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Nonlinear Mixed Jordan triple *-Derivations on Factor von Neumann
Algebras

Changjing Li*, Dongfang Zhang®

?School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, P. R. China

Abstract. Let A be a factor von Neumann algebra with dimA > 2. In this paper, it is proved that a map
® : A — Ais a nonlinear mixed Jordan triple *-derivation if and only if @ is an additive *-derivation.

1. Introduction

Let A be a #-algebra over the complex field C. For A,B € A, we call the product A e B = AB + BA”
the Jordan *-product and [A, B]. = AB — BA" the skew Lie product. These two new products are very
important and meaningful in some research topics, which have attracted many scholars to study (see [1-
3,5,7-12, 16, 21-24]). Let ® be a map (without the additivity assumption) on A. Recall that @ is said to be
a derivation if ®(AB) = ®(A)B + AD(B) for all A, B € A. More generally, we say that @ is a nonlinear Jordan
x-derivation or skew Lie derivation if ®(A e B) = ®(A) e B + A @ O(B) or O([A4, B].) = [P(A), B]. + [A, D(B)].
for all A, B € A. Many authors have paid more attentions on the problem about Jordan *-derivations, skew
Lie derivations and triple derivations, such as Jordan triple *-derivations and skew Lie triple derivations
(see [6, 14, 15, 18-20, 25, 28, 29, 31, 32]).

Recently, many authors have studied the isomorphisms and derivations corresponding to the new
products of the mixture of (skew) Lie product and Jordan *-product (see [17, 26, 27, 30, 33, 34]). Z. Yang
and J. Zhang [26, 27] studied the nonlinear maps preserving the mixed skew Lie triple product [[A, B]., C]
and [[A, B], C]. on factor von Neumann algebras, where [A, B] = AB — BA is the usual Lie product of A and
B. Y. Zhou, Z. Yang and ]. Zhang [34] studied the structure of the nonlinear mixed Lie triple derivations on
prime *-algebras. They proved any map @ from a unital *-algebra A containing a non-trivial projection to
itself satisfying

O([[A, B]., C]) = [[®(A), B]., C] + [[A, D(B)]., C] + [[A, Bl., P(C)]

for all A,B,C € A, is an additive *-derivation. C. Li, Y. Zhao and F. Zhao [17] studied the nonlinear maps
preserving the mixed product [A e B, C]. on von Neumann algebras. F. Zhang [30] studied the nonlinear
maps preserving the mixed product [A, B]. ® C on factor von Neumann algebras. Motivated by the above
mentioned works, in this paper, we will consider the derivations corresponding to the new product of the
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mixture of the skew Lie product and the Jordan *-product. A map ® : A — A is said to be a nonlinear
mixed Jordan triple *-derivation if

O([A,B]. o C) = [D(A),B]. e C+ [A,D(B)]. o C + [A, B]. « O(C)

forall A, B, C € A. We prove that @ is a nonlinear mixed Jordan triple *-derivation on factor von Neumann
algebras if and only if @ is an additive *-derivation.

Recall that A is a von Neumann algebra if it is a weakly closed and self-adjoint algebra of operators on
a Hilbert space H containing the identity operator I. A von Neumann algebra A is a factor von Neumann
algebra if its center only contains the scalar operators. We know that the factor von Neumann algebra A is
prime, that is, AAB = 0 for A, B € A implies either A = 0 or B = 0.

2. The main result and its proof
To complete the proof of the main theorem, we need some lemmas.

Lemma 2.1. [15] Let ‘A be a factor von Neumann algebra and A € A. If AB = BA* forall B € A, then A € R],
where R is the real field.

Lemma 2.2. [13] Let A be a factor von Neumann algebra and A € A. If AB+BA* =0 forall B € A, then A € iR,
where i is the imaginary number unit.

Lemma 2.3. ([4, Problem 230]) Let A be a Banach algebra with the identity I. If A,B € Aand A € C are such that
[A,B] = AL, where [A,B] = AB — BA, then A = 0.

Our main result in this paper reads as follows.

Theorem 2.4. Let A be a factor von Neumann algebra with dimA > 2. Then a map ® : A — A satisfies
D([A,B].  C) = [D(A),B]. # C + [A, D(B)].  C + [A,Bl.  D(C) for all A, B,C € A if and only if ® is an additive
+~derivation.
Proof. Let P be a nontrivial projection in A. Let P; = P and P, = I — P. Denote Ay = P;jAPy, j,k = 1,2. Then
A= Z?’k:l Ajr. Clearly, we only need to prove the necessity. We will prove the theorem by several claims.
Claim 1. ®(0) = 0.

Indeed, we have

D(0) = O([0, 0]. ® 0) = [D(0),0]. ® 0 + [0, D(0)]. @ 0 + [0, 0]. @ D(0) = 0.

Claim 2. @ is additive.
We will prove Claim 2 by several steps.
Step 2.1. For every A1y € A1, Bio € Arn, Co1 € Ap1, Doy € Axp, we have
D(A11 + Bia + Co1 + Do) = ®(Aq1) + P(Brz) + P(Cyp) + D(Da2).
We only need show that
T = ®(A11 + Bz + Co1 + Dap) — D(A11) — P(By2) — P(Cp1) — P(Dy2) = 0.
It follows from Claim 1 that

[P(P1), A11 + B2 + C1 + Da]. Py + [Py, P(A11 + Biz + Co1 + Do)l © P2

+[P1,A11 + Bia + Co1 + D2 @ O(Py)

= O([P1,A11 + Bia + Co1 + Dy2]. @ Ps)

= O([Py, B12]« ® P)

= @O([P1, A11]« ® P2) + O([Py, B12]« @ P2) + O([P1, C1]. @ P2) + O([P1, Dx2]. @ Pa)

= [®(P1), A11 + Bia + Co1 + Dap]« @ Py + [Py, ©(A11) + D(B12) + ©(Co1) + ©(D22)]. © P2
+ [P1,A11 + B12 + Co1 + Dp2]. @ O(Py).
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From this, we get [Py, T]. ® P, = 0. So Ty, = 0. Similarly, we can prove T

. =0.
For every Xi, € Ajp, we have

[D(X12), A11 + Bz + Co1 + D]« @ Py + [X12, P(A11 + Bia + Co1 + D). @ P
+ [X12, A11 + B1z + Co1 + D], @ D(P5)

= O([X12,A11 + Big + Cy1 + Dyl @ Py)
= O([X12, D2y]. @ P7)

= O([X12, A11]. @ P3) + O([X12, B12]« @ P2) + O([X12, Co1]+ @ P2) + O([X12, Da2]. @ Py)
= [®(X12), A11 + Bia + Cy1 + Dyo]. @ Py + [ X2, D(A11) + D(B12) + D(Co1) + (D)l @ Py
+ [Xi12,A11 + Big + Co1 + Doy @ D(Py).

Then [X12/ T] e P, =0, thatis X1,TP;, + PzT’i X

= 0. So X12TP, = 0 for every X1, € Ap. By the primeness
of A, we have T = 0. Similarly, we can prove T11 = 0, proving the step.
Step 2.2. For every Aj, Bjx € A, 1 < j # k <2, we have

(I)(Ajk + B]'k) = (D(A]'k) + CD(B]'k).
Since

i . .
[—51, i(Pj + Aj)l. @ (P + Bjx) = (A + Bji) + A% + B Ay,
we get from Step 2.1 that

D(Aj + Bj) + D(A) + D(BjAY)

- @([_11, iP;+ Al » (P + By)

= [®(- 1),1(P +Ajo)l. o (Pi+ Bj) +[-5 I O(i(Pj + Aji)))« ® (P + Bj)

+ [——I, i(Pj + Aj)]. @ O(Py + Bjx)

[ (—-1) i(Pj+ Al ® (Pe+ Bj) + [~ i D(iP;) + B(iAj)].  (Px + Bjy)

+ [——L i(P' + Aj)l. o (P(Px) + P(Bji))

= (- IzP]oPk)+q)([ IzP]oB]k)+<D([

= (D(Bjk) + O(Aj + Ajk) + CD(B]kA].k)
= O(Bj) + O(Ap) + CD(A;k) + CD(B]-kA;k)
Hence q)(A]'k + Bjk) = (D(A]'k) + CD(B]'k).
Step 2.3. For every Aj;, Bjj € Aj;,1 < j <2, we have

I zA]k] o D)+ O([— I lA]k] ° B]k)

CD(Ajj + B]‘]‘) = (D(A]‘]‘) + CD(B]‘]‘).
LetT = (I)(A]] + B]]) - CD(AU) — (D(B]]) For1l < ] # k < 2, it follows that

[q)(P]‘),A]']' + Bjj]* o P+ [P]',q)(A]‘]‘ + B]‘]‘)L o P+ [P]' Aji + B]']] . CD(Pk)
= (D([P],A]] + B]]]* o Pk)

= (D([P],AU]* [ Pk) + (D([P], B]]],e ) Pk)
[@(Pj),Aj]‘ + Bj]']* o P+ [Pj, (D(A]‘]‘) + q)(B]']')]* o P+ [P]',Ajj + B]']'] o O(Py)
From this, we get [P;, T]. ® Py = 0. So Tj = 0. Similarly, we can prove Ty; = 0
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For every Xjx € Aj, j # k, on the one hand, we have

[(D(X/‘k),Ajj + Bjj]* o P+ [Xjk/q)(Ajj + B]']')]* o P+ [Xjk,A]-]- + Bjj]* L4 (D(Pk)

= q)([X]'k,A]‘j + B]‘j]y, o Pk)

= O([X, Ajil @ Py) + (X, Bjj]. ® Py

= [®(Xx), Ajj + Bjj]. ® Py + [Xji, D(Ajj) + ©(Bjj)]. ® P + [Xjx, Ajj + Bjjl.  D(Py),

which implies that [Xj, T]. @ Py = 0. So X Ty = 0 for all X € Aj. By the primeness of A, we have Ty = 0.
On the other hand, it follows from Steps 2.1 and 2.2 that

[DP(Ajj + Bjj), Xjk]. ® Pr + [Aj; + Bjj, D(Xji)]. ® Py + [Aj; + Bjj, Xjx]. @ ©(Py)

= O([Aj; + Bjj, Xjx]. ® Py)

= (D(Aij]'k) + q)(Bijjk) + q)(X;kA;-]-) + @(X;kB;]-)

= O([Ajj, Xjx]. ® Pr) + ©([Bjj, Xjx]. ® Py)

= [D(Aj)) + P(Bjj), Xjil« ® Px + [Aj; + Bjj, D(Xji)]. P + [Ajj + Bjj, Xjx]. ® O(Py).
Hence [Tj;, Xjx]. ® Pr = 0, and then T;; X = 0 for all Xx € Aj. By the primeness of A, we have Tj; = 0. Then
D(Aj; + Bjj) = D(A;j) + D(B))).

Now, it follows from Steps 2.1, 2.2 and 2.3 that @ is additive, proving the Claim 2.

Claim 3.

(1) D3I = D3I);
(2) O(CI) € CLO(RI) CRL
(3) D(A) =D(A) forall A = A" € A.
It follows from Claim 2 that
—4D(I) = D([iI, iI].  (i]))

= [D(I), il].  (I) + [il, DGD)]. ® GI) + [iL, iI]. & D(il)
= 40(il)" - 8O(il).

So @(il)* = D(il).
Let A € R be arbitrary. Then

0 = DAL AL o I) = [D(AI), Al o I
= (AI)(A — A%) — (A — AYD(AI)*

holds true for any A € A. So ®(AI)B = BP(AI)* holds true for all B = —B* € A. Since for every B € A,
B = By +iB, with B; = % and B, = Bgf* , it follows that ®(AI)B = BO(AI)* holds true for all B € A. It follows
from Lemma 2.1 that ®(Al) € RI. Since A € R is arbitrary, we obtain ®(IRI) € RI.

For any A = A* € A, we have

0= (A, il], o I) = [D(A), iI]. o I = 2i(D(A) — DA)),

which implies that ®(A) = P(A)".
Let A € C be arbitrary. Forall A = A* € A and B € A, it follows from ®(A) = P(A)* that

0 = O([A, Al], o B) = [A, D(AD)]. » B.

It follows from Lemma 2.2 that [A, P(A)]. = [A, ®(AI)] = iAl for some A € R. By Lemma 2.3, we have

[A, ®(AD)] = 0, thatis AD(AI) = D(AD)A forall A = A* € A. Since for every B € A, B = By +iB, with B = &£
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and B, = %, it follows that BO(AI) = ®(AI)B holds true for all B € A. So ®(Al) € CI. Now we obtain

D(CI) c Cl.
Claim 4. For 1 < ] +k< 2, we have P](D(P])Pk = —P]q)(Pk)Pk and P]CD(Pk)P] =0.
On the one hand, it follows from Claim 3 that
0= O, Pj]. » P)
= [il, ®(P))]. ® Py + [il, P;]. ® (Py)
= 2i(D(P;)Py — PyD(P))* + P;D(Px) — D(Pk)P)).
Multiplying both sides of the above equation by P; and Py from the left and right respectively, we obtain
that ij)(Pj)Pk = —ij)(Pk)Pk.
On the other hand, we have
0 = O([iP;, iI]. ® Py)
= [(D(iP]'), ill, ® Py + [in, CD(I'I)]* o P+ [in, il], o (D(Pk)
= i(P(iP;)Py — ®(iP;)" Py — PyD(iP;)" + Py®(iP;)) — 2P;P(Py) — 2D(Px)P;.
Multiplying both sides of the above equation by P;, we obtain that P;®(Px)P; = 0.
Now, let T = P1®(P;)P; — P,®(P1)P;. By Claim 3 (3), we have T* = —T. Defining a map 6 : A — A by

O0(A) = O(A) — (AT — TA) for all A € A. It is easy to verify that 6 has the following properties.
Claim 5.

(1) Forall A,B,C € A, 5([A, B]. # C) = [6(A), B]. « C + [A, 5(B)]. « C + [A, B]. # 6(C);
(2) 6(P;) = P;j®(P))P; € Ajj,j=1,2;
(3) o@D = o(il);
(4) 6(A) =06(A) forall A =A* € A;
(5) 6is additive;
(6) 01is a *-derivation if and only if @ is a *-derivation.
Claim 6. 5(P;) = 0 and 6(Ajx) € Ay, j, k=1,2.
Let Ay € Ay, 1 < j# k <2.On the one hand, it follows from Claim 5 that
8(iAw) = (51, Pil. o Ay)

= [51,6(P))1. » A +[51, Pl # 6(Aj0)
=1(0(P))Aj — Apd(Pj)" + Pjo(Aj) — 6(Aj)P))
= i(0(P))Aj + Pj6(Aj) — 0(Aj)P)).
Hence P;6(iAjx)P; = Po(iAjx)Px = 0, and then 6(iA x) = P;0(iA k)P + Px6(iA)P;. On the other hand, for all

B € A, we have

It follows from Lemma 2.2 that [6(iA ), P;]. = Pro(iAj)P;—P;6(iA ) Py € iRI, and then Px6(iA )P; = 0. Now
we obtain 6(iA ) = P;0(iAjx)Pyx. Since Aj; is arbitrary, we have 6(Aj) € Ay, j # k.
Let Ay € Ay, 1< j#k<2 Then
O(Ajk) + 0(A%) = 0([Ajk, P  Py)
= [6(Ajk), P]. ® P + [Ajk, 6(Pi)]. ® Py + [Ajx, Pi]. @ 6(Py)
= (3(A]k) + (S(A]k)yr + 2A]k6(Pk) + 6(Pk)*A;k + (S(Pk)A;k
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Multiplying both sides of the above equation by P; and Py from the left and right respectively, we obtain
that A]k(S(Pk)Pk =0 forall A]k S ﬂ]k Then 6(Pk) = Pké(Pk)Pk = O,k = 1, 2.
Let Aj; € Ajj,j=1,2and i # j. On the one hand, we have
0= 6([131‘,A]‘]‘]yr L Pj) =[P, (3(Ajj)]y, L4 P]‘ = Pié(A]‘]‘)Pj + Pj(S(A]‘]‘)*P,‘

and
0= 6([P],A”]* o Pz) = [P], 6(A”)]* L4 Pi = Pjé(A”)Pl + Pl(S(A]])*P]
So Pi5(Ajj)P; = Pi5(A;j)P; = 0. On the other hand, for any T}; € A;; and B € A, we have
0=10([Tji, Ajjl. « B) = [T}, 6(Ajj)]. ® B.

It follows from Lemma 2.2 that [T};, 6(A};)]. € iRI, and then T;;6(A;;)P; = 0 for all T;; € Aj;. By the primeness
of A, we have P;6(A;;)P; = 0. Now we obtain that 6(A;;) = Pj6(A;;)P; € Aj;. Since Aj; is arbitrary, we have
O0(Ajj) € Ajj,j=1,2.
Claim 7. 6(AB) = 6(A)B + A6(B) for all A,B € A.

Let Ajj € Ajjand Bj; € Aj;, 1 <i# j < 2. It follows from Claim 6 that

0(AiiBji) = 6([Pi, Aijl. ® Bj;) = [Pi, 6(Aij)]. @ Bj; + [P;, Ajjl. @ 6(B;i)
= 5(A1']')Bﬁ + Aij(S(Bji).

So
0(AijBji) = 6(Aij)Bji + Aijo(Bji). 1)
For any Cj; € Aj;, it follows from Eq. (1) that

0(AiiBij)Cji + AiiBij6(Cji) = 6(AiiBijCji) = 6([Aii, Bij]. @ Cji)
= [6(Ait), Bijl. ® Cji + [Aii, (Bij)]. ® Cji + [Aii, Bijl. @ 6(Cji)
= 0(Aii)BijCji + Aiid(Bij)Cji + AiiBijo(Cji)-

So (6(Al‘iB,']‘) - 6(Aii)B,']' - Aiié(Bi]‘))C]‘,' =0 for any Cji S ﬂ]‘,‘. By the primeness of ﬂ, we have
0(A;iBij) = 0(Ai1)Bij + Aiid(Bi))- 2)
It follows from Eq. (1) that

0(AijBjj)Cji + AijBjid(Cji) = 6(AijBjiCji) = 6(LAij, Bjjl. @ Cj)
= [6(Aij), Bjjl. @ Cji + [Aij, 6(Bjj)]. ® Cji + [Aij, Bjj]. @ 6(Cj)

In the same manner, we obtain
It follows from Eq. (2) that

O(Aj;Bj)Cii + AjiBjio(Cji) = 0(A;;Bj;iCji) = 6([Aj;, Bjjl. ® Cji)
= [6(Ajj), Bjjl. ® Cji + [Ajj, 6(Bjj)l. @ Cji + [Ajj, Bjj]. ® 6(Cji)
= 0(Aj)B;iCji + Ajjd(Bj)Cii + A}jBj;0(Cji)-

Then

5(A]']'Bjj) = 6(Ajj)B]']' + A]']'(s(B]'j). (4)
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Write A = Zz%j:l Al‘]‘, B = Z%j:] B,] € A. Then AB = A11B11 + A11B12 + A12By1 + A12Bo + Ay1B11 + A Bip +
A2 Bo1 + ApBoy. By Egs (1)-(4) and the additivity of 6, we obtain that 6(AB) = 6(A)B + Ad(B).
Claim 8. 5(A*) = 8(A)* forall A € A.
By Claims 6 and 7, we have
0 = —6(I) = 8((I)()) = 2i5(l).

So 6(il) = 0, and then 6(iA) = 6((IDA) = i6(A).
For every A € A, A = A; +iAy, where A} = % and A; = % are self-adjoint elements. By Claim 5,
we have

6(A") = 6(A1 —iAz) = 6(A1) — i6(Az)
= 0(A1)" + (i6(A2))" = (6(A1) + 6(iA2))"
= O6(A)".

Now, by Claims 5, 7 and 8, we obtain that ® is an additive *-derivation. This completes the proof of
Theorem 2.4. [
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