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Nearest Southeast Submatrix that Makes Two Prescribed Eigenvalues

Alimohammad Nazari®, Atiyeh Nezami®

*Department of Mathematics, Arak University, P.O. Box 38156-8-8349, Arak, Iran

Abstract. Given four complex matrices A, B, C and D where A € C”" and D € C"™" and given two distinct
arbitrary complex numbers A; and A, so that they are not eigenvalues of the matrix A, we find a nearest
matrix from the set of matrices X € C"™" to matrix D (with respect to spectral norm) such that the matrix

(Ié )B;) has two prescribed eigenvalues A, and A,.

1. Introduction

The spectral distance from an n X n matrix A to the set of matrices of rank at most r is equal to 0,(A), and
0,(A) denotes the rth singular value of the matrix A.

Let ® be a complex n X n matrix, and let IL be a set of n X n matrices with a multiple zero eigenvalue. In
the paper [5], A.N. Malyshev obtained the following formula for 2-norm distance from @ to IL:

p2(®,IL) = min P~ L2 = max 02u-1(P()), 1)
in which
P($) = ( T ol ) @

and o;(-) denotes the ith singular value of the corresponding matrix. It is assumed that the singular values
of any matrix are arranged in decreasing order.

The spectral norm distance of an 7 X n matrix @ to the set of matrices with two prescribed eigenvalues
was computed by J. M. Gracia [2] for ¢, # 0 (Where P(¢) gets its maximum at the point ¢) and for other
cases by Ross A. Lippert [4]. Let A € C™" be an invertible matrix and D € C™™,].M. Gracia and E.E. Velasco

in their recent paper [3] found the spectral distance from a set of matrices X € C"™" to matrix D, such that,
the matrix

rx=(‘é i) @)
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has a multiple eigenvalue zero, i.e.

min [|X - D|| = sup 02,-1(P(y, D)),
XECU!XN! —VER
m(0,I'x)>2 !

where

P(%D)=(}g( )j\//\(/)r

M:=D-CA™'B,
N =1, + CA™B,

and m(Ao, I'x) denotes the algebraic multiplicity of Ay as an eigenvalue of I'x.

1922

Nazari and Nezami in [6] introduced a correction for Gracia and Velasco’s formula, when the matrix I'p

is a block normal matrix.

In this paper, for the given four complex matrices A € C**, B, C and D € C"™" and for two given
distinct complex numbers A; and A, which are not eigenvalues of matrix A, we find the nearest matrix to
matrix D, from the set of matrices X € C"™" such that matrix I'x has two prescribed eigenvalues A; and A,.

Using the notations in [3], let us denote the Cartesian product C™" x C™" x C"™™ by L, ,. Given

[p € Clmmx(m+n) the spectrum of I'p will be denoted by A(I'p).

Two unitary vectors u, v are a pair of singular vectors of matrix I'x for the singular value o if I'xv = ou

and (T'x)"u = ov.

2. Function P(y)
Assume that M;, M, and N € C"™ that

M = (D - A1l,) — C(A = M1,)7'B,
My = (D - Al,) — C(A = A2L,)7'B,
N =1, + CA - ML) YA - A1) !B,

and y € Rand

P(y) =( i 7\/4\2/ ) P() = 0201 (P().

From Lemma 26 of [3] we have the Lemmas 2.1 to 2.4.

Lemma 2.1. Foreach y € R, 02,,-1(P(y)) is an even function.

Lemma 2.2. If My, My and N € C"™" and rank(N) > 2 for m > 2, then

lim GZm—l( Ml )/N ) =0.

y—00 0 M2
Lemma 2.3. The function p(y) is bounded on R.
Lemma 2.4. If for somey # 0, p(y) = 0, then for each y € R, p(y) = 0.

Now we bring, Lemma 5 of [5].
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Lemma 2.5. Let Q be an open subset of R and F : O — C™" be an analytic function on Q. If the function o;(F(t))
has a positive local maximum (or minimum) at t,. € Q, then there exists a pair of singular vectors u € C™!,v € C™1
of F(t) corresponding to o;(F(t4)) such that

dF
Re (MHEO/*)U) =0.

M] )/*N

0 M2)=G*>0'

Let 0 # v« € R, and the function p(y) has a local extremum at y,, then 02,1 (

u v . . . .
Ifu= ( ul ), v= ( vl ) € C?™1 are the right and left singular vectors associated to o, respectively, where
2 2

U1, Uy, 01,09 € C™1 then

P(y.)v =01, 7)
P(y.)'u = o040, (8)
uluy +utlu, = 1,
v%{vl + vglvz = 1. ©)
By Lemma 2.5,

u T ap v
Re(( u ) @(m( u )]:o.

Also by the definition of P(y) we have

a, (0 N
E(y*)_ 0 0 ’

thus, from two above relations we obtain
Re(u’lisz) =0. (10)

Now, by multiplying both sides of (7) from left by (1}, —ul'), we can write

(14{{, —u?) (A(/)(l )//(,(/:/) (z;) =0 *(u?ul - M?“z),

therefore

(u?Ml,y*qu - u?Mz) (z;) = a*(ulful - u?uz),
SO

u{{Mlvl + y*u?sz - u?szz = a*(u’ful - u?uz). (11)
By multiplying (8) from left by (v, —vl'), we have the same relation as

oI My — y I NFuy — o M, = 04 (0101 — 0f0y). (12)
By taking conjugate transpose from both side (11), we have

H AH H A/H HAqH,  _ H H
vy My + y vy N7 ug — vy My up = oy (U ug — iy u). (13)
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By multiplying relation (12) by —1 and add to relation (13) we have the following relation
Zy*vzHNHul = —m(v?vl - v?vz) + m(u?ul - u?uz). (14)

The right hand side of the above relation is real, and since y, # 0, then v’ N"u; is real, so the conjugate of
it, ul’ Nv, is also real. Thus from (10) we get

ut Nv, = 0. (15)

Now we can provide the following lemmas similar to [2].

Lemma 2.6. Ify, > 0is the local extremum of p(y) and o4 = p(y.) > 0and u = ( Z; ), v= ( Z; ) € C>™1 where
Uy, Uy, v1, 0 € C™ are the right and left singular vectors corresponding to o = p(y.) respectively, then
u{IN vy = 0.

Lemma 2.7. If uy, u,v1 and v, are the vectors in the previous Lemma and U = (uy,up) and V = (v, vp) are two
matrices in C™2, then

utu = viv.

Proof. We construct the proof similar to the [3]. From relations (14) and (15), we have
0% (001 — 05 0y) = 0u (Ul uy — ubluy).

Since g4 > 0, then
v?vl - 050, = ulful — ulu,.

H

Yuy — uflu,. Then by (9) we get

If we assume that a := v'v; — vbl0,, then v = u

20{101 =1+aq, 2u¥u1 =1+aq, 20?02 =1-aq, 21/[12_!1/{2 =1-aq,

and so
1+«
0?01 = > = M?Ml, (16)
1-«a
v?vz = > = u?uz. (17)

By multiplying both sides of (7) from left by (0, u?) and both sides of (8) from left by (ZJ?,O) we have the
following equations.

v
0, ! My) (U;) = o, ulluy,
and
u
(U?M{{, 0) (u;) = o*v?vl

so that

u{Iszz = o*u’fuz, (18)

oy Mi'uy = o, 05l0;. (19
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By taking conjugate transpose of both sides of (19) and reduce from (18), we obtain
u?szz — a*u{{uz = u?Mlvz - a*v{{vz.
By definition of M; and M, in the relation (4) and (5), we deduce that
uf (D = Aaly) — C(A = A21,) ' B)oy — 0wt uy = ul! (D — M1) — C(A = A1) ' B)o, — 040t 0.
By some computations and by lemma 2.6 we have
oxutluy = o, 00,
Since g4 > 0,
uiluy = ollo,,

then
H

uu = (ZZ) (1, 12) = (“Z”l ”h””),

5 1/[2 u M2 Us

and

ViV = (zﬁ) (01,02) = (”gvl ”ﬁvz),

; U010, 02
and by (16) and (17) and (20), we have U"U = VAV, O
The following lemma can be seen in [4].
Lemma 2.8. Let q > 2and I'x € C™7and A1, A, € A(T'x), then

FX - A]Iq ’)/Iq

rank( 0 Ty = A,

)szq—z, ¥y €R.

By Theorem 1.1 from [1] and Theorem 5 from [3] we have the next Theorem.

Theorem 2.9. Given a matrix partitioned in the following form
(& o)
C DYJ
with A € C™" gnd D € C™™, For each matrix X € C"™™ et
(2 )
and let us call

p :=rank[A, B] + rank[ Ié ] —rankA,

M:=(I,-AANB, N:=C(I,-A"A),
and
P(X) := (I - NN")(X — CATB)(I - M*M).
Then for each X € C"™ "™, we have
rankl'y = p + rankP(X).
Moreover, for each integer r such that p < r < rankI'p,
min{||X — D|| : X € C"™", rankI'x < r} = 0511 (P(D)),

wheres =r — p.

1925

(20)
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3. Lower bound for minimum of problem
Assume that @ = (A, B, C) € L,x;; and X € C"™™ and
m(A;, I'x) > 1, i=1,2.

by Lemma 2.8 we have

A - MI, B v, 0
C X - M, 0 VYIn _
rank| 0 A - Ao, B =
O 0 C X - AZIm
A - M, v, B 0
0 A - A, 0 B
rank C 0 X - A, Yl <2n+m)-2.
O C O X - AZIm

Then we call

(A-ML 9,
AY) "( 0 A, )

(o 5)
c:=( )

. - Allm Vln
X0 "( 0 XAl )

From Theorem 2.9, we have

B:

onN ow
X No wmo

p(y) = rank[ Aly) B ] + rankl ﬂc(?/) ] — rankA(y),

s(y)=2m+2n-2-p(y),

M) = (Ln = AQ)AQ)) B,

N@) = Cloy = AY)' AY)),

Py, X = Ml X = Aal) = (T = NOINGY) (X() = CAGY' B) (12 ~ M) M(),
and so

Aly) 8

rank ( o X()

) = p(y) + rank(P(y, X — AL, X = AyLy)).

Since
m(A;, I'x) > 1, i=1,2,
for any y € R, we have
p(y) + rank(P(y, X — MIy, X = Aoly) <2n42m -2 &

rank(P(y, X = ALy, X — Agly) < 2n 4 2m =2 = p(y) = s(y)
= GS(V)+1(P(V/X - Allm,X — /\21111) = 0

1926

(21)

(22)
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Lemma 3.1. Ify € Rand X € C"™™, then

loi(P(y, X = AL, X = Aalw)) = 0i(P(y, D = ALy, D = Aol))l < [IX = D,
fori=1,2,---,2m.
Proof. Similar to Lemma 22 of [3] the proof is obtained directly. [
Now by relations (22) and (23) we have

Osg+1(P(y, D = ALy, D = A2ly)) < [IX = D|,
so

sup 05)+1(P(y, D = A1y, D = Aaly)) < Xrg%igxlm [|X = DJ|.

yeR mA; Tx)=1
i=1,2

1927

(23)

In continue we assume that A; and A, do not belong to A(A) and we solve the problem (If one of these

numbers be an eigenvalue of A, then s(y) is not equal to 2m — 1).
There are two following cases for m:

o m>1,

o m=1.

The proof of existence a matrix X such that A; and A, are eigenvalues of matrix I'x, is similar to the section
3 of [3]. For the cases m > 1 and m = 1 that N' = 0, we introduce a method for constructing matrix X such
that A; and A, are eigenvalues of I'x and for the case m = 1 when N # 0, we prove that there is no matrix X.

4. The cases that A; and A, do not belong to A(A)

Firstly we consider m > 1 and since the local maximum of 02,1 (P(y, D — A11,, D — A»1,,)) happens in y,,

we also consider the following three cases:
L4 V* ;t O/
L4 V* = O/

ey, =00

4.1. The case y« #0

By relation (21) we have s(y) + 1 = 2m — 1, then we prove the following Theorem.

Theorem 4.1. If o = (A,B,C) € L,,,, and D € C"™", where A1, Ay ¢ A(A), then

min ||X = D|| = sup 02,4-1(P(y, D = A1ly, D = Azly)).
XeCmxm %0
m(A;Tx)>1 reR
i=1,2

Proof. 1t is sufficient to show that

sup o2m-1(P(y, D = Mlw, D = Aolw)) 2 min - {|IX — D].

yeR (AL Tx)1
21,0



A. M. Nazari, A. Nezami / Filomat 36:6 (2022), 1921-1936 1928
Set
My = (D - A1l,) — C(A - MI1,)7'B,
Mo = (D = Aoly) = C(A = A2L,)7'B,
N =1, + CA - ML) A - A1) 7B,

M1 ]/N
0 My )

P(V) = GZm—l(P(V/D - AllmrD - AZIm))'

P()//D - A‘lll’H/D - Azlm) = (

Let D, be the matrix such that I'p, = ( Ié [1)3 ) has two eigenvalues A, A, and
*

ID — Dyl = maxp(y),
7€R

and let the local maximum of p(y) happens in y, > 0 and p(y., D — A1L,, D — A2l,) = 04 > 0. According to
Lemma 2.6, we assume that u = ( Zl ), V= Zl € C>™1, where u1, 1y, v1,0; € C™! are the right and left
2 2

singular vectors corresponding to o, = p(y.) respectively and
U = (u1,u2), V = (v1,02) € C™2.

We define A = 0, UV and prove that [|A|| = 0, and A4, A, are the eigenvalues of

A B
C D* 7
where
D, =D-A. (24)

By Lemma 2.7 we have V1V = U U. There is a unitary matrix W € C"*" such that U = WV. Hence
ID = Dyl = 0ulUVT| = 0 [WVVT|| = 0 IVVT| = o4

Now we prove that A; and A, are eigenvalues of I'p, .
From [2], Page 287, equations (31) and (32) we have

Avy = 0xua, (25)
u{{A = a*vlf. (26)

and from [2], Page 287, since we have AV =g, U, so
D,V =DV — o, (27)

so rankV"V = rankV and |(v1,v2)f|| = 1, thus we deduce that rankVH#V > 1. Therefore we have the
following cases:

e rankV =2,
e rankV=1,v,=0

e rankV =1, #0
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4.1.1. rankV =2
Since rankV = 2, so v1, v; are linearly independent. Hence we should find the vectors w;, w; € C"™1 such

that

[eo e ) ol ) e

C D, vy vy vy 0 A

Because A; and A, are not eigenvalues of matrix A, let us assume that

wy = —(A = M1,) "' Boy,

w1 = —(A — AaL,) 'Boy + Y« (A — Aal) "N A — A1) ' Bos.

We prove that w; and w, are holding in (28). By (27), we know

D,v; = Dv; — o,u;, i=1,2; (29)
from the second line (28), we have

—C(A — A1) 1By + Dyva = Ay0y,

—C(A = Aal) 'Boy + 4 C(A = Aol,) ™A — M) 7' Buy + Dyvy = 405 + A0y,
by (29), we find

—C(A = ML) 'Buy + (D = AL,y — 041y = 0,

—C(A = AaL,) 'Boy + 74 C(A = AoL,) " HA = ML) Boy + (D = Aply)or — oxiy

From these relation and by definitions M;, M, and N, we have

Mivy = o4, Movi + Y Nvy = 0,1y,

This equation is the section of equation (7) and above relations also is correct, so equation (28) is hold. So
wy and w;, satisfy the required conditions in (28). Therefore A; and A, are eigenvalues of I'p, .

4.1.2. rankV=1,v,b=0
From Lemma 27 in [3], we know that u, = 0 and u; # 0, so it suffices to find vectors wy, w, € C>*", w, # 0
such that

wy uf A B A0 wy ull
[ 5 )e o )= (Y R ) ) &

wy = —ullCA- ML), wy=—ul'CA - ML) A - L) ™

Let

Now we prove that w; and w, are hold in (30). By taking conjugate transpose from both sides of (30) and
second line it and definition N, we earn

—u'C(A = ML) "B+ ul!(Dy — MI,,) = 0,
quN =0.

The second equation is right from Lemma 27 in [3] . In order to prove the first equation, since v, = 0 and
by (26), and definition M;, we write

ulf/\/(l = o*vllq = leul = 0,701,
This equation is the section of equation (8) and the above relations also correct, so equation (30) is held. In
this Case w; # 0, if w, = 0 then —u!?CA=? = 0, so —ul’CA™B = 0 and u!/[I,, + CA™?B] = u}! and by definition

N we have ul! N = ull, that, it is wrong by Lemma 27 in [3]. So wy, w, satisfy in the condition (30) and A,
and A, are eigenvalues of I'p, .
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4.1.3. rankV =1,v, #0
We prove that there are vectors wq, w; € C™1, w;y # 0 such that

A B wy Wy wy w [ A1

(c D*)(Uz o)z(v2 0)(0 /\2)' G1)
Let us assume that

wy = —(A= ML) 'Boy,  wi = —(A—Aal,) (A - Ail,) ' Boy.
We want to show that w; and w, are hold in (31). From (29) and the second line of (31), we have

~C(A = A1) 'Boy + (D — A11,)v2 — 041y = 0,

—C(A = A2l) " MA = M1,)'Bo, = vy,
Now, by replacing M; and N in both above formulas, we have

Moy = 0,1, Nuv, = 0.

These relations are a combination of Lemma 28 in [3] and (8), then (31) is held. In this case wy # 0,if w; =0
we have

—(A = Aal) (A= ML) "B, =0,
Cle)
C(A = ML) YA = ML) 'Bu, =0,
and
[l + C(A = A2Ly) ™ (A = Aa) "' Bloz = 2.
By replacing the matrix V in the above relation we have
Nv, =0y,

but this relation is wrong by Lemma 28 in [3]. So w;,w, satisfy the condition (31) and A; and A, are
eigenvalues of I'p, .

4.2. Thecase y, =0

Assume that 0,,,_1 ( /\6(1 /\(/)(2 ) = 0,4 > 0, then two cases happens.

e Case 1: 0,,(My) = 0,,(Mz) > 0,
e Case 2: 0,,(My) = 0,,(My) > 0.
From Theorem 3.7 of [4], we have:

Theorem 4.2. Let M € C"™" and AM be a perturbation such that M — AM has two eigenvalues A1, Ay (or a multiple
eigenvalue, A = Ay = Ay). Then we have

max{ay, (Mi), om(Mz), p(yx)} < [1AM]l2,
and in a more precise way

max{o,, (M), 0m(My), p(ys)} = %1 [|IAM]]>.
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4.2.1. Casel

Let M; = UZVH be the singular value decomposition of M; with the smallest singular value o,, and let
uy, and vy, be the corresponding right and left singular vectors of ¢,, respectively. It is known that

uNv,, #0.

If uti Nv,, = 0, according to the definition of N, we have

uliNv, = ufl(I,, + C(A — ML) YA = A2L,) ' B)oy,
= ullo,, + ullC(A - ML) YA — A21,) "' Boy,
= 0,

SO
w0, = —ullC(A = M1,) YA = A20,) "' Bo,,

since u,, and vy, are right and left singular vectors of M; corresponding to the o,, respectively, since m > 1,
consequently

Ly = —(uf) uliC(A = ML) ™ (A = A2L) ' Buy(om)"
and finally

Ly = =C(A = ML) (A = Aal)7'B,
therefore

N =0,
and this is impossible. Thus

uI,iN U # O.

Assume that

, =N

H
U N, 32
uND, " (2)

is the SVD of M,. We prove that oy, is the singular value of M.
From M;v,, = 0,,ut;,, we have

O Ar—AN
Mov, = Moo, + (u%vaL vtIN©,
_ A=A N
- [(D — Aol,) = C(A = Asl,) 1B] o + L2 AN = N;]m Ot Ny,

(D = MILy)oy + (A1 = A)Lyv, — C(A = AL,) "' Boy,

+ 1l

C(A = ML) By — C(A — AaL) ' Boy + (A — A)Noy,
= Moy + (M = A2)op + C((A = ML) ™ = (A = A2L,) ) Boy,
+ (A= A)N, (33)
= Mlvm + (/\1 - AZ)Um
+ CLA = ML) ™A = AaL) YA = Aol
(A = A2l,) ™A = ML) ™A = MI)1Boy + (A2 = ANy,
= Mo, + (/\1 - AZ)Um
+ Cl(A- ML) A = AL MA = Al — A + Miy)| Boy,
+ (Az - /\1)N0m.
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Since we can permute the product of two matrices (A — A,1,,)~! and (A — A11,)7}, so the relation (33) is equal
to o ty,. Similarly, we can also prove that

_—
MUy = 00,

and this shows that o, is the singular value of M. If 6, is the smallest singular value of M,, then 6, > 5.
Now we define the matrix D — D, as

0

D - Dy, = (up, ﬁm)( Oom ~ )(vm/ Z~)m)Hr (34)

where i, and 7, are the right and left singular vectors corresponding to 5.
A B .

Cc D, ).For proving ||[D — Dy|| = o,
we know that g, is one of the singular values of M, and u,, v, are the corresponding singular vectors.
Assume that i, and 7, are the corresponding singular vectors of ,, for M,, then we have ufla, = ollg,
(since U and V are unitary matrices, there are i,, and ¢,,). Therefore, from the definition of matrix D — D,,
we have

We prove that ||D — D4|| = 0, and A; and A, are eigenvalues of (

ID = Dyl = max(om, Gi) = O

Now we prove that A; and A, are eigenvalues of I'p, .
By the definition of the matrix D — D, in (34), we have

- . om 0O
(D = D)@, ) = (U, um)( 0 &, ) (35)

If we apply SVD for the matrix M;, we see that
Dv,, = ity + C(A — A1L,) " 'Bo,, + A0, (36)
and from (32)

(L -AN

TN VU NG, + C(A = Apl,) ' By, + AoDy. (37)
m m

Doy, = &l

Considering the relations (35), (36) and (37) we obtain the following equations:
Dy = C(A = ML) ' Boy, + Aoy, (38)

Ay — AN
DBy = AgBy + C(A = Aal,) ™ Boy, — (ZH—l)vmu,ﬁ{Nﬁm. (39)
U Nvy,
To prove that A; and A, are eigenvalues of I'p,, we need to find the vectors wy, w; € C™! such that:

(A B )( w, Wy ):( w1, Wy )( /\1 —gg;,?}:l)uﬂNﬁm

C D Um Om Um O 0 A

then from the above equation and relations (38) and (39), if we define two vectors w; and w;, as follows

w1 = (/\1171 - A)_lBZ)m,

“1px A=A (AL, —A) " (M, —A)™! ~
w; = (Aol = A)7' B, + S Ao, Wl NG,

so A1 and A, are eigenvalues of I'p, .
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4.2.2. Case 2

As the Case 1 we have the following results.

Let M, = ULV be the singular value decomposition of M, with the smallest singular value o,, and let
u,, and v,, be the corresponding right and left singular vectors of o,, respectively. Because

ufﬂ{Nvm #0,

assume that
= s AN

H
TN Ut N,
uliNv,

is the SVD of M. If 5,, is the smallest singular value of My, then g,, > &,,. Now we define the matrix D — D,
as

0

- o ~
D - D* = (uml um) ( Om G ) (vm/ vm)H/
m

where ii,, and 7, are the right and left singular vectors corresponding to the ,,. Then ||D — D,|| = 0, and

. A B
A1 and A, are eigenvalues of ( c D, )

4.3. The case y, = oo
The case y = oo is very similar to the case of y, = oo in [3], especially all of M must be replaced by M;
or My. By definition A = g, UV* and D, = D — A, for proving that A; and A, are eigenvalues of the matrix

( é [1)3 ), we will separate two cases: v, # 0 and v, = 0. By sections 4.1.2 and 4.1.3 of this paper and
*

section 5.3 in [3], it is very obvious that A; and A, are eigenvalues of matrix ( é [])3 ), and [|ID — D4 || = 0.
*
4.4, Thecasem =1

When m = 1, then from Theorem 4.2 we have

. 0o, if N#0,
X-D| = ;
Jnin - 1X = DIl {maX(IMﬂ,lel), if N=o0.
m(/\,‘,rx)Zl
i=1,2

So, when N # 0,
min [|X — D|| = oo,
XECle

m(A; Ix)=1
i=1,2

i.e. there is no matrix X such that A; and A, be eigenvalues of matrix I'x.
When N = 0, it suffices finding matrix Dy so that |D — D,| = max(IM], IMa)).
If IMy| > |My|, we assume that D, = A + C(A — A11,)7'B, so

A B \(~(A-AIn)"1B ~(A=MIDTIB— (A= Agln) YA - A1) 1B
C Dy 1 1

~(A-2AyIn)71B ~(A-AMI)T B - (A=Al HA- I TIB) (A A=A+l
1 1 0 Ay )

Since N = 0, the above relation is hold and the two vectors

(—(A - Alln)‘lB) (—(A ~ ML) B = (A = AaL,) N (A - Alln)‘lB)
1 ’ 1

are linearly independent. Therefore A; and A, are eigenvalues of (A B ) and |D — Dy| = max(IMy|, IMy]) =

C D,
IMal.
If IMy| > [ M|, the argument is similar.
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5. Numerical examples

In this section for the given four complex matrices A € C™", B, C and D € C"™" and for the given two
complex numbers A; and Ay, we find the nearest matrix D, to matrix D from the set of matrices X € C"™",
such that the matrix

A B
o.=(e )

has two prescribed eigenvalues A; and A,.

Example 5.1. Let

A B

1-‘D—(C' D)/

where

51 3 9 5 6 5 4
7 1 7 15 7 2 6

A=|5 0 6 1 8|, B=|5 0 3|,
9 4 7 6 4 37 7
2 4 9 0 3 1 2 3
6 0 2 4 7 7 7 6

C=|17 31 8 3], D=|3 9 4].
4 4 8 3 8 2 3 8

The set of eigenvalues of the matrix I'p is equal to
{35.636798,10.011182, —3.102620, —3.102620,

—0.101225, —0.101225, 3.664355, 2.095356} .

We find the nearest submatrix Dy to the matrix D such that the matrix T'p, have two eigenvalues 7 and 13.
The following results can be obtained for the problem. By subsection 4.1 we have

¥+ = 5.1888125, 04 = 5.022005.
So by (24) we have

—0.318987 —4.095686 1.307919
1.315925  0.813897 —3.511032

-1.210412 2.781868  2.815794
D - D* = s

ID — D,|| = 5.022007,

and the set of eigenvalues of the matrix ( Ié g ) is equal to
*

{35.7292282,13.0000000, —2.6318610 + 3.04709591i,

—2.6318610 — 3.04709591i, —2.1080252, 7.0000000,
2.7298252 + 0.5791467i,2.7298252 — 0.5791467i} .
The behavior of 62,-1(P(y, D — ALy, D — Azly,)) is shown in Figure 1.
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Figure 1:

Example 5.2. For the matrix T'p in the previous example we find the nearest submatrix D, to matrix D such that
the matrix I'p, have two eigenvalues 17 and 25.
The following results can be obtained for the problem: By subsection 4.2 we have

ve=0,  p(ys) = 1557954326,

Then by Casel of subsection 4.2.1 and (32) respectively we have

My =| 36.57155300 9.44580424 38.35263256

746107768 2593855446 31.92616887
35.77308604 25.88561251 16.39206578

My =] —22.62452901 -26.98246631 —17.21071049
—15.63095423 —4.70638090 —30.49094956

by (34) we compute

5 —27.54916572  —3.10094508 —10.77183205]

D—-D, =| 224397165 —12.17200253 5.484390350

5.51621342 7.88783877  —11.19195324

-9.61734431  7.57837149 5.59282542 ]

SO

ID — D4|| = 18.6543550,

and the set of eigenvalue of the matrix ( Ié g ) is equal to
*

{34.97824316,25.00000000, 17.00000000, —3.30416657 + 3.26137482i,

—3.30416657 — 3.26137482i, —1.95815033, 2.68333536, 6.88620506} .

The behavior of 02m-1(P(y, D — ALy, D — Azly,)) is shown in Figure 2.
In Figure 2 we can see that the value max(ozp-1(P(y, D — ALy, D — Azly,))) must be 15.57954326. It is shown
that ||D — Dyl = 0,n(Mz) > max(oam-1(P(y, D — MLy, D — Azly))), that is right by Theorem 4.2.

Remark 5.3. If Ay, A, are eigenvalues of matrix A, then in the similar method we can provide some the proofs, and
instead of (A — A D)L, (A — ALI) ™ we must replace (A — MDY, (A — ALI).
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