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Abstract. Recently, Dehghan et al. presented the diagonal and off-diagonal splitting (DOS) iteration
method for solving the linear systems Ax = b [3]. In this paper, we improve its convergence rate with
extrapolation. Also convergence analysis of extrapolated DOS (EDOS) iterative method is studied by giving
an upper bound of the extrapolation parameter, then consistency of EDOS and its optimal extrapolation
parameter are discussed. Finally, several numerical examples are given to show the efficiency of the
presented method.

1. Introduction

Solving the linear system

Ax = b, (1)

is one of the most important problems in numerical analysis, whereA ∈ Cn×n is a nonsingular matrix with
non-vanishing diagonal entries, and x, b ∈ Cn. In iteration method

x(p+1) = T x(p) + C, p = 0, 1, 2, ..., (2)

for solving (1), we usually split the coefficient matrixA, as

A = E +D + F ,

where D is a diagonal matrix, E is a strictly lower triangular matrix and F is a general matrix. In [3],
authors introduced a new splitting iteration method for solving (1) based on the diagonal and off-diagonal
splitting (DOS) iterative method, as follows:
The DOS iterative method: Given an initial guess x(0)

∈ Cn×n for p = 0, 1, 2, ... until {x(p)
} converges, compute

the next iterate x(p+1) according to the following procedure:Dx(p+ 1
2 ) = [θ1D + (θ1 − 1)E + (θ1 − 1)F ]x(p) + (1 − θ1)b,

(D + θ2E)x(p+1) = [(1 − θ2)D− θ2F ]x(p+ 1
2 ) + θ2b,

(3)
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where θ1 and θ2 are given constants. We can rewrite the DOS method as

x(p+1) = T (θ1, θ2)x(p) + C(θ1, θ2)b,

where

T (θ1, θ2) = (D + θ2E)−1[(1 − θ2)D− θ2F ]D−1[θ1D + (θ1 − 1)E + (θ1 − 1)F ],

C(θ1, θ2) = (D + θ2E)−1[(1 − θ1)[(1 − θ2)D− ω2F ]D−1 + θ2I].

Formal manipulation reduces this to

T (θ1, θ2) = I +Q(θ1, θ2) (4)

where

Q(θ1, θ2) = D−1(θ1 − 1)A− (D + θ2E)−1θ2A− (D + θ2E)−1
D
−1θ2(θ1 − 1)A2. (5)

Several methods have been devised to accelerate the convergence of the iterative process (2). One of the
most powerful method is the extrapolation. That is defined by

x(p+1) = β(T x(p) + C) + (1 − β)x(p), p = 0, 1, 2, ..., (6)

where β ∈ R − {0} is the extrapolation parameter. The extrapolated method converges independently of
whether the original iteration method is convergent or not. The iteration matrix of method (6) is

Tβ = βT + (1 − β)I, (7)

so, Eq.(6) is rewritten by

x(p+1) = Tβx(p) + Cβ, p = 0, 1, 2, ..., (8)

where Cβ = βC. We obtain a range for the parameter β so that (8) be faster than (2). Also, we determine the
optimum β, say β∗, which minimizes the spectral radius of Tβ.

In [11], Missirlis and Evans defined extrapolated GS method (EGS) and extrapolated SOR (ESOR)
method for the numerical solution of linear systems. Also, Evans [4] introduced extrapolated (AOR)
(EAOR). Hadjidimos [6] studied determining an optimum value of extrapolation parameter for complex
systems. Yeyios [15] derived ranges for the extrapolation parameter and Cao [2] obtained convergence con-
ditions for extrapolation methods. Song and Wang [12–14] presented the sufficient and necessary conditions
for semi-convergence of the extrapolated iterative methods for singular problems, also they obtained the
upper bounds and optimum extrapolation parameter. Recently, in order to improve the efficiency of the
MHSS iteration method, Zeng and Zhang [19] presented the CMHSS method for solving both singular and
nonsingular complex systems.

In this work, we extrapolate the DOS iterative method, called EDOS iterative method. Our new method
accelerates the convergence of the DOS iterative method. We study some theories about convergence of
the extrapolated iteration method and its optimum parameter. We find the upper bound for extrapolation
parameter β, such that the spectral radius of the DOS iteration matrix is greater than the our method.
Finally, the EDOS is compared with the DOS method. By numerical experiments and theoretic analysis, we
conclude that the proposed method is superior to some existence methods.

We write Λ(A) and In to denote the spectrum of the matrixA and identity matrix of size n × n, respec-
tively. We denote the Kronecker product ofA and B byA⊗B = [ai jB].

The rest of the paper is organized as follows. Section 2, is the preliminaries. In Section 3, we describe
the EDOS method. Section 4, is devoted to discuss about the convergence and consistency of the EDOS
method. Numerical results are discussed in section 5. Finally, in Section 6 some conclusions are given.



R. Shokrpour, G. Ebadi / Filomat 36:8 (2022), 2749–2759 2751

2. Preliminaries

In this section we give some definitions and results which are utilized during the paper.

Definition 2.1. An n × n matrixA = (ai j) is said to be strictly diagonally dominant (SDD) if

|aii| >
n∑

j=1, j,i

|ai j|, f or i = 1, ...,n.

Definition 2.2. The matrixA is called aZ-matrix if ai j ≤ 0 f or i, j = 1, 2, 3, ...,n (i , j). AZ-matrix with positive
diagonal elements is named an L-matrix.

Definition 2.3. LetA be an L-matrix. Then the matrixA is anM-matrix ifA is nonsingular andA−1
≥ 0.

Definition 2.4. A complex matrixA = (ai j) is anH-matrix, if its comparison matrix≺ A ≻= (mi j) is anM-matrix,
where mii = |aii| and mi j = −|ai j|, i , j.

Definition 2.5. LetA be a real matrix. ThenA =M−N is called a splitting ofA ifM is a nonsingular matrix,
the splitting is calledM-splitting ifM is a nonsingularM-matrix andN > 0.

Lemma 2.6. Let A = M − N be an M-splitting of A. Then ρ(M−1N) < 1 if and only if A is a nonsingular
M-matrix.

Definition 2.7. [5] The splittingA =M−N is called anH-splitting if ≺ M ≻ −|N| is anM-matrix.

Lemma 2.8. [5] If A =M−N be an H-splitting, then A andM are H-matrices and ρ(M−1
N) ≤ ρ(≺ M ≻−1

|N|) < 1.

Lemma 2.9. [5] LetA ∈ Rn×n. IfA is anH-matrix, then |A−1
| ≤ ≺ A ≻

−1 .

Theorem 2.10. IfA be anH-matrix, then Gauss-Seidel method converges for any initial guess x(0).

Proof. LetA be anH-matrix. Consider the Gauss-Seidel splitting ofA = D−E−F . LetM = D−E andN = F .
Suppose ≺ A ≻ be the comparison matrix ofA, so that ≺ A ≻ is anM-matrix. Note that ≺ A ≻= |D| − |E| − |F |,
so ρ((|D| − |E|)−1

|F |) < 1. Hence by Lemma 2.9, we have

|(D− E)−1
F |) ≤ |(D− E)−1

||F | ≤≺ D − E ≻
−1
|F | = (D− |E|)−1

|F |.

Then

ρ((D− E)−1
F ) ≤ ρ(|(D− E)−1

F |) ≤ ρ((D− |E|)−1
|F |) < 1.

This shows that, ρ((D− E)−1
F ) < 1, and GS method converges.

The proof of the following theorem is similar to Theorem 2.10.

Theorem 2.11. IfA be anH-matrix, then Jacobi method is converge for any initial guess x(0).

Corollary 2.12. [4] If the matrixA is a nonsingularH-matrix, the EAOR method converges if

0 < r <
2

1 + ρ(|E| + |F |)
and r2 < ω2 <

2r
1 + ρ(|E| + |F |)

.

Theorem 2.13. [16] IfA is a strictly diagonally dominant matrix by rows, the Jacobi and Gauss-Seidel methods are
convergent.
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Theorem 2.14. [8] If A is a strictly diagonally dominant matrix, then a sufficient condition for the convergence of
theAOR method is

0 < r <
2

1 +maxi(ei + fi)
and 0 < ω <

2r
1 + ρ(Lr,r)

,

where ei, fi are respectively, the sum of the absolute values of the ith row of E and F , respectively. Also, Lr,r is the
iteration matrixAOR method.

Theorem 2.15. [8] IfA is a strictly diagonally dominant matrix, the SOR method is converges if

0 < ω <
2

1 +maxi(ei + fi)
,

where ei, fi are respectively the i-row sums of the absolute of the entries of E and F , respectively.

Theorem 2.16. [7] LetA be anH-matrix. ThenAOR method is convergent.

Theorem 2.17. [17] LetA ∈ Rn×n be nonsingular. Then there exist nonsingular matrices P and Q such that PAQ
is diagonally dominant.

Theorem 2.18. [17] Let A ∈ Rn×n be nonsingular. Then there exists nonsingular matrices P such that PA is
diagonally dominant.

Corollary 2.19. [17] The Jacobi, the Gauss-Seidel, theSOR and theAORmethods are convergent for all nonsingular
linear systems in the sense of preconditioned version.

3. The EDOS iterative method

In this section, we extrapolate DOS iterative method and obtain the following EDOS iterative method
as follows.
The EDOS iterative method: Given an initial guess x(0) for p = 0, 1, 2, ... until {x(p)

} converges, compute the
next iterate x(p+1) according to the following procedure:

Dx(p+ 1
2 ) = [θ1D + (θ1 − 1)E + (θ1 − 1)F ]x(p) + (1 − θ1)b,

(D + θ2E)x̃(p+1) = [(1 − θ2)D− θ2F ]x(p+ 1
2 ) + θ2b,

x(p+1) = (1 − β)x(p) + βx̃(p+1),

(9)

where β ∈ R − {0} is called the extrapolation parameter.
At each step of the EDOS iteration method, we require solutions of two systems whose coefficient matrices
are D and D + θ2E. The first linear subsystem is easy to implement since D is a diagonal matrix, and
in the second system, it is a lower triangular matrix we can use the forward substitution methods. In
matrix-vector form, the above EDOS iterative method can be rewritten as

x(p+1) = T (β, θ1, θ2)x(p) +G(β, θ1, θ2)b,

where

T (β, θ1, θ2) = (1 − β)I + βT (θ1, θ2) and G(β, θ1, θ2) = βC(θ1, θ2). (10)

When F is strictly upper triangular matrix, we observe that for specific values of the parameters θ1, θ2 the
EDOS iterative reduces to extrapolated well-known methods, for instance:
T (β, 0, 0) is the iteration matrix of the extrapolated Jacobi (EJ) method,
T (β, 1, 1) is the iteration matrix of the extrapolated Gauss-Seidel (EGS) method. We will use the numerical
example 5.4 to show that the EGS and EDOS (θ1 = 1, θ2 = 1) methods are the same.
T (β, 1 − θ1, 0) is the iteration matrix of the extrapolated Simultaneous Over-relaxation method,
T (β, 1, f ree) is the iteration matrix of the extrapolated Successive Over-relaxation (ESOR) method.
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4. Convergence analysis and consistency of the EDOS method

In this section, we discuss the consistency of EDOS iterative method and indicate that the EDOS iterative
method converges to the unique solution of the system (1).

Theorem 4.1. [16] If A is a nonsingular matrix, then the iteration method (8) is consistent with (1) if and only if
C = (I − T )A−1b.

Theorem 4.2. [16] If A is a nonsingular matrix, then the iteration method (8) is completely consistent with (1) if
and only if it is consistent and (I − T ) is nonsingular.

Since

(I − T (β, θ1, θ2))A−1b = (I − (1 − β)I − βT (θ1, θ2))A−1b = β(I − T (θ1, θ2))A−1b
= βC(θ1, θ2) = G(β, θ1, θ2),

and

det(I − T (β, θ1, θ2)) = det(I − (1 − β)I − βT (θ1, θ2)) = βn det(I − T (θ1, θ2)) , 0.

It follows that the EDOS iterative method is completely consistent with the system (1).

Lemma 4.3. [1]. LetA ∈ Cn,A =Mi −Ni (i = 1, 2) are two splitting of the matrixA, and let x(0)
∈ Cn be a given

initial vector. If {x(p)
} is a two-step iteration sequence defined byM1x(p+ 1

2 ) = N1x(p) + b,

M2x(p+1) = N2x(p+ 1
2 ) + b, p = 0, 1, 2, ...,

then

x(p+1) =M−1
2 N2M

−1
1 N1x(p) +M−1

2 (I +N2M
−1
1 )b, p = 0, 1, 2, ... .

Moreover, if the spectral radius ρ(M−1
2 N2M

−1
1 N1) < 1, then the iterative sequence {x(p)

} converges to the unique
solution x(∗)

∈ Cn of the system of linear equations (1) for all initial vectors x(0)
∈ Cn.

Theorem 4.4. Let γ =ℜ(γ)+ iℑ(γ), ν are eigenvalues of Q(θ1, θ2) and T (θ1, θ2), respectively. Iteration of scheme
(3) is convergent for 0 ≤ θ1 ≤ 1 , 0 < θ2 ≤ 1, if and only if −1 < ℑ(γ) < 1 and −1 −

√
1 − ℑ(γ)2 < ℜ(γ) <

−1 +
√

1 − ℑ(γ)2.

Proof. From (4), we have ν = 1+γ = 1+ℜ(γ)+ iℑ(γ), so |ν|2 = (1+ℜ(γ))2+ (ℑ(γ))2 =ℜ(γ)2+2ℜ(γ)+ℑ(γ)2+1.
Since |ν| ≤ ρ(T (θ1, θ2)) < 1 thus |ν| < 1, therefore we have −1 −

√
1 − ℑ(γ)2 < ℜ(γ) < −1 +

√
1 − ℑ(γ)2 and

−1 ≤ ℑ(γ) ≤ 1.

Corollary 4.5. Let 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1. If the real parts of the eigenvalues of matrix Q(θ1, θ2) defined in (5)
are all greater than zero, then iteration scheme (3) is divergent.

Theorem 4.6. [3] Let A be a strictly diagonally dominant, 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1, E = (ei j),F = ( fi j) and
ei j fi j ≥ 0, then the DOS iterative method is convergent to the exact solution of the linear system (1).

Theorem 4.7. [3] SupposeA be anH-matrix,A = E +D +F , whereD is a diagonal matrix, E is a strictly lower
triangular matrix, F is a general matrix, and 0 ≤ θ1 ≤ 1 , 0 < θ2 ≤ 1, then the DOS iterative method is convergent
to the exact solution of the linear system (1).
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Theorem 4.8. If the DOS method converges, then the EDOS iterative method is convergent to the exact solution of
the linear system (1) or equivalently, ρ(T (β, θ1, θ2)) < 1 if and only if

0 < β < min
γ∈Λ(Q(θ1,θ2))

{
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 }, where γ =ℜ(γ) + iℜ(γ).

Proof. Let λ is an eigenvalue of T (β, θ1, θ2), it follows from Eq.(10) that

λ = 1 − β + βν = 1 − β + β(1 +ℜ(γ) + iℑ(γ)) = 1 + βℜ(γ) + iβℑ(γ),

which implies that

|λ|2 = (1 + βℜ(γ))2 + (βℑ(γ))2 = β2
ℜ(γ)2 + 2βℜ(γ) + β2

ℑ(γ)2 + 1.

To get ρ(T (β, θ1, θ2)) < 1, it is enough |λ| < 1, therefore,

β2
ℜ(γ)2 + 2βℜ(γ) + β2

ℑ(γ)2 < 0. (11)

We distinguish two cases according to whether β is less or greater than zero.
Case I: Assuming that β > 0 using (11), we have

βℜ(γ)2 + 2ℜ(γ) + βℑ(γ)2 < 0,

we obtain

β <
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 ,

sinceℜ(γ) < 0, we have 0 < β < −2ℜ(γ)
ℜ(γ)2+ℑ(γ)2 . Hence, ρ(T (β, θ1, θ2)) < 1 if and only if

0 < β < min
γ∈Λ(Q(θ1,θ2))

{
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 }.

Case II: Let β < 0, then (11) gives

βℜ(γ)2 + 2ℜ(γ) + βℑ(γ)2 > 0.

We have β > −2ℜ(γ)
ℜ(γ)2+ℑ(γ)2 , which contradicts to the Theorem 4.4. So there is no convergence for β < 0.

Theorem 4.9. Let conditions of Theorem 4.8 hold. If β∗ is optimum extrapolated parameter, then β∗ = −2
ℜmax(γ)+ℜmin(γ) ,

whereℜmax(γ) = maxγ∈Λ(Q(θ1,θ2)){ℜ(γ)}, andℜmin(γ) = minγ∈Λ(Q(θ1,θ2)){ℜ(γ)}.

Proof. Suppose λ is an eigenvalue of T (β, θ1, θ2), it follows from Eq. (10) that

λ = 1 − β + βν = 1 − β + β(1 +ℜ(γ) + iℑ(γ)) = 1 + βℜ(γ) + iβℑ(γ),

then we have

ρ(T (β, θ1, θ2))2 = max
λ∈Λ(T (β,θ1,θ2))

{|λ|2} = max
γ∈Λ(Q(θ1,θ2))

{|1 + βℜ(γ)|2 + |βℑ(γ)|2}

≤ max
γ∈Λ(Q(θ1,θ2))

|1 + βℜ(γ)|2 + max
γ∈Λ(Q(θ1,θ2))

β2
|ℑ(γ)|2, (12)

where Λ(T (β, θ1, θ2)) is the spectrum of matrix T (β, θ1, θ2). There exists β∗ > 0, such that

max
γ∈Λ(Q(θ1,θ2))

{|1 + βℜ(γ)|} =
{

1 + βℜmax(γ) i f 0 < β ≤ β∗,
−1 − βℜmin(γ) i f β ≥ β∗,



R. Shokrpour, G. Ebadi / Filomat 36:8 (2022), 2749–2759 2755

where 1 + β∗ℜmax(γ) = −1 − β∗ℜmin(γ), therefore β∗ = −2
ℜmax(γ)+ℜmin(γ) . That β∗ is optimum extrapolated parameter.

Thus, from (12) we have

ρ(T (β, θ1, θ2))2
≤

{
(1 + βℜmax(γ))2 + β2

ℑmax(γ)2 i f 0 < β ≤ β∗,
(−1 − βℜmin(γ))2 + β2

ℑmax(γ)2 i f β ≥ β∗.

With defining the functions f1(β) and f2(β) with

f1(β) = (1 + βℜmax(γ))2 + β2
ℑmax(γ)2 and f2(β) = (−1 − βℜmin(γ))2 + β2

ℑmax(γ)2,

we have

min
β
ρ(T (β, θ1, θ2))2

≤

{
minβ f1(β) i f 0 < β ≤ β∗,
minβ f2(β) i f β ≥ β∗.

In order to find min0<β≤β∗ f1(β) and minβ≥β∗ f2(β), after differentiating the functions f1(β), f2(β), we obtain that
f ′1(β) ≥ 0 iff β ≥ β1 and f ′2(β) ≥ 0 iff β ≥ β2 where

β1 =
−ℜmax(γ)

ℜmax(γ)2 + ℑmax(γ)2 and β2 =
−ℜmin(γ)

ℜmin(γ)2 + ℑmax(γ)2 .

Therefore

min
β
ρ(T(β, θ1, θ2)) ≤


ℑmax(γ)

√
ℜmax(γ)2+ℑmax(γ)2

i f 0 < β ≤ β∗,

ℑmax(γ)
√
ℜmin(γ)2+ℑmax(γ)2

i f β ≥ β∗,

where ℑmax(γ) = maxγ∈Λ(Q(θ1,θ2)){ℑ(γ)}.

Theorem 4.10. If ρ(T (θ1, θ2)) > 1, then we have the following statements.
Case I: Ifℜ(γ) > 0 for all γ ∈ Λ(Q(θ1, θ2)), then maxγ∈Λ(Q(θ1,θ2)){

−2ℜ(γ)
ℜ(γ)2+ℑ(γ)2 } < β < 0.

Case II: Ifℜ(γ) < 0 for all γ ∈ Λ(Q(θ1, θ2)), then 0 < β < minγ∈Λ(Q(θ1,θ2)){
−2ℜ(γ)

ℜ(γ)2+ℑ(γ)2 }.

Proof. Similar to the proof of Theorem 4.8, we have

β2
ℜ(γ)2 + 2βℜ(γ) + β2

ℑ(γ)2 < 0. (13)

Let β < 0, then (13) gives βℜ(γ)2 + 2ℜ(γ) + βℑ(γ)2 > 0, so whenℜ(γ) > 0 for all γ ∈ Λ(Q(θ1, θ2)), we can write
−2ℜ(γ)

ℜ(γ)2+ℑ(γ)2 < β < 0, therefore we have maxγ∈Λ(Q(θ1,θ2)){
−2ℜ(γ)

ℜ(γ)2+ℑ(γ)2 } < β < 0.
Now, Let β > 0, then (13) gives βℜ(γ)2 + 2ℜ(γ) + βℑ(γ)2 < 0, so whenℜ(γ) < 0 for all γ ∈ Λ(Q(θ1, θ2)), we can
write 0 < β < −2ℜ(γ)

ℜ(γ)2+ℑ(γ)2 , therefore we will have 0 < β < minγ∈Λ(Q(θ1,θ2)){
−2ℜ(γ)

ℜ(γ)2+ℑ(γ)2 }.

Theorem 4.11. LetA be anH-matrix. Then sufficient condition for ρ(T (β, 0, 0)) < 1 is

0 < β < min
γ∈Λ(Q(0,0))

{
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 }.

Proof. SinceA is anH-matrix, therefore Theorem 2.11 implies that Jacobi method converges. So from Theorem 4.8
the proof is complete.

Theorem 4.12. LetA be anH-matrix. Then sufficient condition for ρ(T (β, 1, 1)) < 1 is

0 < β < min
γ∈Λ(Q(1,1))

{
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 }.
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Proof. Since A is an H-matrix, therefore Theorem 2.11 implies that Gauss-Seidel method converges. This result,
together with Theorem 4.8 proves the validity of the theorem.

Theorem 4.13. Let A be a strictly diagonally dominant matrix. Assume that 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1, then
extrapolated successive over-relaxation ESOR method converges or equivalently, ρ(T (β, 1, f ree)) < 1 if

0 < β < min
γ∈Λ(Q(1, f ree))

{
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 }.

Theorem 4.14. LetA be anH-matrix. Then sufficient condition for ρ(T (β, 1 − θ1, 0)) < 1 is

0 < β < min
γ∈Λ(Q(1−θ1,0))

{
−2ℜ(γ)

ℜ(γ)2 + ℑ(γ)2 }.

Using the singular value decomposition we can convert a nonsingular matrixA to a strictly diagonally
dominant matrix. We can find nonsingular matrices P and Q using theSVD decomposition such that PAQ
is strictly diagonally dominant [17, 18]. Also, Yuan in Theorem 2.18 showed that there exists a nonsingular
matrix P such that PA is strictly diagonally dominant.

As said in [3], the DOS iteration method converges unconditionally when A is strictly diagonally
dominant, for 0 ≤ θ1 ≤ 1 and 0 < θ2 ≤ 1. It is obvious that after finding P and Q such that PAQ is strictly
diagonally dominant, instead of solving (1) we can solve PAQy = Pb, x = Qy.

5. Numerical experiments

In this section, we will use four examples to exhibit the effectiveness of our method. We also compare
the performance of the EDOS method with the DOS method from the point of view of the iteration counts
(denoted as ”IT”), CPU times (denoted as ”CPU”) and the spectral radius (denoted as ”ρ”). We denote ”β∗”,
the optimal value β. The numerical experiments were computed in double precision in Matlab R2016b on
a PC computer with Intel(R) Core (TM) i7-7700k CPU 4.20GHz, 8.00 GB memory with machine precision
and Windows 10 operating system. In our implementations, the initial guess x(0) is chosen zero vector. In
all examples, the stopping criterion is ∥b−Ax(p)

∥2
∥b∥2

< 10−5.

In our tests, we take h = 1
m+1 , n = m2, θ1 = 0.25, θ2 = 1 and for the tests reported in this section, F is strictly

upper triangular matrix.

Example 5.1. [3] Consider the linear system

(πKV +KH)x = b,

where KV and KH are the viscous and hysteretic damping matrices, respectively. Here, KV = 10In, KH = 0.02W,
W = Im ⊗Vm +Vm ⊗ Im,Vm = h−2tridia1(−1, 2,−1) ∈ Rm×m. We take b = (−π2In +W + πKV +KH)B, where
B = (1, 1, ..., 1)T.

Table 1: Numerical results of Example 5.1
.

DOS EDOS
m IT CPU ρ(T(θ1, θ2)) β∗ IT CPU ρ(T(β, θ1, θ2))
10 4 0.00039 0.03080 1.008 4 0.00034 0.0231
20 7 0.0009 0.1935 1.08 6 0.0008 0.1290
30 12 0.0028 0.4010 1.18 9 0.0017 0.2932
40 17 0.0058 0.5661 1.28 12 0.0034 0.4445
50 24 0.130 0.6808 1.48 15 0.0088 0.5276



R. Shokrpour, G. Ebadi / Filomat 36:8 (2022), 2749–2759 2757

Example 5.2. [3] Consider the linear system

(Im ⊗ Vm + Vm ⊗ Im)x = b,

where Vm = tridia1(−1, 2,−1) ∈ Rm×m. We take the right-hand side vector to be

b = [10(Im ⊗ Vc + Vc ⊗ Im) + 9(e1eT
m + emeT

1 ) ⊗ Im − (Im ⊗ Vm + Vm ⊗ Im)]B,

where Vc = Vm − e1eT
m − emeT

1 ∈ R
m×m, e1 and em are the first and the last unit vectors in Rm, respectively, and

B = (1, 1, ..., 1)T.

Table 2: Numerical results of Example 5.2.

DOS EDOS
m IT CPU ρ(T(θ1, θ2)) β∗ IT CPU ρ(T(β, θ1, θ2))
10 86 0.0057 0.8938 1.75 47 0.0032 0.8141
20 280 0.0302 0.9697 1.91 146 0.0167 0.9421
30 568 0.09798 0.9860 1.95 290 0.0515 0.9727
40 940 0.2410 0.9920 1.96 478 0.1333 0.9842
50 1391 0.5853 0.9948 1.97 705 0.2842 0.9898

Example 5.3. [3] Letting

(W +
3 −
√

3
h

I)x = b,

whereW ∈ Rn×n,W = Im ⊗ Vm + Vm ⊗ Im, with Vm = h−2 tridia1(−1, 2,−1) ∈ Rm×m. b = [bs] where

bs =
s

τ(s + 1)2 , s = 1, 2, ...,n.

Table 3: Numerical results of Example 5.3

DOS EDOS
m IT CPU ρ(T(θ1, θ2)) β∗ IT CPU ρ(T(β, θ1, θ2))
10 57 0.0052 0.8280 1.71 31 0.0022 0.7059
20 140 0.0157 0.9308 1.85 73 0.0081 0.8720
30 229 0.0427 0.9589 1.86 121 0.0223 0.9235
40 319 0.0843 0.9712 1.87 168 0.0473 0.9462
50 408 0.1672 0.9780 1.88 207 0.0882 0.9571

In three examples, we compare the EDOS iteration method with the DOS iteration method. Numerical
results for examples 1-3 are listed in Tables 1-3, respectively. We observe that the performance of EDOS
iterative method is better than the DOS iteration method from the point of view of spectral radius, iteration
numbers and CPU time.

Example 5.4. [10] Consider linear equations (1) with Hermitian positive definite coefficient matrix, where A =
0.1πIn + 0.02Kn withKn = Im ⊗ Fm + Fm ⊗ Im where Fm = (m + 1)2 tridia1(−1, 2, 1) ∈ Rm×m, and b = (1, 1, ..., 1)T.

Numerical result for example (5.4) is listed in Table 4, it shows that the iteration numbers and CPU times
with EGS and EDOS (θ1 = 1, θ1 = 1) are the same.
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Table 4: Numerical results of Example 5.4

m GS EGS DOS EDOS DOS EDOS
(θ1 = 1, (θ1 = 1, (θ1 = 0.25, (θ1 = 0.25,
θ2 = 1) θ2 = 1) θ2 = 1) θ2 = 1)

IT 1294 20 1294 20 10 7
CPU 1.2534 0.0019 0.1003 0.0019 0.0010 0.0007

40 ρ 0.9895 0.4921 0.9895 0.4921 0.3790 0.2659
β∗ —— 0.75 —— 0.75 —— 0.8740
IT 2861 20 2861 20 10 7

CPU 17.864 0.007 0.4660 0.007 0.0020 0.0014
60 ρ 0.9952 0.4964 0.9952 0.4964 0.3809 0.2680

β∗ —— 0.75 —— 0.75 —— 0.8740
IT 5043 20 5043 20 10 7

CPU 100.6645 0.0061 0.8313 0.0061 0.0043 0.0026
80 ρ 0.9973 0.4980 0.9952 0.4980 0.3816 0.2688

β∗ —— 0.75 —— 0.75 —— 0.8740

6. Conclusions

We construct a new method, called the EDOS iterative method which obtained from the combination
of DOS splitting iteration method and the extrapolation method for solving the nonsingular linear system.
We demonstrate that EDOS method converges to the unique solution of (1). An upper bound for the
extrapolation parameter is derived. We have compared the numerical results of the EDOS iterative method
with the DOS iteration method. Numerical results show that the EDOS method is superior to the DOS
method in terms of the iteration counts, the CPU times and spectral radius.
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