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aDepartment of Mathematics, Süleyman Demirel University,32260 Isparta, Turkey
bDepartment of Mathematics, Mehmet Akif Ersoy University, 15030 Burdur, Turkey

Abstract. This paper is concerned with the singular dissipative conformable fractional Sturm-Liouville
operators. A completeness theorem for these operators is proved.

1. Introduction

In a boundary value problem if the differential expression and the coefficients are finite at each point
in the defined range, the problem is regular; the problem is named as singular problem if the range
is unlimited and at least one of the coefficients increases at least at one point of the range. In regular
differential expressions, the boundary conditions are given directly by the values at that point, where as in
the singular state these boundary conditions can not be given easily ([1, 9, 13]). Therefore, it is difficult to
solve singular problems. Another difficulty that arises in the analysis of singular problems is in which space
element will be the solution of the problem. This was overcome by H. Weyl’s analysis. Weyl showed that
a solution of a differential equation is necessarily quadratic integrable. In case all solutions are quadratic
integrable, in case of limit-circle to differential expression; otherwise it is called a limit-point case. In
the literature, there are many sufficient conditions for a differential equation to be in the limit-circle or
limit-point case ([1, 7-13, 30-32]).

A method used in the analysis of boundary value problems is the operator method. An operator that
is compatible with the problem is established and the problem is analyzed. The established operator can
be self-adjoint or non-self-adjoint. Dissipative operators constitute an important class of non-self-adjoint
operators. All eigenvalues of a dissipative operator are in the closed upper half plane; but this analysis
is not sufficient. There are some methods to complete the analysis. Some of these methods are Krein’s
method, Lidskii’s method and Livsic’s method. There are analyzes in the literature with these methods
([15]-[29]).

There are more and more applications of spectral problems that do not merge spontaneously. For
example, interesting non-classical wavelets can be derived from eigenfunctions and related functions for
non-self-adjoint spectral problems. Therefore, such problems are becoming more and more noticeable, in
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particular with regard to the separation of the spectrum and the completeness of eigenfunctions. One of
the most important problems for Sturm–Liouville operators is the completeness of the root function system
of these operators. Furthermore, creating a basis for the system of root functions is another important issue
for these operators. It can be said that there are few studies on the second issue, because it relates to the
asymptotic behavior of the eigenvalues of the individual operators and it is difficult to observe this asymp-
totic behavior in general. Interest in fractional differential equations has been increasing in recent years,
and the recently introduced definition of the appropriate fractional derivative includes a limit rather than
an integral. Khalil and et al. have redefined the definition of conformable fractional derivative and con-
formable fractional integral using the classical derivative definition. In their work, Khalil and et. presented
linearity condition, product rule, division rule, fractional Rolle theorem and fractional mean value theorem
for conformable fractional derivative [3]. Later in [4], Abdeljawad gave the definition of left and right
conformable fractional derivatives, the definition of higher order fractional integral, fractional Grönwall
inequality, chain rule and partial integration formulas for conformable fractional derivatives, fractional
force series expansion and Laplace transformation. Conformable fractional derivative, aims to broaden
the definition of classical derivative carrying the natural features of the classical derivative. In addition,
with the help of the conformable differential equations obtained by the definition of derivative aims at a
new look for differential equation theory [5]. In [6], the researchers have addressed the conformable frac-
tional Sturm–Liouville problem and formulated the self-associated conformable fractional Sturm–Liouville
problem for this problem. Then the eigenfunction of the conformable fractional Sturm–Liouville problem
was examined by examining the Green function. In [14], Gulsen et al. studied the conformable fractional
Sturm–Liouville equation with separated boundary conditions on an arbitrary time scale T and extended
some main spectral qualities of the standard Sturm–Liouville equation to the conformable fractional case. In
[13], the authors studied the singular conformable sequential equation with distributional potentials. They
established Weyl’s theory in the frame of conformable derivatives. In the present paper, using Livsic’s the-
orem, we shall show that the system of eigenfunctions and associated functions of a conformable fractional
Sturm–Liouville problem with one singular endpoint are complete in L2

α(I).

2. Preliminaries

In this section, we provide some preliminaries for proving the main results. Let T denote the linear
non-selfadjoint operator in the Hilbert space with domain D (T) . The element x ∈ D (T) , x , 0 is called a
root vector of T corresponding to the eigenvalue λ if (T − λI)m x = 0 for some m ∈ N := {1, 2, ...}. The root
vectors for λ span a linear subspace of D(T), called the root lineal for λ. The algebraic multiplicity of λ is
the dimension of its root lineal. If a root vector is not an eigenvector, it is called an associated vector. The
completeness of the system of all eigenvectors and associated vectors of T is equivalent to the completeness
of the system of all root vectors of this operator. Let T be an arbitrary compact operator acting in the Hilbert
space H. Let

{
ξ j (T)

}
j∈N

be a sequence of all nonzero eigenvalues of T arranged by considering algebraic

multiplicity and with decreasing modulus, and ν (T) (≤ ∞) is a sum of algebraic multiplicities of all nonzero
eigenvalues of T. If T is a nuclear operator, then

∑ν(T)
j=1

∣∣∣ξ j (T)
∣∣∣ < +∞ and if T is a Hilbert–Schmidt operator,

then
∑ν(T)

j=1

∣∣∣ξ j (T)
∣∣∣2 < +∞. We will denote the class of all nuclear and Hilbert–Schmidt operators in H by σ1

and σ2, respectively. If T ∈ σ1, then
∑ν(T)

j=1 ξ j (T) is called the trace of T and is denoted by TrT.
The determinant

det (I − ξT) =
ν(T)∏
j=1

[
1 − ξξ j (T)

]
where T ∈ σ1

where T ∈ σ1 is called the characteristic determinant of T and is denoted by DT (ξ) . DT (ξ) is an entire
function of ξ.
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For any T ∈ σ2, the product

D̃T (ξ) =
ν(T)∏
j=1

[
1 − ξξ j (T)

]
eξξ j(T) (1)

is also an entire function of ξ, called the regularized characteristic determinant of T.
If the operator I − ξT has a bounded inverse defined on the whole space H, then the complex number ξ

is called an F -regular point (regular in the sense of Fredholm) for T.
Let T1 and T2 be linear bounded operators in H and T1 − T2 ∈ σ1. If the point ξ is an F-regular point of

T2, then

(I − ξT1) (I − ξT2)−1 = I − ξ (T1 − B) (I − ξT2)−1 ,

where ξ (T1 − T2) (I − ξT2)−1
∈ σ1. Consequently, the determinant

D T1
T2

(ξ) = det
[
(I − ξT1) (I − ξT2)−1

]
makes sense and is called the determinant of perturbation of the operator T2 by the operator K = T1 − T2.

Theorem 2.1 ([2], p.172). If T1, T2 ∈ σ2, T1 − T2 ∈ σ1 and µ is an F-regular point of T2, then

D T1
T2

(ξ) =
D̃T1 (ξ)

D̃T2 (ξ)
eξTr(T2−T1).

Definition 2.2. An operator T is called dissipative if Im (Tx, x) ≥ 0, for all x ∈ D (T) .

Theorem 2.3 ([2], p.177). If T1 and T2 are bounded dissipative operators and T1 − T2 ∈ σ1, then for any β0 ∈(
0, π2

)
, the relation

lim
ρ→∞

1
ρ

ln
∣∣∣∣∣D T1

T2

(
ρeiβ

)∣∣∣∣∣ = 0

holds uniformly with respect to β in the sector{
λ : λ = ρeiβ, 0 < ρ < ∞,

∣∣∣∣π2 − β∣∣∣∣ < β0

}
.

.

Definition 2.4 (([2])). Let x be an entire function. If for each ε > 0 there exists a finite constant Cε > 0, such that

|x (λ) | ≤ Cεeε|λ|, λ ∈ C, (2)

then f is called an entire function of order ≤ 1 of growth and minimal type.

From (2), it is clear that

lim
|λ|→∞

sup
ln |x (λ) |
|λ|

≤ 0. (3)

It is known that each function x, having properties (2) and x(0) = −1, has the representation

x (λ) = − lim
r→∞

∏
|λ j|≤r

(
λ j − λ

λ j

)
, (4)

and also the limit limr→∞

∏
|λ j|≤r

1
λ j

exists and is finite ([7]).
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Theorem 2.5 (Livšic [2], p. 226). Let T be compact dissipative operator on H and let TIm ∈ σ1,where 2iTIm = T−T∗.
The system of all root vectors of T is complete in H, if and only if

ν(T)∑
j=1

Im ξ j (T) = spTIm.

Definition 2.6 ([4]). Assume α be a positive number with 0 < α < 1. A function x : (0,∞) −→ R : =(−∞,∞) the
conformable fractional derivative of order α of x at t > 0 was defined by

Tαx(t) = lim
ε→0

x
(
t + εt1−α

)
− x (t)

ε
, (5)

and the fractional derivative at 0 is defined

(Tαx) (0) = lim
ε→0+

Tαx(ε).

Definition 2.7 ([4]). The conformable fractional integral starting from 0 of a function x of order 0 < α ≤ 1 is defined
by

(Iαx) (t) =

t∫
0

sα−1x(s)ds =

t∫
0

x(s)dαs.

Lemma 2.8 ([4]). Assume that x is a continuous function on (0, b) and 0 < α < 1. Then, we have

TαIαx (t) = x (t) ,

for all t > 0.

Theorem 2.9 ([4]). Let x, y : [0, b]→ R be two functions such that x and y are conformable fractional differentiable.
Then, we have∫ b

0
y (t) Tα (x) (t) dαt +

∫ b

0
x(t)Tα

(
y
)

(t) dαt = x (b) y (b) − x (0) y (0) .

Let L2
α(I) be the space of all complex-valued functions defined on I = [0, b) such that

∥∥∥y
∥∥∥ :=

√∫ b

0

∣∣∣y (t)
∣∣∣2 dαt < ∞,

where 0 < b ≤ ∞. The space L2
α(I) is a Hilbert space with the inner product

⟨x, y⟩ :=
∫ b

0
x (t) y(t)dαt,

where x, y ∈ L2
α(I).

Theorem 2.10 ([4]). Let x be a continuous, nonnegative function on an interval I and δ and k be nonnegative
constants such that

x (t) ≤ δ + k
∫ t

0
x (s) dαs, where t ∈ I.

Then for all t ∈ I, we have

x (t) ≤ δek tα
α . (6)
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3. Main Results

We consider the following conformable fractional Sturm–Liouville problem

l[y] = −Tα(p(t)Tα)y(t) + q(t)y(t) = λy, on I, (7)

where I = [0, b).The coefficients p(.) and q(.) are real-valued functions on I and satisfy the conditions 1
p(.) , q (.) ∈

L1
α,loc(I). Throughout this paper, we assume that the endpoint b is singular.

The maximal operator corresponding to (7)is defined as follows:

Lmaxy := l[y],

with

Dmax :=
{
y ∈ L2

α(I) : y,Tαy ∈ ACloc (I) , l[y] ∈ L2
α(I)

}
,

where ACloc (I) denotes the class of complex-valued functions which are absolutely continuous on all
compact sub-intervals of I.

Let

Dmin :=
{
y ∈ Dmax : y (0) = p (0) Tαy (0) = 0, [y, χ](b) = 0

}
.

for arbitrary χ ∈ Dmax, where

[y, χ](t) = p(t)
{
y(t)Tαχ(t) − Tαy(t)χ(t)

}
, t ∈ I.

The operator Lmin, that is the restriction of the operator Lmax to Dmin is called the minimal operator and the
equalities Lmax = L∗min holds. Further, Lmin is closed symmetric operator with deficiency indices (d, d), where
d = 1 or d = 2 ([1, 12, 13, 30]).

Theorem 3.1 ([6]). For y1, y2 ∈ Dmax, we have the following Green’s formula∫ b

0
l[y1](t)y2(t)dαt −

∫ b

0
y1(t)l[y2](t)dαt =

[
y1, y2

]
(b) −

[
y1, y2

]
(0) . (8)

In this study, we will assume that the Weyl’s limit-circle case holds for the expressions l[.], i.e., Lmin has
the deficiency indices (2, 2) . In this context, we first give a sufficient condition for the expression l[.] to be
limit-circle case. We employed Everitt’s method in the following theorem (see [11]).

Theorem 3.2. Let the coefficients p and q satisfy the following conditions:

(i) q ∈ C (I) ,Tαp, Tαq ∈ ACloc (I) and T2
αp,T2

αq ∈ L2
α,loc (I) ,

(ii) q(t) < 0 and p (t) > 0 f or all t ∈ I,
(iii) (−pq)−

1
2 ∈ L2

α(I),
(iv) Tα{pTα(pq)(−pq)−

1
2 } ∈ L2

α(I),

(9)

then l[.] is in the limit-circle case at b.

Proof. This proof is based on the ideas in ([10, 11]). It follows from Green’s formula that limt→b− [y, z](t)
exists and is finite for all y, z ∈ Dmax. Furthermore, it is known that l[.] is limit-point at b if and only if
limt→b− [y, z](t) = 0 for all y, z ∈ Dmax ( see ([10]) ). Thus to establish that l[.] is limit-circle at b it is sufficient
to produce one pair y, z of elements of Dmax such that

lim
t→b−

[y, z](t) , 0. (10)
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We take y = z and determine y by

y(t) = {−p(t)q(t)}−
1
2 exp

i
t∫

0

{
−

q(s)
p(s)

} 1
2

dαs

 , (11)

where t ∈ I. A calculation shows that

Tαy =

 i(−q)
1
2

p
1
2

+
1
4

Tα(pq)

(−pq)
1
2

 exp[...]

and

T2
αy =


−

(−q)
1
2

p
1
2
+ i

4
Tα(pq)

p
1
2 (−q)

1
2
−

i
4

Tαp

(−pq)
1
2
−

3i
4

(−q)
1
2 Tαp

p
1
2

+ 1
4

T2
α(qp)

(−pq)
1
2
+ 5

16
{Tα(pq)}2

(−pq)
1
2

 exp[...].

From these results we obtain

[y, y](t) = −2i, (12)

where t ∈ I and, with details of the calculation omitted,

l[y] = −pT2
αy − Tαpy + qy = −

1
4

Tα{pTα(pq)(−pq)−
1
2 } exp[...]. (13)

From (11) and conditions (ii) and (iii) of the Theorem we see that y ∈ L2
α(I); from (11) and condition (i) we

have Tα f ∈ ACα,loc(I); from (13) and condition (iv) that l[y] ∈ L2
α(I); thus y ∈ Dmax. From (10) and (12) it now

follows that the differential expression l[.] is in the limit-circle case at b.

Let ϕ (t, λ) and ψ (t, λ) two linearly independent solutions in L2
α(I) of the equation. (7) and satisfy the

initial conditions

ϕ (0, λ) = cos β, p(0)Tαϕ (0, λ) = sin β,
ψ (0, λ) = − sin β, p(0)Tαψ (0, λ) = cos β, (14)

where β ∈ R. They are entire functions of λ ([6]). Further, they are real functions for real values of λ. Since
the operator Lmin has the deficiency indices (2, 2), the solutions ϕ (t, λ) and ψ (t, λ) belong to L2

α(I).
Let r(t) = ϕ (t, 0) and v(t) = ψ(t, 0). So r(t) and v(t) are solutions of the equation l[y] = 0, satisfying the

initial conditions

r (0) = cos β, p(0)Tαr (0) = sin β,
v (0) = − sin β, p(0)Tαv (0) = cos β.

Then, we have r, v ∈ L2
α(I); moreover r, v ∈ Dmax. Consequently for each v ∈ Dmax the values

[
y, r

]
(b) and[

y, v
]

(b) exist and are finite. Let D(L) denote the set of all functions y ∈ Dmax satisfying the boundary
conditions

y (0) cos β + p(0)Tαy(0) sin β = 0,
[
y, r

]
(b) − h

[
y, v

]
(b) = 0, (15)

where h ∈ C and Im h > 0. In L2
α(I) we define the operator L with the domain D(L) and Ly = l[y] for all

y ∈ D(L).

Lemma 3.3. ker L = {0}.
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Proof. Let y ∈ D(L) and Ly = 0. Then, we get

−Tα(p(t)Tα)y(t) + q(t)y(t) = 0 (16)

and the function y satisfies the boundary condition (15). Therefore, there exists the constants a1 and a2 , such
that y(t) = a1r(t)+a2v(t). Substituting this in the boundary conditions (15), we find a1 = a2 = 0; consequently
y = 0.

From Lemma 3.3., we get that there exists the inverse operator L−1. Let us consider the functions v(t)
and u(t) = r(t) − hv(t). These functions belong to L2

α(I). The first satisfies the boundary condition at 0 in (15)
and the second at b. The functions v(t) and u(t) form a fundamental system of solutions of (16).

Let Y denote the integral operator defined by the formula

Y f =
∫
∞

0
G(t, x) f (x)dαx, (17)

where f ∈ L2
α(I) and

G(t, x) =
{

v(t)u(x), 0 ≤ t ≤ x
v(x)u(t), x ≤ t < b. (18)

Since∫ b

0

∫ b

0
|G(t, x)|2 dαtdαx < ∞

we get that Y ∈ σ2 ([6]). It is easy to verify that Y = L−1([6]). Consequently, the root lineals of the operators
L and Y coincide and, therefore, the completeness in L2

α(I). of the system of all eigenvectors and associated
vectors of L is equivalent to the completeness of those for Y. Since the algebraic multiplicity of nonzero
eigenvalues of a compact operator is finite, each eigenvector of L may have only a finite number of linear
independent associated vectors.

Theorem 3.4. Every nontrivial solution y of (7) in [0, c], c < b, and its conformable fractional derivative Tαy are
entire functions of λ of order at most 1

2 .

Proof. Let v = pTαy then Tαy = (q−λ)y. Fix λ and let prime Tα,t denote conformable fractional differentiation
with respect to t. Then

Tα,t[|λ||y|2 + |v|2] = Tα,t[|λ|yy + vv]

= |λ|(
1
p

yv +
1
p

vy) + v(q − λ)y + v(q − λ)y.

From this and the elementary inequality

2|ab| ≤
|λ||a|2 + |b|2
√
|λ|

, |λ| , 0,

we get

Tα,t[|λ||y|2 + |v|2] ≤
|λ||y|2 + |v|2
√
|λ|

(
|λ|

1
|p|
+ |q| + |λ|

)
and hence

Tα,t
[
log(|λ||y|2 + |v|2

]
≤

√
|λ|

1
|p|
+

1
√
|λ|
|q| +

√
|λ|.
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An integration yields

|λ||y(t, λ)|2 + |v(t, λ)|2 ≤ Ce
1
√
|λ|

t∫
0
|q|dαs

e
√
|λ|

t∫
0

( 1
|p|+1)dαs

≤ BeM
√
|λ|,

where M and B are positive constants such that

0 < M =

t∫
0

1
|p|
+ |w|)dαs < ∞

and

e
( 1
√
|λ|

t∫
0
|q|)dαs

< B < ∞.

Then, we have∣∣∣y(t, λ)
∣∣∣ ≤ BeM

√
|λ|, 0 ≤ t ≤ c, |λ| ≥ δ > 0,

|(pTαy)(t, λ)| ≤ BeM
√
|λ|, 0 ≤ t ≤ c, |λ| ≥ δ > 0.

This completes the proof.

Let

c1(λ) = [ψ(t, λ), r(t)] (b) , c2(λ) = [ψ(t, λ), v(t)] (b) ,

where ψ(t, λ) the solution of (7). It is clear that

σd(L) = {λ ∈ C : c(λ) = 0} ,

where σd(L) denotes the set of all eigenvalues of L and

c(λ) = c1(λ) − hc2(λ). (19)

Theorem 3.5. The functions c1(λ) and c2(λ) are entire functions of order ≤ 1 of growth and minimal type.

Proof. We set

cbk ,1(λ) = [ψ(t, λ), r(t)] (bk) , cbk ,2(λ) = [ψ(t, λ), v(t)] (bk) ,

where bk ∈ I.
It follows from Theorem 3.4. that the functions ψ(bk, λ) and Tαψ(bk, λ) are entire functions of of order 1

2
for arbitrary fixed bk. Hence, the functions a cbk ,1(λ) and cbk ,2(λ) are entire functions of of order 1

2 . Now we
shall prove that the entire function cbk,, j(λ) converges to c j(λ) as bk → b , uniformly in λ in each compact set
of the complex plane C.

Let y = y(t, λ) be a solution of (7); then

y =
[
y, v

]
(t) r −

[
y, r

]
(t) v. (20)

If we define

f1(t, λ) =
[
y, r

]
(t) , f2(t, λ) =

[
y, v

]
(t) ,
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then following ([9]), we get that f1(t, λ) and f2(t, λ) satisfy a system of first order conformable fractional
equations

Tα,t f1(t, λ) = λy(t, λ)r(t), Tα,t f2(t, λ) = λy(t, λ)v(t), t ∈ I.

Using (20), we obtain

Tα,t f (t, λ) = λΩ(t) f (t, λ), t ∈ I. (21)

Tα,t f (t, λ) = Tα,t

[
f1(t, λ)
f2(t, λ)

]
=

[
λy(t, λ)r(t)
λy(t, λ)v(t)

]

= λ

[
[y, v]r2

− [y, r]vr
[y, v]vr − [y, r]v2

]
= λ

[
f2r2
− f1vr

f2vr − f1v2

]

= λ

[
−vr r2

−v2 rv

][
f1
f2

]
where

f (t, λ) =
[

f1(t, λ)
f2(t, λ)

]
, Ω(t) =

[
−r(t)v(t) r2(t)
−v2(t) r(t)v(t)

]
,

and the elements Ω(t) are in L1
α(I). For

w =
[
w1

w2

]
,

we put ∥w∥ = |w1| + |w2| and the norm of a square 2 × 2 matrix will be denoted by ∥.∥ . The inclusion
∥Ω(.)∥ ∈ L1

α(I) holds.
If y(t, λ) = ψ(t, λ), then the system (21) is equivalent to the integral equation

f (t, λ) = f (bk, λ) + λ
∫ t

bk

Ω(s) f (s, λ)dαs, t ∈ I, (22)

where

f (bk, λ) =
[

f1(bk, λ)
f2(bk, λ)

]
=

[[
y, r

]
(bk)[

y, v
]

(bk)

]
=

[
cbk ,1(λ)
cbk ,2(λ)

]
,

f (0, λ) =
[

f1(0, λ)
f2(0, λ)

]
=

[[
y, r

]
(0)[

y, v
]

(0)

]
=

[
−1
0

]
,

f (b, λ) =
(
c1(λ)
c2(λ)

)
.

From (22) and (6), we find to∥∥∥ f (t, λ)
∥∥∥ ≤ ∥∥∥ f (bk, λ)

∥∥∥ exp
(
|λ|

∫ t

bk

∥Ω(s)∥ dαs
)

;

hence∥∥∥ f (b, λ) − f (bk, λ)
∥∥∥ ≤ |λ| exp

{
|λ|

∫ b

0
∥Ω(s)∥ ds

}∫ b

bk

∥Ω(s)∥ dαs (23)

∥∥∥ f (b, λ)
∥∥∥ ≤ exp

(
|λ|

∫ b

bk

∥Ω(s)∥ dαs
) ∥∥∥ f (bk, λ)

∥∥∥ . (24)
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It follows from (23) that cbk, j(λ) converges to c j(λ) as bk → b (k → ∞), uniformly in λ in a compact set.
Consequently c, j(λ), j = 1, 2, are entire functions.

For bk = 0, from (24) we get

∥∥∥ f (b, λ)
∥∥∥ ≤ exp

|λ|
b∫

0

∥Ω(x)∥ dαx

 ;

hence c, j(λ) are of not higher than the first order. Since, for arbitrary fixed b, the functions cb, j(λ), j = 1, 2, are
entire functions of λ of order 1

2 , from (24) we obtain that the entire functions c, j(λ), j = 1, 2, are of minimal
type.

Using Green’s formula (8), we have

c1(λ) =
[
ψ(t, λ), r(t)

]
(b) = −1 + λ

∫ b

0
ψ(t, λ)r(t)dαt (25)

c2(λ) =
[
ψ(t, λ), v(t)

]
(b) = λ

∫ b

0
ψ(t, λ)v(t)dαt. (26)

From (19), (25) and (26) we find that c(0) = −1.
We will use the well-known formula[

y1, y2
]

(t) =
[
y1, v

]
(t)

[
r, y2

]
(t) −

[
y1, r

]
(t)

[
v, y2

]
(t) , t ∈ I, (27)

where y1, y2 ∈ Dmax.

Theorem 3.6. The operator L is dissipative.

Proof. If y ∈ D(L), then by the formula (8) we get

⟨Ly, y⟩ − ⟨y,Ly⟩ = [y, y] (b) − [y, y] (0) . (28)

From the boundary condition (15) we have [y, r] (b) = h[y, v] (b) and [y, y] (0) = 0. From (27) we obtain

[y, y] (b) = [y, v] (b) [r, y] (b) − [y, r] (b) [v, y] (b)

= −h|[y, v] (b) |2 + h|[y, v] (b) |2 = 2i(Im h)|[y, v] (b) |2

and this proves

Im⟨Ly, y⟩ = (Im h)|[y, v] (b) |2 ≥ 0.

Since u(t) = r(t) − hv(t), setting h = h1 + ih2 we get from (17) in view of (18) that Y = Y1 + iY2, where

Y1 f =
∫ b

0
G1(t, x) f (t)dαt, Y2 f =

∫ b

0
G2(t, x) f (t)dαt

and

G1(t, x) =
{

v(t)[r(x) − hv(x)], 0 ≤ t ≤ x
v(x)[r(t) − hv(t)], x ≤ t ≤ b,

G2(t, x) = −h2v(t)v(x), h2 = Im h > 0.
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Then we get

⟨Y2 f , f ⟩ = ⟨
∫ b

0
G2(t, x) f (t)dαt, f ⟩

=

∫ b

0

{(∫ b

0
G2(t, x) f (t)dαt

)
f (x)

}
dαx

= −h2

∫ b

0

{(∫ b

0
v(t)v(x) f (t)

)
f (x)

}
dαt

= −h2

∫ b

0
v(x) f (x)dαx

∫ b

0
v(t) f (t)dαt

= −h2

∣∣∣∣∣∣
∫ b

0
v(t) f (t)dαt

∣∣∣∣∣∣
2

≤ 0

The operator Y1 is the self-adjoint Hilbert –Schmidt operator in L2
α(I) and Y2 is the self-adjoint one-

dimensional operator in L2
α(I), and (Y2 f , f ) ≤ 0 for all f ∈ L2

α(I).
Let L1denote the operator generated in L2

α(I) by the expression l[y] and the boundary conditions

y (0) cos β + p(0)Tαy(0) sin β = 0,[
y, r

]
(b) − h1

[
y, v

]
(b) = 0.

It is easy to verity that Y1 is the inverse of L1 : Y1 = L−1
1 . Let Z = −Y and Z = Z1 + iZ2, where

Z1 = −Y1, Z2 = −Y2.
We will denote by λ j and δk the eigenvalues of the operators L and L1, respectively. Then the eigenvalues

of Z are
(
−1
λ j

)
and eigenvalues at Z1 are

(
−1
δk

)
. Since L1 is a self-adjoint operator, therefore Im δk = 0 for all k.

Theorem 3.7. spZ2 =
∑

j
Im

(
−

1
λ j

)
.

Proof. Using Theorem 2.1 for A = T1 and B = T we obtain

D Z1
Z

(ξ) =
D̃Z1 (ξ)
D̃Z(ξ)

eiξ TrZ1, (29)

and by (1) we get

D̃Z(ξ) =
∏

j

(
λ j+ξ
λ j

)
e
ξ
λ j

, D̃Z1 (ξ) =
∏

k

(
δk+ξ
δk

)
e
ξ
δk

.

We set

c(ξ) = c1(ξ) − hc2(ξ), d(ξ) = c1(ξ) − h1c2(ξ),
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where the functions c1(ξ) and c2(ξ) are given by (25) and (26). The eigenvalues of Y and Y1 coincide with
the root of the functions c(ξ) and d(ξ), respectively. By Theorem 3.5, the functions c(ξ) and d(ξ) are entire
functions of order ≤ 1 of growth and minimal type and c(0) = d(0) = −1; thus, by (4), we have

c(ξ) = −
∏

j

(
λ j + ξ

λ j

)
, d(ξ) = −

∏
k

(
δk − ξ
δk

)
.

Then we get

D̃Z(ξ) = −c(−ξ)e
−ξ

∑
j
( 1
λ j

)
, D̃Z1 (ξ) = −d(−ξ)e

−ξ
∑
k

( 1
δk

)

.

It follows from (29) that

D Z1
Z

(ξ) =
d(−ξ)
a(−ξ)

e
(
ξ
∑

j
1
λ j
−ξ

∑
k

1
δk
+iξTrZ2

)
.

If we take ξ = it (where 0 < t < ∞), then we get

D Z1
Z

(ξ)(it) =
d(−it)
a(−it)

exp

ξ∑
j

1
λ j
− ξ

∑
k

1
δk
+ iξTrZ2


and

1
t

log
∣∣∣∣D Z1

Z
(ξ)(it)

∣∣∣∣
=

1
t

log |d(−it)| −
1
t

log |c(−it)| −
∑

j

Im
1
λ j
− spZ2. (30)

From Theorem 2.3 and (3) we get

lim
t→∞

1
t

log
∣∣∣∣D Z1

Z
(it)

∣∣∣∣ = 0, (31)

and

lim
t→∞

sup
1
t

log |c(−it)| ≤ 0, lim
t→∞

sup
1
t

log |d(−it)| ≤ 0. (32)

On the other hand, for t > 0,∣∣∣∣∣∣λ j + it
λ j

∣∣∣∣∣∣2 ≥ 1,
∣∣∣∣∣δk + it
δk

∣∣∣∣∣2 ≥ 1,

and we have |d(−it)| ≥ 1, |c(−it)| ≥ 1 for all t > 0. Consequently, we have

1
t

log |c(−it)| ≥ 0,
1
t

log |d(−it)| ≥ 0.

It follows from (32) that

lim
t→∞

1
t

log |a(−it)| = lim
t→∞

1
t

log |d(−it)| = 0. (32)

By (30), (31) and (32), we deduce that∑
j

Im
(
−

1
λ j

)
= spZ2.
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Thus the operator Z carries out all the conditions of Theorem 2.5. Hence we have

Theorem 3.8. The system of all root vectors of the dissipative operator Z (also of Y) is complete in L2
α(I).

Since the completeness in L2
α(I) of the system of all root vectors of the dissipative operator Z is equivalent

to the completeness of L, we have

Theorem 3.9. The system of all eigenvectors and associated vectors (or root vectors) of the dissipative operator L is
complete in L2

α(I).
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