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Abstract. The purpose of this paper is to give and prove the fundamental theorem of conformable
fractional calculus which is given only in previous associated papers for differentiable functions, and then
we scrutinize the existence and uniqueness of solutions to some semilinear Cauchy problems for nonlocal
conformable fractional integrodifferential or differential equations which their nonlinear terms include
fractional derivative or fractional integral. Two examples are investigated to elucidate the main results.

1. Introduction

Fractional calculus plays a pivotal role in applied mathematics and other scientific fields such as chem-
istry, physics, engineering, biology, economics as well as signal processing and telecommunication. It
describes the most diminutive details of natural phenomena, which is better than using the integer calcu-
lus. For the history and more details about applications and significant results on fractional calculus, we
refer to [4, 6, 9, 12, 21, 23–26, 28].

A lot of definitions for fractional derivative have been given over the years [17], such as Riemann-
Liouville, Caputo, Grunwald-Letnikov, Hadamard derivative, etc. Conformable fractional derivative (CFD)
is similar to the directional derivative. It satisfies the classical formulas of the product and quotient of two
functions and it has a simple chain rule. For other properties of the CFD, see [1, 16]. The physical
interpretation of the CFD is given by D. Zhao and M. Luo in [30] as a special velocity in a specific direction.
Many authors used the CFD in modeling physical problems by using their properties to obtain exact and
approximate solutions, see for instance [2, 3, 7, 8, 18, 20, 22].

Many authors are interested in studying nonlinear Cauchy problems which have fractional derivatives
or fractional integral in its nonlinear term, see [13, 15, 19, 29].

Nonlocal conditions have a main role in describing some peculiarities of chemical, biological, physical
or other processes that occur at assorted positions inside the domain, which is clearly not possible with the
end-point (initial or boundary) conditions. In fact, nonlocal conditions give accurate results, more precise
measurements, and better effects than the conventional conditions.
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M. Herzallah and A. Radwan [14] studied the existence and uniqueness of solutions to the nonlocal-
impulsive semilinear conformable fractional differential equation

Dαu(t) = A(t)u(t) + f (t,u(t)), t ∈ J∗ = J \ {t1, t2, ..., tm}, J = [0, k];
u(0) + 1(u) = u0;
u(t+i ) = u(t−i ) + yi, i = 1, 2, ...,m.

where A(t) is a bounded linear operator on a Banach space X, ti satisfy 0 < t1 < t2 < ... < tm < k , and
u(t+i ) = limε→0+u(ti + ε) and u(t−i ) = limε→0−u(ti + ε) represent the right and lift limits of u(t) at t = ti.

Motivated by [14], this paper aims to discuss the existence and uniqueness of solutions of the following
two nonlocal problems:Dαu(t) = A(t)u(t) + f (t,u(t), Iβu(t)), 0 < β ≤ α < 1, t ∈ [0,T];∑m

k=1 ak u(tk) = u0,
∑m

k=1 ak , 0.
(1)

and Dαu(t) = A(t)u(t) + f (t,u(t),Dβu(t)), 0 < β ≤ α < 1, t ∈ [0,T];∑m
k=1 ak u(tk) = u0,

∑m
k=1 ak , 0.

(2)

where Dα, Dβ refer to the CFD’s of order α, β sequentially, Iβ denotes the CFI of order β, A(t) is a
bounded linear operator on a Banach space X with constant domain D(A) ⊂ X, u0 ∈ D(A) and tk satisfies
0 < t1 < t2 < ... < tm < T, k = 1, 2, ...,m .

This paper is organized as follows: In section 2, we demonstrate some notations, definitions, and
theorems with giving proof of the fundamental theorem of conformable fractional calculus. In section 3,
we discuss the existence and uniqueness of solutions to Problem (1). Section 4 deals with studying the
existence and uniqueness of solutions to Problem (2). Finally, section 5 has some examples to make clear
the validity and importance of the main results.

2. Preliminaries

Let J := [0,T], T > 0 , and C(J,X) be the set of all continuous functions u : J → X with the norm
∥u∥C= max{∥u(t)∥: t ∈ J}.

Definition 2.1 (CFD [1, 16, 30]). Given a function u : [0,∞)→ R. The CFD of u of order α ∈ (0, 1) is given by

Dαu(t) = lim
ε→0

u(t + εt1−α) − u(t)
ε

, t > 0.

If limt→0+ Dαu(t) exists, we set Dαu(0) = limt→0+ Dαu(t).

Definition 2.2 (CFI [1, 16, 30]). Given a function u : [0,∞) → R. Then for t > 0 and α ∈ (0, 1), the CFI of u of
order α is defined by

Iαu(t) =
∫ t

0
sα−1u(s)ds,

where the integral is the usual Riemann improper integral.

Proposition 2.3 ([1, 5, 16, 30]). Let α ∈ (0, 1] and f , 1 : J→ R be α-differentiable functions at a point t > 0. Then

1. The CFD and CFI are linear operators;
2. If f is α-differentiable at t0 > 0, then f is continuous at t0;
3. The function f could be α-differentiable at a point but not differentiable;
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4. The CFD satisfies

Dα( f1)(t) = f (t)(Dα1(t)) + (Dα f (t))1(t), and Dα

(
f
1

)
(t) =

1(t)(Dα f (t)) − f (t)(Dα1(t))
12(t)

;

5. If f , in addition, is differentiable, then Dα f (t) = t1−α( d f
dt ) and IαDα f (t) = f (t) − f (0).

Theorem 2.4 ([1, 16]). Let a > 0 and u : [a, b]→ R be a given function that satisfies
1. u is continuous on [a, b];
2. u is α-differentiable for some α ∈ (0, 1). Then, there exists c ∈ (a, b) such that

Dαu(c) =
u(b) − u(a)

bα
α −

aα
α

.

Theorem 2.5 (Conformable Gronwall inequality [1]). Let u be a continuous, nonnegative function on an interval
[0, b] and ψ,ϕ be nonnegative constants such that

u(t) ≤ ϕ + ψ
∫ t

0
sα−1u(s)ds, t ∈ J.

Then for all t ∈ [0, b],

u(t) ≤ ϕ exp
(
ψtα

α

)
.

Theorem 2.6 (Fundamental theorem of conformable fractional calculus). Let f : [0, b]→ R, then we have the
following

(a) If f is an α−differentiable function where α ∈ (0, 1]. Then IαDα f (t) = f (t) − f (0).

(b) If f is an Riemann integrable function on [0, b] and f is continuous for c ∈ (0, b) then Iα f (t) is α−differentiable
at c and DαIα f (c) = f (c).

Proof. Let {t0, t1, t2, ..., tn} be an arbitrary partition of [0, t], then we get from the conformable fractional mean
value theorem that there is ui ∈ (ti−1, ti) where

f (ti) − f (ti−1) = Dα f (ui)
(

tαi
α
−

tαi−1

α

)
.

Using the ordinary mean value theorem, we get vi ∈ (ti−1, ti) where

f (ti) − f (ti−1) = Dα f (ui)vα−1
i (ti − ti−1)

Thus, we get

f (t) − f (0) =
n∑

i=1

Dα f (ui)vα−1
i (ti − ti−1)

Let n→∞, we get (a).
Now, let F(t) = Iα f (t), where f (t) is Riemann integrable for t ∈ [0, b], and is continuous at c , 0, we get

that the function tα−1 f (t) is Riemann integrable and is continuous at c. From the fundamental theorem of
calculus, we get that F(t) is differentiable at the point c and satisfies that F′(c) = cα−1 f (c) but we have if the
function is differentiable, we get its fractional conformable derivative in the form

DαF(c) = c1−αF′(c) = c1−αcα−1 f (c) = f (c).

Theorem 2.7 (Schaefer’s fixed point theorem [10, 11, 27]). Let X be a Banach space and F : X→ X be a completely
continuous operator. If the set E(F) = {x ∈ X : ηFx = x} for some η ∈ [0, 1] is bounded, then F has at least one fixed
point.
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3. Existence and uniqueness of solutions to Problem (1)

Consider the following assumptions:
(H1) A(t) is a bounded linear operator on a Banach space X where t → A(t) is continuous in the strong
operator topology and M = max{∥A(t)∥: t ∈ J} .
(H2) f : J ×X×X→ X is continuous. N = max{ f (t, 0, 0) : t ∈ J} and there exist positive constants µ, γ such
that for all t ∈ J and u, v ∈ X:

∥ f (t,u2(t), v2(t)) − f (t,u1(t), v1(t))∥≤ µ∥u2(t) − u1(t)∥+γ∥v2(t) − v1(t)∥.

Lemma 3.1. Problem (1) is equivalent to the integral equation

u(t) =
u0∑m

k=1 ak
−

1∑m
k=1 ak

m∑
k=1

ak

∫ tk

0
sα−1A(s)u(s)ds

−
1∑m

k=1 ak

m∑
k=1

ak

∫ tk

0
sα−1 f (s,u(s), Iβu(s))ds

+

∫ t

0
sα−1A(s)u(s)ds +

∫ t

0
sα−1 f (s,u(s), Iβu(s))ds. (3)

Proof. Acting Iα on both sides of the fractional integrodifferential equation of (1) with applying part (a) of
Theorem 2.4, we obtain

u(t) = u(0) +
∫ t

0
sα−1A(s)u(s)ds +

∫ t

0
sα−1 f (s,u(s), Iβu(s))ds, (4)

Putting t = tk in (4) with applying the nonlocal condition of (1), we have

u(0) =
u0∑m

k=1 ak
−

1∑m
k=1 ak

m∑
k=1

ak

∫ tk

0
sα−1A(s)u(s)ds

−
1∑m

k=1 ak

m∑
k=1

ak

∫ tk

0
sα−1 f (s,u(s), Iβu(s))ds. (5)

From (5) into (4), we get (3).
Conversely, if we α-differentiate (3) with applying part (b) of Theorem 2.4, we get

Dαu(t) = DαIαA(t)u(t) +DαIα f (t,u(t), Iβu(t))

= A(t)u(t) + f (t,u(t), Iβu(t)),

which is the fractional integrodifferential equation of (1) . Putting t = tk in (3),

m∑
k=1

aku(tk) = u0 −

m∑
k=1

ak

∫ tk

0
sα−1A(s)u(s)ds −

m∑
k=1

ak

∫ tk

0
sα−1 f (s,u(s), Iβu(s))ds

+

m∑
k=1

ak

∫ tk

0
sα−1A(s)u(s)ds +

m∑
k=1

ak

∫ tk

0
sα−1 f (s,u(s), Iβu(s))ds

= u0.

which completes the proof.

Definition 3.2. By a solution of Problem (1), we mean a function u ∈ C(J,D(A)) which is α-differentiable and
satisfies (3).
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Consider the nonempty, bounded, convex and closed set Br:

Br =

u ∈ C([0,T],X) : ∥u∥C ≤ r, r =
ρ∥u0∥ +

2NTα
α

1 − 2Tα
α

(
M + µ + γTβ

β

)
 . (6)

where ρ := 1∑m
k=1 |ak |

.

Theorem 3.3. If the assumptions (H1)-(H2) are satisfied, and Tα
α

(
M + µ + γTβ

β

)
< 1

2 , then Problem (1) has a unique

solution u ∈ Br.

Proof. Define the operator L : C(J,X)→ C(J,X) such that

Lu(t) =
u0∑m

k=1 ak
−

1∑m
k=1 ak

m∑
k=1

ak

∫ tk

0
sα−1A(s)u(s)ds

−
1∑m

k=1 ak

m∑
k=1

ak

∫ tk

0
sα−1 f (s,u(s), Iβu(s))ds

+

∫ t

0
sα−1A(s)u(s)ds +

∫ t

0
sα−1 f (s,u(s), Iβu(s))ds. (7)

Due to the continuity of u, f and A(t), L is well defined. For u, v ∈ Br, we have

∥Lu(t)∥ ≤ ρ∥u0∥ + ρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥A(s)∥∥u(s)∥ds

+ ρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥ f (s,u(s), Iβu(s)) − f (s, 0, 0)∥ds

+ ρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥ f (s, 0, 0)∥ds +

∫ t

0
sα−1
∥A(s)∥∥u(s)∥ds

+

∫ t

0
sα−1
∥ f (s,u(s), Iβu(s)) − f (s, 0, 0)∥ds +

∫ t

0
sα−1
∥ f (s, 0, 0)∥ds.

Then,

∥Lu∥ ≤ ρ∥u0∥ +
2Tα

α

[
N + r

(
M + µ +

γTβ

β

)]
= r. (8)

Thus, L maps Br into itself. Furthermore,

∥Lu(t) − Lv(t)∥ ≤ ρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥A(s)∥∥u(s) − v(s)∥ds

+ ρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥ f (s,u(s), Iβu(s)) − f (s, v(s), Iβv(s))∥ds

+

∫ t

0
sα−1
∥A(s)∥∥u(s) − v(s)∥ds

+

∫ t

0
sα−1
∥ f (s,u(s), Iβu(s)) − f (s, v(s), Iβv(s))∥ds.
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Then,

∥Lu − Lv∥ ≤
2Tα

α

(
M + µ +

γTβ

β

)
∥u − v∥. (9)

Since 2Tα
α

(
M + µ + γTβ

β

)
< 1, then as a consequence of Banach’s fixed point principle, L is a contraction

mapping and has a unique fixed-point which is the unique solution of Problem (1).

Theorem 3.4. If the assumptions (H1) and (H2) are satisfied, then Problem (1) has at least one solution u ∈ Br.

Proof. Consider the operator L defined by (7). In view of Schaefer’s fixed point theorem, the proof will be
given in four steps.
Step 1. (L is continuous)
Let {un} be a sequence in C(J,X) which converges to u ∈ C(J,X) as n→∞ for all t ∈ J.
As in proving (9), we get

∥Lun − Lu∥ ≤
2Tα

α

(
M + µ +

γTβ

β

)
∥un − u∥. (10)

The right hand side of (10) tends to zero as n tends to∞. Therefore, L is continuous.
Step 2. (L maps bounded sets into bounded sets in C(J,X))
It is enough to show that for any r > 0 there exists l1 > 0 such that for each u ∈ Br we have ∥Lu∥ ≤ l1. Let
t ∈ J and u ∈ Br. By using (7), we get

∥Lu∥ ≤ ρ∥u0∥ +
2Tα

α

[
N + r

(
M + µ +

γTβ

β

)]
≤ l1, l1 > 0. (11)

Step 3. (L maps bounded sets into equicontinuous sets of C(J,X) )
Let t ∈ J, 0 ≤ t1 < t2 ≤ T and u ∈ Br. Consider then,

∥Lu(t2) − Lu(t1)∥ ≤
∫ t2

t1

sα−1
∥A(s)∥∥u(s)∥ds +

∫ t2

t1

sα−1
∥ f (s, 0, 0)∥ds

+

∫ t2

t1

sα−1
∥ f (s,u(s),

∫ s

0
τβ−1u(τ)dτ) − f (s, 0, 0)∥ds

≤
|tα2 − tα1 |
α

N + r

M + µ +
|tβ2 − tβ1|
β


 . (12)

Letting t2 tends to t1, the right hand side of (12) tends to zero. Therefore, the class of functions {Lu(t)} is
equicontinuous. As a consequence of Steps 1-3 together with Arzela-Ascoli theorem, we can conclude that
the operator L is a completely continuous operator.
Step 4. (A priori bounds)
We have to show that E(L) = {u ∈ C([0,T],X) : ηLu = u}, for some η ∈ [0, 1], is bounded. Let u ∈ E(L) and
there exist some η ∈ [0, 1] such that ηLu = u.
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Using (7) with applying (H1) and (H2), we have

∥u(t)∥ = ∥ηLu(t)∥

≤ ηρ∥u0∥ + ηρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥A(s)∥∥u(s)∥ds

+ ηρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥ f (s,u(s),

∫ s

0
τβ−1u(τ)dτ) − f (s, 0, 0)∥ds

+ ηρ
m∑

k=1

|ak|

∫ tk

0
sα−1
∥ f (s, 0, 0)∥ds + η

∫ t

0
sα−1
∥A(s)∥∥u(s)∥ds

+ η

∫ t

0
sα−1
∥ f (s,u(s),

∫ s

0
τβ−1u(τ)dτ) − f (s, 0, 0)∥ds + η

∫ t

0
sα−1
∥ f (s, 0, 0)∥ds

≤ ηρ∥u0∥ + ηM∥u∥ρ
m∑

k=1

|ak|

∫ tk

0
sα−1ds + ηµ∥u∥ρ

m∑
k=1

|ak|

∫ tk

0
sα−1ds

+ ηγ∥u∥
Tβ

β
ρ

m∑
k=1

|ak|

∫ tk

0
sα−1ds + ηNρ

m∑
k=1

|ak|

∫ tk

0
sα−1ds + ηN

∫ t

0
sα−1ds

+ ηγ∥u∥
Tβ

β

∫ t

0
sα−1ds + η(M + µ)

∫ t

0
sα−1
∥u(s)∥ds

then ∥u(t)∥ ≤ ϕ1+ψ1

∫ t

0 sα−1
∥u(s)∥ds where ϕ1 = η

[(
ρ∥u0∥ +

2NTα
α

)
+ Tα

α ∥u∥
(
M + µ + 2γTβ

β

)]
and ψ1 = η(M+µ).

Applying Gronwall inequality (Theorem 2.3), we get ∥u(t)∥ ≤ ϕ1 exp
(
ψ1Tα

α

)
. Therefore, E(L) is bounded. As

a consequence of Schaefer’s fixed point theorem, we deduce that the operator L has at least one fixed-point
which is a solution of Problem (1).

4. Existence and uniqueness of solutions to Problem (2)

Lemma 4.1. For 0 < β ≤ α < 1, every an α-differentiable function is a β-differentiable.

Proof. Let 0 < β ≤ α < 1 and u be an α-differentiable function. Since Dβu(t) = lim
ε→0

u(t+εt1−β)−u(t)
ε , then

tβ−αDβu(t) = lim
ε→0

u(t + εt1−β) − u(t)
εtα−β

.

Let h = εtα−β. If ε→ 0, we get h→ 0. Hence, tβ−αDβu(t) = lim
h→0

u(t+ht1−α)−u(t)
h = Dαu(t).

Then,

Dβu(t) = tα−βDαu(t). (13)

Thus, the proof is completed.

To facilitate our discussion. let

K :=
u0∑m

k=1 ak
−

1∑m
k=1 ak

m∑
k=1

ak

∫ tk

0
sβ−1y(s)ds, (14)

where y(t) is the solution of the integral equation

y(t) = tα−βA(t)
(
K +

∫ t

0
sβ−1y(s)ds

)
+ tα−β f (t,K +

∫ t

0
sβ−1y(s)ds, y(t)). (15)
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Lemma 4.2. Problem (2) is equivalent to the integral equation

u(t) = K +
∫ t

0
sβ−1y(s)ds, (16)

Proof. Let u be a solution of Problem (2) and

y(t) = Dβu(t). (17)

Since u,A(t), and f are continuous, then Dαu is continuous and by Lemma 4.1, we have Dβu is continuous.
Therefore, y is also continuous. From (17), we get

u(t) = u(0) +
∫ t

0
sβ−1y(s)ds. (18)

Putting t = tk in (18) with applying the nonlocal condition of (2), we obtain

u(0) =
u0∑m

k=1 ak
−

1∑m
k=1 ak

m∑
k=1

ak

∫ tk

0
sβ−1y(s)ds = K. (19)

From (19) into (18), we get (16).
By using (17), Lemma 4.1 and (2), we have

y(t) = Dβu(t)

= tα−βDαu(t)

= tα−βA(t)
(
K +

∫ t

0
sβ−1y(s)ds

)
+ tα−β f (t,K +

∫ t

0
sβ−1y(s)ds, y(t)).

Thus, u is a solution of (16) where y(t) is the solution of (15).
Conversely, we have to show that if u is a solution of (16), u satisfies problem (2).

Putting t = tk in (16) and using (14), we have

m∑
k=1

aku(tk) = u0 −

m∑
k=1

ak

∫ tk

0
sβ−1y(s)ds +

m∑
k=1

ak

∫ tk

0
sβ−1y(s)ds = u0,

which is the nonlocal condition of Problem (2).
If we β-differentiate (16), we get Dβu(t) = y(t). Using Lemma 4.1 and (15), we have

Dαu(t) = tβ−αDβu(t)

= tβ−αy(t)

= A(t)
(
K +

∫ t

0
sβ−1y(s)ds

)
+ f (t,K +

∫ t

0
sβ−1y(s)ds, y(t))

= A(t)u(t) + f (t,u(t),Dβu(t)).

Therefore, u is a solution of Problem (2).

Definition 4.3. By a solution of Problem (2), we mean a function u ∈ C(J,D(A)) which is α-differentiable and
satisfies (16).

Consider the nonempty bounded set Bσ:

Bσ =

y ∈ C([0,T],X) : ∥y∥ ≤ σ, σ =
Tα−β[ρ∥u0∥(M + µ) +N]

1 − [ 2Tα
β (M + µ) + γ]

 . (20)
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Theorem 4.4. Let the assumptions (H1) and (H2) are satisfied. Then Problem (2) has a unique solution u ∈ Bσ, if

2Tα

β
(M + µ) + γTα−β < 1.

Proof. Consider the operator P : C(J,X)→ C(J,X) such that

Py(t) = tα−βA(t)
(
K +

∫ t

0
sβ−1y(s)ds

)
+ tα−β f (t,K +

∫ t

0
sβ−1y(s)ds, y(t)). (21)

Due to the continuity of u, y, f and A(t), P is well defined.
Let t ∈ J and y, z ∈ Bσ. By using (13) and (21), we have

∥Py(t)∥ ≤ ρtα−β∥A(t)∥∥u0∥ + ρtα−β∥A(t)∥
m∑

k=1

|ak|

∫ tk

0
sβ−1
∥y(s)∥ds

+ tα−β∥A(t)∥
∫ t

0
sβ−1
∥y(s)∥ds + tα−β∥ f (t, 0, 0)∥

+ tα−β∥ f (t, K +
∫ t

0
sβ−1y(s)ds, y(t)) − f (t, 0, 0)∥.

Then,

∥Py∥ ≤ Tα−β
[
ρ∥u0∥(M + µ) +N

]
+ σ

[
2Tα

β
(M + µ) + γ

]
= σ.

Furthermore,

∥Py(t) − Pz(t)∥ ≤ ρtα−β∥A(t)∥
m∑

k=1

|ak|

∫ tk

0
sβ−1
∥y(s) − z(s)∥ds

+ tα−β∥A(t)∥
∫ t

0
sβ−1
∥y(s) − z(s)∥ds

+ ρµtα−β
m∑

k=1

|ak|

∫ tk

0
sβ−1
∥y(s) − z(s)∥ds

+ µtα−β
∫ t

0
sβ−1
∥y(s) − z(s)∥ds + γtα−β∥y(s) − z(s)∥.

Then,

∥Py − Pz∥ ≤
(

2Tα

β
(M + µ) + γTα−β

)
∥y − z∥. (22)

Since 2Tα
β (M+µ)+γTα−β < 1, the operator P is a contraction. P has a unique fixed-point which is the unique

solution of Problem (2). Thus, the proof is completed.

Theorem 4.5. If the assumptions (H1) and (H2) are satisfied, then Problem (2) has at least one solution u ∈ Bσ.

Proof. Consider the operator P defined by (21). Let {yn}
∞

n=1 be a sequence in C(J,X) which converges to
y ∈ C(J,X) as n→∞ for all t ∈ J. As in proving (22), we can easily get

∥Pyn − Py∥ ≤
(

2Tα

β
(M + µ) + γTα−β

)
∥yn − y∥.

Letting n tends to∞, we get Pyn tends to Py . Thus P is continuous.
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Now, we show that for any σ > 0 there exists l2 > 0 such that for each y ∈ Bσ we have ∥Py∥ ≤ l2. Let
y ∈ Bσ . By using (14) and (21), we get

∥Py∥ ≤ Tα−β
[
ρ∥u0∥(M + µ) +N

]
+

[
2Tα

β
(M + µ) + γ

]
σ ≤ l2, l2 > 0.

That is, P maps bounded sets into bounded sets in C(J,X).
Let t ∈ J, 0 ≤ t1 < t2 ≤ T and y ∈ Bσ. Since tα−β2 ≥ tα−β1 , then

∥Py(t2) − Py(t1)∥ ≤ M

(ρ∥u0∥ +
σTβ

β

)
|tα−β2 − tα−β1 | +

σtα−β2

β
|tβ2 − tβ1|


+ tα−β2 ∥ f (t2, K +

∫ t2

0
sβ−1y(s)ds, y(t2)) − f (t1, K +

∫ t1

0
sβ−1y(s)ds, y(t1))∥.

Since f is continuous, the right hand side of the above inequality tends to zero as t2 tends to t1. Therefore,
the class of functions {Py(t)} is equicontinuous. As a consequence of steps 1-3 together with Arzela-Ascoli
theorem, we can conclude that the operator P is a completely continuous operator.

Finally, for some η ∈ [0, 1], We have to show that E(P) = {y ∈ C([0,T],X) : ηPy = y} is bounded. Let
y ∈ E(P) and there exist some η ∈ [0, 1] such that ηPy = y. Consider then,

∥y(t)∥ = ∥ηPy(t)∥

≤ ηρtα−β∥A(t)∥∥u0∥ + ηρtα−β∥A(t)∥
m∑

k=1

|ak|

∫ tk

0
sβ−1
∥y(s)∥ds

+ ηtα−β∥A(t)∥
∫ t

0
sβ−1
∥y(s)∥ds + ηtα−β∥ f (t, 0, 0)∥

+ ηtα−β∥ f (t, K +
∫ t

0
sβ−1y(s)ds, y(t)) − f (t, 0, 0)∥

≤ ηρTα−β(M + µ)∥u0∥ + ηρTα−β(M + µ)∥y∥
m∑

k=1

|ak|

∫ tk

0
sβ−1ds

+ ηTα−β(γ∥y∥ +N) + ηTα−β(M + µ)
∫ t

0
sβ−1
∥y(s)∥ds.

Then, ∥y(t)∥ ≤ ϕ2 + ψ2

∫ t

0 sβ−1
∥y(s)∥ds where ϕ2 = ηTα−β

[
(M + µ)(ρ∥u0∥ +

Tβ
β ∥y∥) + γ∥y∥ +N

]
and ψ2 =

ηTα−β(M + µ) . By applying Gronwall inequality, we get ∥y(t)∥ ≤ ϕ2 exp
(
ψ2Tβ

β

)
. Thus, E(P) is bounded.

Now we have the operator P is completely continuous and the set E(P) is bounded which prove, by using
Schaefer’s fixed-point theorem, that P has at least one fixed-point u ∈ Bσ which is a solution of Problem
(2).

5. Examples

Example 5.1. Consider the nonlocal problem:D0.8u(t) = 1
15 tu(t) + e−λt

1+et [0.5u(t) + 0.25v(t)] , t ∈ [0, 1];
u(0.2) + u(0.8) = 1.

(23)

where λ > 0 is a constant.
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We deduce that α = 4
5 , M = 1

15 , f (t,u(t), v(t)) = e−λt

1+et [0.5u(t) + 0.25v(t)] , N = 0, u0 = 1, k ∈ {1, 2}, t1 =

0.2, t2 = 0.8,
∑2

k=1 ak = 2 and J = [0, 1]. Let u, v ∈ C([0, 1],R), we have

| f (t,u1(t), v1(t)) − f (t,u2(t), v2(t))| ≤
e−λt

1 + et

[1
2
|u1(t) − u2(t)| +

1
4
|v1(t) − v2(t)|

]
≤

e−λt

2

[1
2
|u1(t) − u2(t)| +

1
4
|v1(t) − v2(t)|

]
.

Then, µ = e−λt

4 and γ = e−λt

8 . Letting, for example, v(t) = I0.6u(t) and choosing some λ > 0 large enough, we get (in
view of Theorem 3.2) that Problem (1) has a unique solution.

Example 5.2. Consider the nonlocal problem:D0.75u(t) =
∫ 0.2

0 u(t)dt + e−λt

1+et

[
|u(t)|

1+|u(t)| +
|v(t)|

1+|v(t)|

]
, t ∈ [0, 1];

u(0.3) + u(0.7) = 1.
(24)

where λ > 0 is a constant.
We deduce that α = 3

4 ,M = 0.2, f (t,u(t), v(t)) = e−λt

1+et

[
|u(t)|

1+|u(t)| +
|v(t)|

1+|v(t)|

]
,u0 = 1, k ∈ {1, 2}, t1 = 0.3, t2 =

0.7,
∑2

k=1 ak = 2, N = 0 and J = [0, 1]. Let u, v ∈ C([0, 1],R), we have

| f (t,u1(t), v1(t)) − f (t,u2(t), v2(t))|

≤
e−λt

1 + et

∣∣∣∣∣∣
(
|u1(t)|

1 + |u1(t)|
−
|u2(t)|

1 + |u2(t)|

)
+

(
|v1(t)|

1 + |v1(t)|
−
|v2(t)|

1 + |v2(t)|

)∣∣∣∣∣∣
≤

e−λt

1 + et

[
||u1(t)| − |u2(t)||

(1 + |u1(t)|)(1 + |u2(t)|)
+

||v1(t)| − |v2(t)||
(1 + |v1(t)|)(1 + |v2(t)|)

]
≤

e−λt

1 + et [|u1(t) − u2(t)|+|v1(t) − v2(t)|]

≤
e−λt

2
[|u1(t) − u2(t)|+|v1(t) − v2(t)|] .

Then, µ = γ = e−λt

2 . Let v(t) = D0.5u(t) and choosing some λ > 0 large enough, we get (in view of Theorem 4.3) that
Problem (2) has a unique solution.
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