein.

Theorem 3.6. Let (M, 1,Z, λ) be an η−Ricci soliton with horizontal potential field Z and let π : (M, 1) → (B, 1′ )
be a contact Riemannian submersion with totally umbilical fibers. If the horizontal distribution H is integrable, then
any fiber of π is an Einstein.

Proof. Since the total space of π admits an η−Ricci soliton, putting the equality (10) in (2), we have

1
2

{
1(TUZ,W) + 1(TWZ,U)

}
+ Ric(U,W) + λ1(U,W) + µη(U)η(W) = 0,

for any U,W ∈ V . Since ξ is horizontal, we get η(U) = η(W) = 0 and using the equalities (5) and (7), the last
equation gives

−1(TUW,Z) + Ric(U,W) + λ1(U,W) = 0.

Applying (19) to the last equation, we get

−1(TUW,Z) + R̂ic(U,W) + 1(N ,TUW) −
2n∑
i=1

{
1
(
(∇XiT )(U,W),Xi

)
+1(AXi U,AXi W)

}
− 1((∇ξT )(U,W), ξ) − 1(AξU,AξW) + λ1(U,W) = 0.

If any fiber is a totally umbilical, we note that

2n∑
i=1

1((∇XiT )(U,W),Xi) + 1((∇ξT )(U,W), ξ) =

2n∑
i=1

1(∇Xi H,Xi)1(U,W)

+1(∇ξH, ξ)1(U,W), (38)

where H is the mean curvature vector field, for any U,W ∈ V . Since H is integrable and using (38), it
follows

−1(Z,H)1(U,W) + R̂ic(U,W) + 1(N ,H)1(U,W) −
2n∑
i=1

1(∇Xi H,Xi)1(U,W)

−1(∇ξH, ξ)1(U,W) + λ1(U,W) = 0. (39)

Putting the equality (15) in (39), it is equivalent to

R̂ic(U,W) +
{
2r∥H∥2 − 1(Z,H) − δ̌(H) + λ

}
1(U,W) = 0.

Therefore, any fiber of π is an Einstein.



E. Kılıç, Ş.Eken Meriç / Filomat 36:6 (2022), 1895–1910 1904

Particularly, if we choose the potential fieldZ = ξ, we obtain:

Corollary 3.7. Let (M, 1, ξ, λ) be an η−Ricci soliton and π : (M, 1) → (B, 1′ ) be a contact Riemannian submersion
with totally umbilical fibers. If the horizontal distribution H is integrable, then any fiber of π is an Einstein and its
Ricci tensor is given by

R̂ic = −(2r∥H∥2 − η(H) − δ̌(H) + λ)1,

where H is the mean curvature vector field.

Theorem 3.8. Let (M, 1,Z, λ) be an η−Ricci soliton with horizontal potential field Z and π : (M, 1) → (B, 1′ ) be
a contact Riemannian submersion. If one of the conditions in Lemma 3.1 is satisfied, then the almost contact metric
manifold B admits an η−Ricci soliton with potential fieldZ′ , such that π∗(Z) = Z

′ .

Proof. Case I. Let X,Y , ξ be horizontal vectors. From the Eq. (2), we can write

1
2

(
1(∇XZ,Y) + 1(∇YZ,X)

)
+ Ric(X,Y) + λ1(X,Y) + µη(X)η(Y) = 0.

Using (12), it follows

1
2

(
1(h(∇XZ),Y) + 1(h(∇YZ),X)

)
+ Ric(X,Y) + λ1(X,Y) + µη(X)η(Y) = 0,

which gives

1
2

(LZ′1
′

)(X
′

,Y
′

) ◦ π + Ric(X,Y) + λ1(X,Y) + µη(X)η(Y) = 0. (40)

Moreover, applying (20) to (40), we get

1
2

(LZ′1
′

)(X
′

,Y
′

) ◦ π + Ric
′

(X
′

,Y
′

) ◦ π −
1
2

(LN1)(X,Y)

+2
2n∑
i=1

1(AXXi,AYXi) + 21(AXξ,AYξ) +
2r∑
j=1

1(TU j X,TU j Y) (41)

+λ1(X,Y) + µη(X)η(Y) = 0.

From Lemma 3.1, the equation (41) is equivalent to(1
2

(LZ′1
′

)(X
′

,Y
′

) + Ric
′

(X
′

,Y
′

) + λ1
′

(X
′

,Y
′

) + µη
′

(X
′

)η
′

(Y
′

)
)
◦ π = 0,

which means

1
2

(LZ′1
′

)(X
′

,Y
′

) + Ric
′

(X
′

,Y
′

) + λ1
′

(X
′

,Y
′

) + µη
′

(X
′

)η
′

(Y
′

) = 0. (42)

Case II. For any horizontal vector field X , ξ, considering the Eq. (12) in (2), it follows

1
2

(1(h(∇XZ), ξ) + 1(h(∇ξZ),X)) + Ric(X, ξ) + λ1(X, ξ) + µη(X)η(ξ) = 0. (43)

Using (21) in above (43)

1
2 (LZ′1

′

)(X′

, ξ
′

) ◦ π + Ric′ (X′

, ξ
′

) ◦ π − 1
2 (LN1)(X, ξ)

+2
∑2n

i=1 1(AXXi,AξXi) +
∑2r

j=1 1(TU j X,TU jξ) + λ1(X, ξ) (44)
+µη(X)η(ξ) = 0
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is obtained. Also, because Lemma 3.1 is satisfied, the equation (44) gives(1
2

(LZ′1
′

)(X
′

, ξ
′

) + Ric
′

(X
′

, ξ
′

) + λ1
′

(X
′

, ξ
′

) + µη
′

(X
′

)η
′

(ξ
′

)
)
◦ π = 0,

which implies

1
2

(LZ′1
′

)(X
′

, ξ
′

) + Ric
′

(X
′

, ξ
′

) + λ1
′

(X
′

, ξ
′

) + µη
′

(X
′

)η
′

(ξ
′

) = 0. (45)

Case III. Choosing X = Y = ξ, the Eq. (2) becomes

1(∇ξZ, ξ) + Ric(ξ, ξ) + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0. (46)

Putting (12) in (46), we have

1(h(∇ξZ), ξ) + Ric(ξ, ξ) + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0.

Moreover, using (22), it follows

1
2 (LZ′1

′

)(ξ
′

, ξ
′

) ◦ π + Ric′ (ξ′ , ξ′ ) ◦ π − 1(∇ξN , ξ) + 2
∑2n

i=1 1(AξXi,AξXi)

+
∑2r

j=1 1(TU jξ,TU jξ) + λ1(ξ, ξ) + µη(ξ)η(ξ) = 0. (47)

On the other hand, since one of the conditions in Lemma 3.1 is satisfied, the equation (47) gives(1
2

(LZ′1
′

)(ξ
′

, ξ
′

) + Ric
′

(ξ
′

, ξ
′

) + λ1
′

(ξ
′

, ξ
′

) + µη
′

(ξ
′

)η
′

(ξ
′

)
)
◦ π = 0

which means

(LZ′1
′

)(ξ
′

, ξ
′

) + Ric
′

(ξ
′

, ξ
′

) + λ1
′

(ξ
′

, ξ
′

) + µη
′

(ξ
′

)η
′

(ξ
′

) = 0. (48)

The equalities (42),(45) and (48) give the almost contact metric manifold B is an η−Ricci soliton with potential
fieldZ

′

.

Taking the potential fieldN of an η−Ricci soliton, we obtain a characterization as follows:

Theorem 3.9. Let (M, 1,N , λ) be an η−Ricci soliton with horizontal potential fieldN and π : (M, 1)→ (B, 1′ ) be a
contact Riemannian submersion with totally umbilical fibers. If the horizontal distribution is integrable, then B is a
generalized quasi-Einstein manifold.

Proof. Since the total space M admits an η−Ricci soliton, putting (20) in (2), we have

1
2

(LN1)(X,Y) + Ric
′

(X
′

,Y
′

) ◦ π −
1
2

(LN1)(X,Y) + 2
2n∑
i=1

1(AXXi,AYXi)

+21(AXξ,AYξ) +
2r∑
j=1

1(TU j X,TU j Y) + λ1(X,Y) + µη(X)η(Y) = 0 (49)

for any X,Y ∈ H . Since the horizontal distribution H is integrable, the tensor field A ≡ 0. Then (49) is
equivalent to

Ric
′

(X
′

,Y
′

) ◦ π +
2r∑
j=1

1(TU j X,TU j Y) + λ1(X,Y) + µη(X)η(Y) = 0. (50)
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On the other hand, using (5) we can express

2r∑
j=1

1(TU j X,TU j Y) =

2r∑
i, j,k=1

1(TU j X,Ui)1(TU j Y,Uk)1(Ui,Uk)

=

2r∑
i, j=1

1(TU j Ui,X)1(TU j Ui,Y)

=

2r∑
i, j=1

1(TU j X,Ui)1(TU j Y,Ui), (51)

where {U1, ...,U2r} denotes a local orthonormal frame of V . Since π has totally umbilical fibers, applying
(16) to (51) and using (13), we have

2r∑
j=1

1(TU j X,TU j Y) = 1(2rH,X)1(2rH,Y)

= 1(N ,X)1(N ,Y). (52)

Denoting the dual 1-from ofN by σ, then (52) yields

2r∑
j=1

1(TU j X,TU j Y) = σ(X)σ(Y),

for any X,Y ∈H . Putting the last equality in (50),

Ric
′

(X
′

,Y
′

) ◦ π + λ1(X,Y) + σ(X)σ(Y) + µη(X)η(Y) = 0 (53)

it follows

Ric
′

(X
′

,Y
′

) + λ1
′

(X
′

,Y
′

) + σ
′

(X
′

)σ
′

(Y
′

) + µη
′

(X
′

)η
′

(Y
′

) = 0.

Therefore, the manifold B is a generalized quasi-Einstein.

In a particular case of Theorem 3.9, choosing the potential fieldN = ξ, we obtain:

Corollary 3.10. Let (M, 1, ξ, λ) be an η-Ricci soliton and π : (M, 1)→ (B, 1′ ) be a contact Riemannian submersion
with totally umbilical fibers. If the horizontal distribution H is integrable, then B is an η-Einstein manifold.

As another result of Theorem 3.9, we get:

Corollary 3.11. Let (M, 1,N , λ) be a Ricci soliton and π : (M, 1) → (B, 1′ ) be a contact Riemannian submersion
with totally umbilical fibers. If the horizontal distribution H is integrable, then B is a quasi-Einstein manifold.

4. Contact Riemannian submersions whose total space is endowed with a torqued vector field

A vector field T on a Riemannian manifold M is said to be a torqued, if the following equalities are
satisfied

∇ET = f E + γ(E)T , γ(T ) = 0 (54)

for any E ∈ Γ(TM), where f is a function, γ is a 1-form and ∇ is the Levi-Civita connection of M. If the
1-form γ in (54) vanishes identically, then T is called concircular vector field (see also [7, 8]).
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Theorem 4.1. Letπ : (M, 1)→ (B, 1′ ) be a contact Riemannian submersion between almost contact metric manifolds
such that the total space M is endowed with a torqued vector field T . Then we have the followings:

(i) If T is vertical, T is also torqued on any fiber of π and TUT vanishes identically, for any U ∈ V .

(ii) If T is horizontal, T
′ is torqued on B, where T is the basic vector field, π−related to T

′ and theAXT vanishes
identically, for any X ∈H .

Proof. If the vector field T is vertical, using (54), we can write

∇UT = f U + γ(U)T , γ(T ) = 0,

and combining it with Eq. (9), it follows

∇̂UT + TUT = f U + γ(U)T , γ(T ) = 0, (55)

for any U ∈ V . By comparing the horizontal and vertical parts of (55),

∇̂UT = f U + γ(U)T , γ(T ) = 0,
TUT = 0,

are obtained. Hence, the first equality above gives that the vector field T is torqued on any fiber and (i) is
satisfied.

If the vector field T is horizontal, using (54), one has

∇XT = f X + γ(X)T , γ(T ) = 0,

and combining it with Eq. (12), it follows

AXT + h(∇XT ) = f X + γ(X)T , γ(T ) = 0, (56)

for any X ∈H . By comparing the horizontal and vertical parts of (56), we obtain

h(∇XT ) = f X + γ(X)T , γ(T ) = 0, (57)
AXT = 0.

Hence the first equation gives

∇
′

X′T
′

= f X
′

+ γ
′

(X
′

)T
′

, γ
′

(T
′

) = 0,

which means the vector field T
′

is torqued on the manifold B, such that T is the basic vector field π-related
to T

′

. Therefore, the condition (ii) is obtained.

From now on, we suppose that the total space M of contact Riemannian submersion π is equipped with
the torqued vector field ξ.

Lemma 4.2. Let π : (M, 1) → (B, 1′ ) be a contact Riemannian submersion with totally umbilical fibers and
(M, 1, ξ, λ) be an η−Ricci soliton. If the horizontal distribution H is integrable, then the Ricci tensor R̂ic of
any fiber of π is given by

R̂ic = −

(
(λ + f ) − δ̌(H) + 2r∥H∥2

)
1, (58)

where H is the mean curvature vector field.
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Proof. Firstly, since ξ is a torqued on M, using (54) we can write

∇Uξ = f U + γ(U)ξ, γ(ξ) = 0, (59)

for any U ∈ V . From (10), it follows

TUξ + h(∇Uξ) = f U + γ(U)ξ, γ(ξ) = 0

and then

TUξ = f U, (60)
h(∇Uξ) = γ(U)ξ,

are found.

On the other hand, since M admits an η−Ricci soliton, one has

1
2

(Lξ1)(U,W) + Ric(U,W) + λ1(U,W) + µη(U)η(W) = 0. (61)

Here we note that η(U) = η(W) = 0.Then, applying (10) to (61), we have

1
2

{
1(TUξ,W) + 1(TWξ,U)

}
+ Ric(U,W) + λ1(U,W) = 0.

Putting (19) and (60) in the last equality gives

f1(U,W) + R̂ic(U,W) + 1(N ,TUW) −
2n∑
i=1

1((∇XiT )(U,W),Xi) (62)

−1((∇ξT )(U,W), ξ) −
2n∑
i=1

1(AXi U,AXi W) − 1(AξU,AξW) + λ1(U,W) = 0.

Since π has totally umbilical fibers and H is integrable, the Eq. (62) is equivalent to

R̂ic(U,W) + 2r∥H∥21(U,W) −
2n∑
i=1

{
(∇Xi1)(U,W)1(H,Xi) + 1(∇Xi H,Xi)1(U,W)

}
−(∇ξ1)(U,W)1(H, ξ) − 1(∇ξH, ξ)1(U,W) + (λ + f )1(U,W) = 0, (63)

for any U,W ∈ V . Applying (15) to (63), we obtain

R̂ic(U,W) + 2r∥H∥21(U,W) − δ̌(H)1(U,W) + (λ + f )1(U,W) = 0,

which gives (58).

The proof of the next lemma is given by the similar way of Lemma 4.2:

Lemma 4.3. Let π : (M, 1) → (B, 1′ ) be a contact Riemannian submersion with totally umbilical fibers and let
(M, 1, ξ, λ) be an η−Ricci soliton. If H is integrable, then B is Einstein.

Theorem 4.4. Letπ : (M, 1)→ (B, 1′ ) be a contact Riemannian submersion between almost contact metric manifolds.
Then, we have the following:

(i) The vector field ξ′ is a torqued on the distributionD′ , such that TB = D′

⊕ Span{ξ′ } and π∗ξ = ξ
′ .

(ii) The vector field ξ′ is a concircular on the distribution Span{ξ′ }.
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Proof. Since ξ is a torqued on M, we get

∇Xξ = f X + γ(X)ξ, γ(ξ) = 0,

for any X ∈H . Also, using (12) in the last equality, it gives

AXξ + h(∇Xξ) = f X + γ(X)ξ, γ(ξ) = 0. (64)

If we choose the horizontal vector field X , ξ and compare of the horizontal and vertical components of
(64), it gives

AXξ = 0,
h(∇Xξ) = f X + γ(X)ξ. γ(ξ) = 0,

Hence, the last equality follows

∇
′

X′ξ
′

= f X
′

+ γ
′

(X
′

)ξ
′

, γ
′

(ξ
′

) = 0,

which means ξ
′

is a torqued vector field on the distributionD
′

.

On the other hand, if we take X = ξ in (64), one has

∇ξξ = Aξξ + h(∇ξξ) = fξ + γ(ξ)ξ, γ(ξ) = 0

and it follows

h(∇ξξ) = fξ. (65)

Since h(∇ξξ) is the basic vector field π−related to ∇
′

ξ′
ξ
′

, the Eq. (65) is equivalent to

∇
′

ξ′
ξ
′

= fξ
′

,

which is nothing but ξ
′

is a concircular on the distribution Span{ξ′ }.

Theorem 4.5. Let π : (M, 1) → (B, 1′ ) be a contact Riemannian submersion and let (M, 1, ξ, λ) be an η−Ricci
soliton. If any condition in Lemma 3.1 is satisfied, then the Ricci tensor onD′ is given by

Ric
′

= −

(
(λ + f ) +

1
2

(γ
′

⊗ η
′

+ η
′

⊗ γ
′

) − µη
′

⊗ η
′
)
1
′

.

Proof. Since M admits an η−Ricci soliton, we can write

1
2

(Lξ1)(X,Y) + Ric(X,Y) + λ1(X,Y) + µη(X)η(Y) = 0, (66)

for any X,Y ∈H . Using (54) the Lie-derivative of (66), it gives

1
2

(Lξ1)(X,Y) =
1
2

{
1(∇Xξ,Y) + 1(∇Yξ,X)

}
=

1
2

{
1(h(∇Xξ),Y) + 1(h(∇Yξ),X)

}
=

1
2

{
1( f X + γ(X)ξ,Y) + 1( f Y + γ(Y)ξ,X)

}
= f1(X,Y) +

1
2

{
γ(X)η(Y) + η(X)γ(Y)

}
.

Putting the last statement in (66), we have

f1(X,Y) +
1
2

{
γ(X)η(Y) + η(X)γ(Y)

}
+ Ric(X,Y) + λ1(X,Y) + µη(X)η(Y) = 0.
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Applying the Eq. (20) to the last equation, it gives

Ric
′

(X
′

,Y
′

) ◦ π −
1
2

(LN1)(X,Y) + 2
2n∑
i=1

1(AXXi,AYXi) + 21(AXξ,AYξ)

+

2r∑
j=1

1(TU j X,TU j Y) + f1(X,Y) +
1
2

{
γ(X)η(Y) + η(X)γ(Y)

}
+ λ1(X,Y)

+µη(X)η(Y) = 0.

Since one of the conditions of Lemma 3.1 is satisfied, we get

Ric
′

(X
′

,Y
′

) ◦ π + (λ + f )1(X,Y) +
1
2

{
γ(X)η(Y) + η(X)γ(Y)

}
+ µη(X)η(Y) = 0,

for any horizontal vectors X,Y , ξ. Therefore, the last equation is equivalent to

Ric
′

(X
′

,Y
′

) + (λ + f )1
′

(X
′

,Y
′

) +
1
2

{
γ
′

(X
′

)η
′

(Y
′

) + η
′

(X
′

)γ
′

(Y
′

)
}

+µη
′

(X
′

)η
′

(Y
′

) = 0,

for any vector fields X′

,Y′ , ξ′ and the proof is completed.
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