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Complete Moment Convergence for Weighted Sums of Widely Orthant
Dependent Random Variables and its Application in Nonparametric

Regression Model
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aSchool of Mathematical Science, Anhui University, HeFei, 230601, P.R. China

Abstract. In this paper, the complete moment convergence of weighted sums for widely orthant dependent
(WOD, in short) random variables are established. The results obtained in the paper generalize and improve
some known ones. As an application of the main results, we present a result on complete consistency for
the weighted estimator in a nonparametric regression model based on WOD errors.

1. Introduction

The concept of the complete convergence was introduced by Hsu and Robbins [1]. A sequence of
random variables {Xn, n ≥ 1} is said to converge completely to a constant θ if

∑
∞

n=1 P(|Xn − θ| > ε) < ∞. In
view of Borel-Cantelli lemma, the above result implies that Xn → θ almost surely as n→∞. Therefore the
complete convergence is a very important tool in establishing almost sure convergence of summation of
random variables as well as weighted sums of random variables.

Hsu and Robbins[1] proved that the sequence of arithmetic means of independent identically distributed
random variables converges completely to the expected value of the summands, provided the variances
is finite. The converse was proved by Erdös [2]. This Hus-Robbins-Erdös’s result was generalized in
different ways. Katz [3], Baum and katz [4], and Chow [5] obtained a generalization of complete conver-
gence for a sequence of independent and identically distributed random variables with normalization of
Marcinkiewicz-Zygmund type.

Chow [7] presented the following more general concept of the complete moment convergence. Let
{Xn, n ≥ 1} be a random variables and an > 0, bn > 0, q > 0. If

∑
∞

n=1 anE{b−1
n |Xn|−ε}

q
+ < ∞ for all ε > 0, then Xn

is said to be complete moment convergence. It is well known that complete moment convergence implies
complete convergence. Thus, complete moment convergence is stronger than complete convergence. From
then on, many authors have devoted their study to complete convergence, for more details we can refer to

2020 Mathematics Subject Classification. Primary 60F15
Keywords. widely orthant dependent random variables; complete moment convergence; nonparametric regression model
Received: 16 March 2018; Revised: 14 November 2018; Accepted: 29 April 2019
Communicated by Biljana Popović
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Sung [9], Wang et al. [11], and so on.

The following concept of widely orthant dependence (WOD, in short) random variables was introduced
by Wang et al. [14] for risk model as follows.

Definition 1.1. For the random variables {Xn,n ≥ 1}, if there exists a finite positive sequence {1U(n),n ≥ 1}
satisfying for each n ≥ 1 and for all xi ∈ (−∞,+∞), 1 ≤ i ≤ n,

P(X1 > x1,X2 > x2, · · · ,Xn > xn) ≤ 1U(n)
∏n

i=1 P(Xi > xi),

then we say that the random variables {Xn,n ≥ 1} are widely upper orthant dependent (WUOD, in short);
if there exists a finite positive sequence {1L(n),n ≥ 1} satisfying for each n ≥ 1 and for all xi ∈ (−∞,+∞),
1 ≤ i ≤ n,

P(X1 ≤ x1,X2 ≤ x2, · · · ,Xn ≤ xn) ≤ 1L(n)
∏n

i=1 P(Xi ≤ xi),

then we say that the {Xn,n ≥ 1} are widely lower orthant dependent (WLOD, in short); if they are both
WUOD and WLOD, then we say that the {Xn,n ≥ 1} are WOD random variables, and 1U(n), 1L(n), n ≥ 1,
are called dominating coefficients.

It is easily seen that 1U(n) ≥ 1, 1L(n) ≥ 1. If both (1.1) and (1.2) hold for 1L(n) = 1U(n) = M ≥ 1 for any
n ≥ 1, then {Xn,n ≥ 1} are extended negatively dependent (END, in short) random variables. If both (1.1)
and (1.2) hold for 1L(n) = 1U(n) = 1 for any n ≥ 1, then {Xn,n ≥ 1} are called negatively orthant dependent
(NOD, in short) random variables. It is well known that negatively associated (NA, in short) random
variables are NOD random variables. For more details about NOD sequence, we can refer to Shen et al.
[15], Wu and Jiang [16], Sung [17], and so on. Hu [12] pointed out that negatively superadditive dependent
(NSD, in short) random variables are NOD. For the details about the concept and the probability limit
theory of NSD sequence, one can refer to Shen et al. [20], Chen et al. [21], and so forth. Hence, the class of
WOD random variables include independent sequence, NA sequence, NSD sequence, NOD sequence and
END sequence as special cases. So, it is interesting and necessary to study the convergence properties of
WOD random variables.

Many literatures have discussed the probability limiting behavior of WOD random variables and ob-
tained many applications. For example, Wang et al. [14] investigated the complete convergence for WOD
random variables and given its applications in nonparametric regression models. Chen et al. [27] consid-
ered uniform asymptotics for the finite-time ruin probabilities of two kinds of nonstandard bidimensional
renewal risk models with constant interest forces and diffusion generated by Brownian motions. Shen [25]
established the Bernstein-type inequality for WOD random variables and gave some applications. Wang
and Hu [26] investigated the consistency of the nearest neighbor estimator of the density function based on
WOD samples, and so on.

In this paper, we will investigate complete moment convergence for WOD random variables. The results
obtained in this paper generalize and improve some known ones. As an application, we present a result on
complete consistency for the weighted estimator in a nonparametric regression model based on WOD errors.

The following definitions of stochastic domination and slowly varying function are important tool for
the results proof.

Definition 1.2. A sequence of random variables {Xn,n ≥ 1} is said to be stochastically dominated by
random variable X if there exists a positive constant C such that

P(|Xn| ≥ x) ≤ CP(|X| ≥ x)
for all x ≥ 0 and all n ≥ 1.
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Definition 1.3. A real-valued function l(x), positive and measurable on (0,+∞), is said to be slowing
varying if

limx→∞
l(xλ)
l(x) = 1

for each λ > 0.

The layout of this paper is as follows. Some preliminary lemmas are provided in Section 2. Main results
and their proofs are stated in Section 3. An application in nonparametric regression model of main result is
presented in Section 4. Throughout this paper, let {Xn,n ≥ 1} be a sequence of WOD random variables. I(A)
is the indicator of the set A. Let C be a positive constant which may be different in various places. Denote
X+ =max{0, X}, X− =max{0,−X}, and log x = ln max{x, e}. an =O(bn) stands for an ≤ Cbn, ⌊x⌋ stands for the
integer part of x, and 1(n)=max{1L(n), 1U(n)}.

2. Preliminaries

This section will give some lemmas, which are useful and necessary to the proofs of main results. The
first was presented by Wang et al. [14], and the second lemma was presented by Wang et al. [23]. They are
basic properties for WOD random variables.

Lemma 2.1. Let {Xn,n ≥ 1} be WLOD(WUOD) with dominating coefficients 1L(n),n ≥ 1(1U(n), n ≥ 1).
If { fn(·),n ≥ 1} are nondecreasing, then { fn(Xn),n ≥ 1} are still WLOD(WUOD) with dominating coefficients
1L(n),n ≥ 1(1U(n),n ≥ 1); if { fn(·),n ≥ 1} are nonincreasing, then { fn(Xn),n ≥ 1} are WUOD(WLOD) with
dominating coefficients 1L(n),n ≥ 1(1U(n),n ≥ 1).

Lemma 2.2. Let {Xn,n ≥ 1} be a sequence of WOD random variables with dominating coefficients
1n=max{1L(n), 1U(n)}. If { fn,n ≥ 1} is a sequence of real nondecreasing (or nonincreasing) functions, then
{ fn(Xn),n ≥ 1} is still a sequence of WOD random variables with the same dominating coefficients 1(n).

According to Shout [6] and Wang et al. [23], we can obtain the following Marcinkiewicz-Zygmund-type
maximun inequality and Rosenthal-type maximun inequality for WOD random variables.

Lemma 2.3. Let q ≥ 1 and {Xn,n ≥ 1} be a sequence of WOD random variables with EXn = 0, E|Xn|
q < ∞

for each n ≥ 1 and dominating coefficients 1n=max{1L(n), 1U(n)}. Let {ani, 1 ≤ i ≤ n,n ≥ 1} be an array of
constants. Then there exist positive constants C1(q) and C2(q) depending only on q such that

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣
q ≤ [C1(q) + C2(q)1(n)] logq n

n∑
i=1

E|aniXi|
q, 1 < q ≤ 2,

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣
q ≤ C1(q) logq

n∑
i=1

E|aniXi|
q + C2(q)1(n) logq

 n∑
i=1

E|aniXi|
2


q
2

, q > 2.

Lemma 2.4. Suppose that {Xn,n ≥ 1} is a sequence of random variables stochastically dominated by a
random variable X. Then, for all q > 0 and x > 0,

E|Xn|
qI(|Xn| ≤ x) ≤ C(E|X|qI(|X| ≤ x) + xqP(|X| > x)),

E|Xn|
qI(|Xn| > x) ≤ C(E|X|qI(|X| > x)).

The last one is essential in proving our results, which can be found in Sung [33].
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Lemma 2.5. Let {Yi, 1 ≤ i ≤ n} and {Zi, 1 ≤ i ≤ n} be a sequence of random variables. Then for any q > 1,
ε > 0, a > 0,

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

(Yi + Zi)

∣∣∣∣∣∣∣ − εa

+

≤

(
ε−q +

1
q − 1

)
a1−qE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Yi

∣∣∣∣∣∣∣
q + E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

Zi

∣∣∣∣∣∣∣
 .

The following one is an important property of stochastic domination. The first statement is due to Adler
et al. [8] and the second statement is well known.

3. Main Results and proofs

Theorem 3.1. Let α > 1
2 , αp > 1, p ≥ 2. Let {Xn,n ≥ 1} be a sequence of WOD random variables which

is mean zero and stochastically dominated by a random variable X. Denote the dominating coefficients
1(n)=max{1L(n), 1U(n)}. Let E|X|p logq(1 + |X|) < ∞ for some q > max{p, αp−1

α− 1
2
}. Assume that {ani, 1 ≤ i ≤

n, n ≥ 1} is an array of constants satisfying

n∑
i=1

|ani|
q = O(nβ), (3.1)

where β ≥ 1. Then, for every ε > 0,

∞∑
n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))
1

q−1 nα

+

< ∞, (3.2)

and thus

∞∑
n=1

nαp−β−1P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε(1 + 1(n))
1

q−1 nα
 < ∞. (3.3)

Proof. Without loss of generality, we assume that ani ≥ 0, 1 ≤ i ≤ n, n ≥ 1 (otherwise, we can note that
ani = a+ni − a−ni). For n ≥ 1 and 1 ≤ i ≤ n, denote

Xni = −nαI(Xi < −nα) + XiI(|Xi| ≤ nα) + nαI(Xi > nα),

X∗ni = Xi − Xni = nαI(Xi < −nα) − nαI(Xi > nα) + XiI(|Xi| > nα),

and X̃ni = Xni − EXni. Thus, {X∗ni, 1 ≤ i ≤ n, n ≥ 1} are still WOD random variables from Lemma 2.2. It is
easily checked that aniXi=aniX∗ni + aniXni = aniX∗ni + aniEXni + aniX̃ni, 1 ≤ i ≤ n.

By Lemma 2.5, we take a = (1 + 1(n))
1

q−1 nα, so we can obtain that

∞∑
n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))
1

q−1 nα

+

≤ C
∞∑

n=1

nαp−αq−β−1 1
1 + 1(n)

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniX̃ni

∣∣∣∣∣∣∣
q +

+ C
∞∑

n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniX∗ni

∣∣∣∣∣∣∣

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+ C
∞∑

n=1

nαp−α−β−1

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

E(aniXni)

∣∣∣∣∣∣∣


=: C(H1 +H2 +H3). (3.4)

For H1, note that 1(n) ≥ 1, p ≥ 2, q > αp−1
α− 1

2
, it is obviously that q > 2. We get by Lemma 2.3 that

H1 ≤ C
∞∑

n=1

nαp−αq−β−1 1
1 + 1(n)

logq n


n∑

i=1

E|aniX̃ni|
q + 1(n)

 n∑
i=1

E|aniX̃ni|
2


q
2


≤ C
n∑

n=1

nαp−αq−β−1 logq n
n∑

i=1

E|aniX̃ni|
q +

∞∑
n=1

nαp−αq−β−1 logq n

 n∑
i=1

E|aniX̃ni|
2


q
2

=: C(H11 +H12). (3.5)

Following from Jensen’s inequality, Lemma 2.4 and E|X|p logq(1 + |X|) < ∞, we can get that

H11 ≤ C
∞∑

n=1

nαp−αq−β−1 logq n
n∑

i=1

aq
ni(E|Xi|

qI(|Xi| ≤ nα) + nαqEI(|Xi| > nα))

≤ C
∞∑

n=1

nαp−αq−1 logq nE|X|qI(|X| ≤ nα) + C
∞∑

n=1

nαp−1 logq nP(|X| > nα)

≤ C
∞∑

n=1

nαp−αq−1 logq n
n∑

m=1

E|X|qI((m − 1)α < |X| ≤ mα)

+ C
∞∑

n=1

nαp−2α−1 logq n
∞∑

m=n

E|X|2I(mα < |X| ≤ (m + 1)α)

= C
∞∑

m=1

E|X|qI((m − 1)α < |X| ≤ mα)
∞∑

n=m

nαp−αq−1 logq n

+ C
∞∑

m=1

E|X|2I(mα < |X| ≤ (m + 1)α)
m∑

n=1

nαp−2α−1 logq n

≤ C
n∑

m=1

E|X|qI((m − 1)α < |X| ≤ mα)mαp−αq logq m + CE|X|p logq(1 + |X|)

≤ CE|X|p logq(1 + |X|) < ∞. (3.6)

For H12, by Hölder inequality and (3.1), we can know that n∑
i=1

a2
ni


q
2

≤ n
q
2−1

n∑
i=1

aq
ni ≤ Cn

q
2+β−1. (3.7)

Meanwhile, we note the fact EXi = 0, it can be checked that EX̃2
ni ≤ CEX2 < ∞, 1 ≤ i ≤ n. Hence, we

obtain that for any q > max{p, αp−1
α− 1

2
} that

H12 =

∞∑
n=1

nαp−αq−β−1 logq n

 n∑
i=1

E|aniX̃ni|
2


q
2

≤ C
∞∑

n=1

nαp−αq+ q
2−2 logq n(EX2)

q
2 < ∞. (3.8)
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For H2 and H3, similar to the proof of H1, following from EXi = 0, Cr-inequality, Jensen’s inequality,
Lemma 2.3, Lemma 2.4, and q >max{p, αp−1

α− 1
2
}, we have that

H2 ≤ C
∞∑

n=1

nαp−α−β−1
n∑

i=1

aniE|Xi|I(|Xi| > nα)

≤ C
∞∑

n=1

nαp−α−1E|X|I(|X| > nα)

≤ C
∞∑

m=1

E|X|I(mα < |X| ≤ (m + 1)α)mαp−α

≤ CE|X|p < ∞. (3.9)

H3 =

∞∑
n=1

nαp−α−β−1

max
1≤k≤n

∣∣∣∣∣∣∣
n∑

i=1

E(aniXni)

∣∣∣∣∣∣∣


≤ C
∞∑

n=1

nαp−α−β−1
n∑

i=1

aniE|Xi|I(|Xi| > nα)

≤ CE|X|p < ∞. (3.10)

Combining (3.4)-(3.10), we get (3.2) immediately.
Now we will show that (3.2) implies (3.3). Denote Sk =

∑k
i=1 aniXi. In fact, it can be checked that

∞ >
∞∑

n=1

nαp−α−β−1E(max
1≤k≤n

|Sk| − ε(1 + 1(n))
1

q−1 nα)+

≥

∞∑
n=1

nαp−α−β−1
∫ ε(1+1(n))

1
q−1 nα

0
P(max

1≤k≤n
|Sk| − εnα > t)dt

≥ C
∞∑

n=1

nαp−β−1P(max
1≤k≤n

|Sk| > ε(1 + 1(n))
1

q−r nα). (3.11)

This completes the proof of the theorem.

According to Bai and Su [28] and Theorem 3.1, we can get Corollary 3.2 as follows.

Corollary 3.2. Suppose that the conditions of Theorem 3.1 hold and l(x) > 0 be a slowly varying func-
tion. If E[|X|pl(|X|

1
α )] < ∞, then for any ε > 0,

∞∑
n=1

nαp−α−β−1l(n)E


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))
1

q−1 nα

+

< ∞,

and thus

∞∑
n=1

nαp−β−1l(n)P


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ > ε(1 + 1(n))
1

q−1 nα
 < ∞.
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Theorem 3.3. Let α > 1
2 , 1 < p < 2. Let {Xn,n ≥ 1} be a sequence of WOD random variables which is

mean zero and stochastically dominated by a random variable X, and E|X|p log2(1 + |X|) < ∞. Denote the
dominating coefficients 1(n)=max{1L(n), 1U(n)}. Assume further that {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of
constants satisfying

n∑
i=1

|ani|
2 = O(nβ), (3.12)

where β ≥ 1. Then for every ε > 0

∞∑
n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))nα

+

< ∞, (3.13)

and thus
∞∑

n=1

nαp−β−1P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε(1 + 1(n))nα
 < ∞. (3.14)

Proof. Similarly, in order to prove Theorem 3.3, we use the same notation in the proof of Theorem 3.1 and
assume that ani ≥ 0. We take r = 1, a = (1 + 1(n))nα, and q = 2 in Lemma 2.5, so we can obtain that

∞∑
n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))nα

+

≤ C
∞∑

n=1

nαp−2α−β−1 1
1 + 1(n)

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniX̃ni

∣∣∣∣∣∣∣
2

+ C
∞∑

n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniX∗ni

∣∣∣∣∣∣∣


+ C
∞∑

n=1

nαp−α−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXni

∣∣∣∣∣∣∣


=: C(Q1 +Q2 +Q3).

In order to prove (3.13), it suffices to prove Q1 < ∞, Q2 < ∞ and Q3 < ∞. In view of proof of Theorem
3.1, it is easily checked that Q2 < ∞, Q3 < ∞, so we omitted the details. Note that 1(n) ≥ 1, we get by
Lemma 2.3, Lemma 2.4, Cr-inequality, Jensen’s inequality that

Q1 ≤ C
∞∑

n=1

nαp−2α−β−1 1
1 + 1(n)

log2 n

 n∑
i=1

E|aniX̃ni|
2 + 1(n)

n∑
i=1

E|aniX̃ni|
2


≤ C

n∑
n=1

nαp−2α−β−1 log2 n
n∑

i=1

E|aniX̃ni|
2

≤ C
∞∑

n=1

nαp−2α−1 log2 nE|X|2I(|X| ≤ nα) + C
∞∑

n=1

nαp−1 log2 nP(|X| > nα)

≤ C
∞∑

m=1

E|X|2I((m − 1)α < |X| ≤ mα)
∞∑

n=m

nαp−α−1 log2 n + CE|X|p log2(1 + |X|)
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≤ CE|X|p log2(1 + |X|) < ∞. (3.15)

Therefore the desired result (3.13) obtained.
Similar to the proof of (3.11). Denote Sk =

∑k
i=1 aniXi. We can get that

∞ >
∞∑

n=1

nαp−α−β−1E(max
1≤k≤n

|Sk| − ε(1 + 1(n))nα)+

≥

∞∑
n=1

nαp−α−β−1
∫ ε(1+1(n))nα

0
P(max

1≤k≤n
|Sk| − ε(1 + 1(n))nα > t)dt

≥ C
∞∑

n=1

nαp−2P(max
1≤k≤n

|Sk| > ε(1 + 1(n))nα). (3.16)

This completes the proof of the theorem.

Corollary 3.4. Suppose that the conditions of Theorem 3.3 hold and l(x) > 0 be a slowly varying function.
If E[|X|pl(|X|

1
α )] < ∞, then for any ε > 0,

∞∑
n=1

nαp−α−β−1l(n)E


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))nα

+

< ∞,

and thus
∞∑

n=1

nαp−β−1l(n)P


∣∣∣∣∣∣∣

n∑
i=1

aniXi

∣∣∣∣∣∣∣ > ε(1 + 1(n))nα
 < ∞.

Theorem 3.5. Let 1
2 < α <

1+β
2 , and {Xn,n ≥ 1} be a sequence of WOD random variables which is

mean zero and stochastically dominated by a random variable X. Assume that {ani, 1 ≤ i ≤ n, n ≥ 1}
is an array of constants satisfying (3.1). Denote the dominating coefficients 1(n)=max{1L(n), 1U(n)}. Let
E|X|

1+β
α logq(1 + |X|) < ∞ , then for some q > β

α− 1
2

and every ε > 0,

∞∑
n=1

n−αE

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))
1

q−1 nα

+

< ∞, (3.17)

and thus
∞∑

n=1

P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε(1 + 1(n))
1

q−1 nα
 < ∞. (3.18)

Proof. By the fact that β ≥ 1, α < 1+β
2 , we take αp = 1+β, according to Theorem 3.1, one gets (3.17) and (3.18)

immediately. □

For random variables {X, Xn, n ≥ 1} and constants {an, n ≥ 1}, by Theorem 3.5 and Borel-Cantelli lemma,
we have the following weighted version of Marcinkiewicz-Zygmund-type strong law of large numbers.

Corollary 3.6. Suppose that the conditions in Theorem 3.5 hold. Assume that {an, n ≥ 1} is a sequences
of constants satisfying

∑n
i=1 |ai|

q = O(nβ) for some β ≥ 1. Assume further that the dominating coefficients
1(n)=O(log n). Then

1
nα(log n)1/(q−1)

n∑
i=1

aiXi → 0 a.s., n→∞.
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Theorem 3.7. Let α > 0, and {Xn,n ≥ 1} be a sequence of WOD random variables which is mean zero and
stochastically dominated by a random variable X. Assume that {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of constants
satisfying (3.12). Denote the dominating coefficients 1(n)=max{1L(n), 1U(n)}. Let E|X| log3(1+ |X|) < ∞ , then
for every ε > 0,

∞∑
n=1

n−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))nα

+

< ∞, (3.19)

and thus

∞∑
n=1

nα−β−1P

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ > ε(1 + 1(n))nα
 < ∞. (3.20)

Proof. Similar to the prove of Theorem 3.3, we use the same notation in the proof of Theorem 3.1. We take
r = 1, a = (1 + 1(n))nα, and q = 2 in Lemma 2.5, so we can get that

∞∑
n=1

n−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniXi

∣∣∣∣∣∣∣ − ε(1 + 1(n))nα

+

≤ C
∞∑

n=1

n−α−β−1 1
1 + 1(n)

E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniX̃ni

∣∣∣∣∣∣∣
2

+ C
∞∑

n=1

n−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

aniX∗ni

∣∣∣∣∣∣∣


+ C
∞∑

n=1

n−β−1E

max
1≤k≤n

∣∣∣∣∣∣∣
k∑

i=1

E(aniXni)

∣∣∣∣∣∣∣


=: C(J1 + J2 + J3). (3.21)

In order to prove (3.21), it suffices to prove J1 < ∞, J2 < ∞ and J3 < ∞. Note that 1(n) ≥ 1 and
E|X| log3(1 + |X|) < ∞, we get by Lemma 2.3 that

J1 ≤ C
∞∑

n=1

n−α−β−1 1
1 + 1(n)

log2 n

 n∑
i=1

E|aniX̃ni|
2 + 1(n)

n∑
i=1

E|aniX̃ni|
2


≤ C

n∑
n=1

n−α−β−1 log2 n
n∑

i=1

E|aniX̃ni|
2

≤ C
∞∑

n=1

n−α−1 log2 nE|X|2I(|X| ≤ nα) + C
∞∑

n=1

nα−1 log2 nP(|X| > nα)

≤ CE|X| log2(1 + |X|) + C
∞∑

m=1

E|X|I(mα < |X|(m + 1)α)
m∑

n=1

n−1 log2 n

≤ CE|X| log3(1 + |X|) < ∞. (3.22)

For J2 , following from EXi = 0, Cr-inequality, Jensen’s inequality, Lemma 2.3, Lemma 2.4, we have that

J2 ≤ C
∞∑

n=1

n−β−1
n∑

i=1

|ani|E|Xi|I(|Xi| > nα)
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≤ C
∞∑

m=1

E|X|I(mα < |X| ≤ (m + 1)α)
m∑

n=1

n−1

≤ CE|X| log(1 + |X|) < ∞. (3.23)

Similarly, by the proof of (3.10), for J3 one has

J3 ≤ C
∞∑

i=1

n−1E|X|I(|X| > nα) ≤ CE|X| log(1 + |X|). (3.24)

Combining (3.21)-(3.24), we obtain (3.19) immediately.

By the proof of (3.16), it is easily checked that (3.19) can implies (3.20), so we omitted the details.

Hence, this completes the proof of the theorem.

4. Complete consistency for the estimator in a nonparametric regression model based on WOD errors

4.1. Complete consistency
We consider the following nonparametric regression model based on WOD errors:

Ynk = f (xnk) + εnk, k = 1, 2, ...,n, n ≥ 1, (4.1)

where xnk are known fixed design points from A where A ⊂Rm is a given compact set for some m ≥ 1, f (·) is
an unknown regression function defined on A, and the εnk are random errors such that (εn1, εn2, ..., εnn) has
the same distribution as (ε1, ε2, ..., εn). As an estimator of f (·), consider the following weighted regression
estimator:

fn(x) =
n∑

k=1

ωnkYnk, x ∈ A ⊂ Rm, (4.2)

where ωnk = ωnk(x; xn1, xn2, ..., xnn), k = 1, 2, ...,n are the weighted function.

The above estimator was first proposed by Stone [19] and subsequently have been studied by many
authors. For more details about the property of the above estimator, one can refer to Roussas [10], Yang et al.
[22], Shen [25], and so forth. The purpose of this section is to further investigate the complete consistency
for the estimator in the nonparametric regression model based on WOD errors.

For the function f (x), we use f (1) to denote all continuity points of the function f on A. The norm ∥ x ∥
is the Eucledean norm. For any fixed design point x ∈ A, the following assumptions on weight function
ωnk(x) will be used:

(A1)
∑n

k=1 ωnk(x)→ 1 as n→∞;

(A2)
∑n

k=1 | ωnk(x) |≤ C < ∞ for all n;

(A3)
∑n

k=1 | ωnk(x) | · | f (xnk) − f (x) | I(∥ xnk − x ∥> a)→ 0 as n→∞ for all a > 0.

Wang et al. [29] pointed out that the design assumptions (A1)− (A3) are general and satisfied for nearest
neighbour weights. Based on the assumptions above, we present the following result on complete consis-
tency of nonparametric regression estimator 1n(x).
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Theorem 4.1. Let 1
2 < α <

1+β
2 , and {εn,n ≥ 1} be a sequence of rowwise WOD random variables

with mean zero which is stochastically dominated by a random variable X. Suppose that the conditions
(A1) − (A3) hold, the dominating coefficients f (n)=O(log n), and

n∑
k=1

| ωnk(x) |q= O(nβ)

for some β ≥ 1 and q > β

α− 1
2
. If E|X|

1+β
α < ∞, then for all x ∈ c(1),

fn(x)→ f (x), completely. (4.3)

Proof. For a > 0 and x ∈ c( f ), we obtain from (4.1) and (4.2) that

| E fn(x) − f (x) |≤
n∑

k=1

| ωnk(x) | · | f (xnk) − f (x) | I(∥ xnk − x ∥≤ a)

+

n∑
k=1

| ωnk(x) | · | f (xnk) − f (x) | I(∥ xnk − x ∥> a)

+ | f (x) | ·

∣∣∣∣∣∣∣
n∑

k=1

ωnk(x) − 1

∣∣∣∣∣∣∣ . (4.4)

It follows from x ∈ c( f ) that for all ε > 0, there exists a constant δ > 0 such that for all x′ which satisfy
∥ x′ − x ∥< δ, we have | f (x′) − f (x) |< ε. Hence we take 0 < a < δ in (4.4) and obtain that

| E fn(x) − f (x) |≤
n∑

k=1

ε | ωnk(x) | +
n∑

k=1

| ωnk(x) | · | f (xnk) − f (x) | I(∥ xnk − x ∥> a)

+ | f (x) | ·

∣∣∣∣∣∣∣
n∑

k=1

ωnk(x) − 1

∣∣∣∣∣∣∣ .
We have by assumption (A1) − (A3) and the arbitrariness of ε > 0 that for all x ∈ c( f ),

lim
n→∞

E fn(x) = f (x). (4.5)

In view of (4.5), to prove (4.3), it suffices to prove

fn(x) − E fn(x) =
∑n

k=1 ωnk(x)εk → 0, completely.

In other words, we need to verify that

∞∑
n=1

P


∣∣∣∣∣∣∣

n∑
k=1

ωnk(x)εk

∣∣∣∣∣∣∣ > ε
 < ∞. (4.6)

Applying Theorem 3.5 with Xk = εk, ank = ωnknα(log n)1/(q−1), we immediately obtain the desired result.
The proof is completed.

4.2. Numerical simulation
In this subsection, we will present a simulation to study the numerical performance of the consistency for

the nearest neighbor weight function estimators fn(x) in nonparametric regression model and the data are
generated from model (4.1). First let us recall the concept of the nearest neighbor weight function as follows.
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Let A = [0, 1] and xnk = k/n, k = 1, 2, ...,n. For any x ∈ A, we rewrite |xn1 − x|, |xn2 − x|, ..., |xnn − x| as
follows:

|xn,R1(x) − x| ≤ |xn,R2(x) − x| ≤ ... ≤ |xn,Rn(x) − x|,

if |xni − x| = |xnj − x|, then |xni − x| is located before |xnj − x|when xni < xnj.

Let 1 ≤ kn ≤ n, the nearest neighbor weight function is defined as follows:

Wnk(x) =
{

1/kn, if |xnk − x| ≤ |xn,Rkn (x) − x|,
0, otherwise.

For any fixed n ≥ 3, let normal random vector (εn1, εn2, ..., εnn) ∼ Nn(0,Σ), where 0 represents zero vector

and

Σ =



1 + δ2
−δ 0 · · · 0 0 0

−δ 1 + δ2
−δ · · · 0 0 0

0 −δ 1 + δ2
· · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · 1 + δ2
−δ 0

0 0 0 · · · −δ 1 + δ2
−δ

0 0 0 · · · 0 −δ 1 + δ2


n×n

,

where 0 < δ < 1. It is easily checked that (εn1, εn2, · · · , εnn) is a NA vector for each n ≥ 3 with finite
moment of any order. Thus, it is a WOD vector with f (n) = O(log n) when δ = 0.3. Let α = 3/5, β = 1,
q = 11, kn = ⌊n3/5(log n)1/10

⌋. Thus, all conditions of Theorem 4.1 are satisfied. As is stated in Wang
et al. [23], conditions (A1) − (A3) hold true. Take the points x = 0.3, 0.5, 0.7 and the sample sizes n as
n = 100, 200, 300, 400 respectively. We use R software to compute fn(x) − f (x) with f (x) = sin x − x and
f (x) = x2 + x, respectively, for 1000 times and obtain the boxplots of fn(x)− f (x) in Figures 1-6 and the Mean
Square Error (MSE, in short) of fn(x) in Table 1.

Table 1. MSE of the estimator fn(x)
f (x) x n=100 n=200 n=300 n=400

sin x − x
0.3 0.02318809 0.01775874 0.01555241 0.01072344
0.5 0.02271258 0.01667872 0.01578463 0.01091291
0.7 0.02410608 0.01738176 0.01411086 0.00985498

x2 + x
0.3 0.02357551 0.01836288 0.01541625 0.01442039
0.5 0.02360975 0.01737076 0.01622930 0.01001196
0.7 0.02276254 0.01689222 0.01585582 0.01145534

Figures 1-3 are the boxplots of fn(x) − f (x) for f (x) = sin x − x and Figures 4-6 are the boxplots of
fn(x) − f (x) for f (x) = x2 + x with x = 0.3, 0.5, 0.7.We can see that no matter f (x) = sin x − x or f (x) = x2 + x,
for x = 0.3, 0.5, 0.7, the differences fn(x) − f (x) fluctuate to zero and the variation range decreases markedly
as the sample n increases. In other words, this show a good fit of our result.

5. Conclusions

In this paper, we obtain some complete moment convergence results for weighted sums of WOD random
variables without the assumption of an identical distribution. In view of the proof of Theorem 3.1-3.7, the
essential tools are the Rosenthal-type maximun inequality, the Marcinkiewicz-Zygmund-type maximun
inequality and truncation method. It is well known that the class of WOD random variables contain



A. Zhang et al. / Filomat 36:8 (2022), 2761–2774 2773

many dependent structure random variables, such as NA random variables, NOD random variables, END
random variables, and so on. That is to say, our results are also available for these sequences.

Moreover, if we take place (3.1) with an array of independent random variables Ani which satisfying
that {Ani, 1 ≤ i ≤ n} is independent of {Xn, n ≥ 1} and

∑n
i=1 E|Ani|

q = O(nβ) in Theorem 3.1, our results can
implies the results of Zhao et al. [18] for the case of NOD random variables when 1(n) = 1 and β = 1; our
results can implies the results of Li et al. [34] for the case of END random variables when 1n = M ≥ 1. If
ani = 1 and l(n) = 1 in Corollary 3.2, we can obtain the result of Theorem 2.1 in Liu et al. [32] for the case of
WOD random variables.
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Fig 1: Boxplots of fn(x) − f(x) with x=0.3 and f(x)=sinx−x
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Fig 2: Boxplots of fn(x) − f(x) with x=0.5 and f(x)=sinx−x
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Fig 3: Boxplots of fn(x) − f(x) with x=0.7 and f(x)=sinx−x
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Fig 4: Boxplots of fn(x) − f(x) with x=0.3 and f(x)=x^2+x
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Fig 5: Boxplots of fn(x) − f(x) with x=0.5 and f(x)=x^2+x
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Fig 6: Boxplots of fn(x) − f(x) with x=0.7 and f(x)=x^2+x
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