
Filomat 36:8 (2022), 2775–2793
https://doi.org/10.2298/FIL2208775S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

Certain Linear and Weakly Linear Systems of Matrix Equations Over
Semirings. Applications in a State Reduction of Weighted Automata

Aleksandar Stamenkovića, Stefan Stanimirovića, Vesa Halavab

aUniversity of Niš, Faculty of Sciences and Mathematics, Višegradska 33, 18000 Niš, Serbia
bUniversity of Turku, Department of Mathematics and Statistics, FIN-20014 Turku, Finland

Abstract. In this paper we study particular linear and weakly linear systems of matrix equations over
semirings, with the aim of describing and computing functions as solutions to those systems. Our special
attention is devoted to solutions whose ranks are as small as possible. We prove the existence of solutions
with the smallest ranks, give their characterizations, and present a method for their computations. Re-
garding weakly linear systems, the method is based on the well known partition refinement algorithm by
Kanellakis and Smolka, adapted to work with weighted labeled transition systems. Moreover, we give a
state reduction procedure of weighted automata based on a decomposition of solutions to particular linear
and weakly linear systems.

1. Introdudction

Systems of matrix equations studied in this paper, beside linear systems, are a subclass of weakly linear
systems (abbr. WLS), systems of matrix inequations and equations that have been widely studied in the
past. In particular, WLS have emerged in the study of fuzzy automata, and have also been applied in social
network analysis. They have been used to reduce the number of states of fuzzy automata [9, 10, 23, 24], in
the study of simulations and bisimulations for nondeterministic, fuzzy and weighted automata [5–7, 11],
as well as in the positional analysis of social networks [12, 13]. In addition, certain types of WLS have been
used to improve determinization algorithms for fuzzy automata [16, 25] and in the conflict analysis of fuzzy
discrete event systems [24].

In all these cases, the underlying structures of membership values are complete residuated lattices,
and the key role in those studies is played by completeness and residuation in such structures. Namely,
those two properties ensure completeness and residuation in the corresponding lattices of fuzzy matrices,
ensuring also the existence of the greatest solutions to WLS and providing necessary algebraic tools for
their computation. Unlike complete residuated lattices, semirings are structures that are neither ordered nor
complete and do not provide a residuation, making the study of WLS very challenging. As a consequence,

2020 Mathematics Subject Classification. Primary 15A24; Secondary 15A80, 16Y60, 68Q70
Keywords. Semirings; Matrices over semirings; Weakly linear system; Partition refinement; Weighted automata; State reduction
Received: 10 April 2019; Revised: 15 November 2019; Accepted: 14 January 2020
Communicated by Miroslav Ćirić
Research supported by Ministry of Education, Science and Technological Development, Republic of Serbia, Contract No. 451-

03-68/2022-14/200124 and by the Science Fund of the Republic of Serbia, GRANT No 7750185, Quantitative Automata Models:
Fundamental Problems and Applications - QUAM

Email addresses: aca@pmf.ni.ac.rs (Aleksandar Stamenković), stefan.stanimirovic@pmf.edu.rs (Stefan Stanimirović),
vesa.halava@utu.fi (Vesa Halava)

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2776

in order to overcome the lack of algebraic features of semirings, we introduce and investigate functions
as solutions to WLS. In addition, due to the same reason, instead of computing the greatest solution to
WLS, we focus on functions whose ranks are as small as possible, with the aim to achieve the best possible
state reduction of weighted finite automata. Studying such functions over semirings appear to be very
useful, considering the fact that such functions can be efficiently computed (Example 3.3). Moreover,
provided ranks of identity matrices on finite sets are equal to the cardinality of those sets, ranks and
corresponding rank decomposition of such matrices can also be efficiently computed. In addition, let us
note that computing solutions to WLS that are not functions, along with computing their ranks, is, in
general, impossible (cf. [23]).

The structure of the paper is as follows. After introducing a linear system of matrix equations (ls.1),
we give a characterization of functions that are its solutions. We prove that solutions to the system (ls.1)
with the smallest ranks are idempotent functions whose kernels are equal to the equivalence associated to
(ls.1). Those results lead us to the simple method for their computation. Regarding weakly linear system
(wls.1), we prove the existence of solutions with the smallest ranks and characterize them as idempotent
functions whose kernels are equal to the equivalence associated to (wls.1). We also present a method for their
computation, based on calculating the equivalence associated to (wls.1). In addition, we give an algorithm
for computing equivalences associated to (wls.1) whose time complexity is smaller then those presented
in [3, 9, 10, 14, 15, 21, 22]. We also show how this method can be used for computing solutions with the
smallest rank to the both systems. Ultimately, we implement some of our results in a state reduction of
weighted finite automata.

2. Preliminaries

A semiring is a structure S = (S,+, ·, 0, 1) consisting of a set S, two binary operations + and · on S, and
two constants 0, 1 ∈ S, such that the following is true:

(i) (S,+, 0) is a commutative monoid,
(ii) (S, ·, 1) is a monoid,

(iii) the distributivity laws (a + b) · c = a · c + b · c and c · (a + b) = c · a + c · b hold for every a, b, c ∈ S,
(iv) 0 · a = a · 0 = 0, for every a ∈ S.

Throughout this paper, let S be a semiring. For arbitrary finite non-empty sets A and B, a mapping
M : A × B → S is called an A × B matrix over S. As usual when working with mappings, we denote the set
of all A × B matrices over S by SA×B. The transpose of an A × B matrix M is a B × A matrix M⊤ defined by
M⊤(b, a) = M(a, b), for every a ∈ A, b ∈ B. B row vector (resp. A column vector) over S is an A × B matrix over
S, where |A| = 1 (resp. |B| = 1). Sometimes, we identify a B row vector (resp. A column vector) with a
mapping M : B→ S (resp. M : A→ S), and accordingly denote the set of all B row vectors (resp. A column
vectors) by SB (resp. SA). For an A × B matrix M, its row vector corresponding to a, denoted by aM, and its
column vector corresponding to b, denoted by Mb, are defined as follows

aM(b) =M(a, b) and Mb(a) =M(a, b),

for arbitrary a ∈ A and b ∈ B.
For finite non-empty sets A, B and C, and matrices M ∈ SA×B and T ∈ SB×C, we define the matrix product

M · T ∈ SA×C, by

(M · T)(a, c) =
∑
b∈B

M(a, b) · T(b, c), (1)

for any (a, c) ∈ A × C. If Q = M · T, the matrix pair (M,T) is called a decomposition of Q, and if |B| = k,
a decomposition (M,T) is called a k-decomposition of a matrix Q. Matrix M ∈ SA×A is idempotent if M2 =
M. Matrix sum of matrices M,T ∈ SA×B, denoted by M + T, is a matrix defined by

(M + T)(a, b) =M(a, b) + T(a, b), (2)

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2777

for every a ∈ A, b ∈ B.
Rank of a nonzero matrix M, denoted ρ(M), is the smallest integer k such that there exists a k-

decomposition of M. Rank of a zero matrix is equal to 0. Note that, not only in the Boolean matrix theory,
but also in the theory of fuzzy matrices [1, 2, 18], the above defined number ρ(M) is known as the Schein
rank of a matrix. In addition, the number ρ(M) is called the fuzzy rank of M, where M is a matrix over a
semiring defined on the real unit interval [0, 1] with x · y = min(x, y) and x + y = max(x, y) (cf. [4]). For
other notions regarding row and column spaces as well as ranks of matrices refer to [23].

In this paper, matrices taking values in the set {0, 1}, where 0, 1 ∈ S, are called relations between A and
B. The set of all relations of A to B is denoted by 2A×B, and for E ∈ 2A×B, expressions “E(a, b) = 1” and
“(a, b) ∈ E” have the same meaning. For relations E,F ∈ 2A×B, the ordering E ⩽ F is defined pointwise,
provided 0 ⩽ 1. In case when E ⩽ F, we say that E is contained in F. Further, a relation E ∈ 2A×A is called
reflexive, if E(a, a) = 1, for every a ∈ A; symmetric, if E(a, b) = E(b, a), for all a, b ∈ A; and transitive, if E(a, b) = 1
and E(b, c) = 1 implies E(a, c) = 1, for all a, b, c ∈ A. A reflexive, symmetric and transitive relation is called an
equivalence relation on A. For each a ∈ A, both row vector aE and column vector Ea are called the equivalence
class of E determined by a. This identification is justified by the fact that due to the symmetry of E, vectors
aE and Ea, considered as mappings, are equal. Moreover, equivalence classes have the same properties as
classes of equivalence relations, defined in a usual way. Namely, the following is true

E(a, b) = 1 ⇐⇒ aE = bE ⇐⇒ Ea = Eb. (3)

The set of all equivalence classes of E is denoted by A/E and called the factor set of A with respect to E.
Matrix φ ∈ 2A×B is called a functional matrix if it corresponds to a relation which is a function, i.e., if for

every a ∈ A there exists b ∈ B such that φ(a, b) = 1, and φ(a, b) = φ(a, c) = 1 implies b = c, for all a ∈ A and
b, c ∈ B. In the sequel, functional matrices will be simply called functions. For a function φ and arbitrary
a ∈ A, let us denote by φ(a) an element b ∈ B, such that φ(a, b) = 1. Let us note that a product of functions
φ ∈ 2A×B and ψ ∈ 2B×C is a function φ · ψ ∈ 2A×C, and (φ · ψ)(a) = ψ(φ(a)), for every a ∈ A. Function φ is
injective if φ(a) = φ(b) implies a = b, for every a, b ∈ A. Kernel of a function φ ∈ 2A×B is an equivalence
relation Kerφ ∈ 2A×A defined in a usual way

Kerφ(a, b) = 1 ⇐⇒ φ(a) = φ(b), (4)

for every a, b ∈ A. For a given finite set A, the identity matrix on A, denoted by IA, is a function defined by

IA(a, b) =

 1, if a = b
0, otherwise

, (5)

for every a, b ∈ A. Universal relation on A, denoted as ∇A is a relation defined by ∇A(a, b) = 1, for each a, b ∈ A.

3. Systems of matrix equations

In this section we deal with particular systems of matrix equations, in order to study and to compute
their solutions in the set of functions.

3.1. Idempotent functions
Firstly, we focus on basic properties of functions, especially idempotent functions.

Lemma 3.1. Let φ ∈ 2A×A be a function and let E ∈ 2A×A be an equivalence relation. The following statements are
equivalent:

(i) φ ⩽ E,
(ii) aφ ⩽ aE,

(iii) φa ⩽ Ea,
(iv) E(a, φ(a)) = E(φ(a), a) = 1,

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2778

(v) Ea = Eφ(a),
(vi) aE = φ(a)E,

(vii) φ · E = E,

for every a ∈ A.

Proof. Let us only prove (iv) ⇐⇒ (vii).
For arbitrary a, b ∈ A, since E(a, φ(a)) = 1, we have that E(a, b) = 1 iff E(φ(a), b) = 1. From the fact that

φ · E(a, b) = E(φ(a), b), for every a, b ∈ A, we conclude φ · E = E.
Conversely, if φ · E(a, b) = E(a, b), for every a, b ∈ A, i.e. if φ · E(a, b) = E(φ(a), b), for every a, b ∈ A, by

putting b = a, we obtain (iv).
The the rest of the proof is based on simple use of the fundamental properties of both functions and

equivalence relations, which is why will be left out.

Let φ ∈ 2A×A be a function and let E ∈ 2A×A be an equivalence relation. It is clear that φ ⩽ E results
in Kerφ ⩽ E. That does not necessarily implies φ ⩽ Kerφ. Following lemma establishes basic properties of
functions satisfying φ ⩽ Kerφ.

Lemma 3.2. Let φ ∈ 2A×A be an arbitrary function. The following statements are equivalent:

(i) φ ⩽ Kerφ,
(ii) φ2 = φ,

(iii) φ · Kerφ = Kerφ,
(iv) φ = l · r, where l ∈ 2A×A/E is the canonical map w.r.t. E, defined by l : a 7→ Ea, for every a ∈ A, and r ∈ 2A/E×A

is an injective function satisfying E(r(Ea), a) = 1, for every a ∈ A.

Proof. From he previous lemma we have (i) ⇐⇒ (iii).
(i) =⇒ (ii): If φ ⩽ E, then, by Lemma 3.1, we have E(a, φ(a)) = 1, for every a ∈ A. Hence, φ(a) =

φ(φ(a)) = φ2(a), for all a ∈ A, i.e. φ2 = φ.
(ii) =⇒ (iii): If φ2 = φ, then from (φ ·E)(a, b) = E(φ(a), b) = Kerφ(φ(a), b), for every a, b ∈ A, we conclude

that Kerφ(φ(a), b) = 1 iff φ(φ(a)) = φ(b), i.e. iff φ(a) = φ(b). Therefore, E(φ(a), b) = 1 iff E(a, b) = 1, for every
a, b ∈ A, which is equivalent to E(φ(a), b) = E(a, b), for every a, b ∈ A. Hence, φ · E = E.

(i) =⇒ (iv): Let, for an idempotent functionφ, a relation r ∈ 2A/E×A be defined by r(Ea, b) = 1 iff b = φ(a),
for every a, b ∈ A. Since Ea = Eb, i.e. E(a, b) = 1, impliesφ(a) = φ(b), we have that r(Ea, c) = r(Eb, d) = 1 results
in c = φ(a) = φ(b) = d. This means that r is a function, and r(Ea) = φ(a), for every a ∈ A. If r(Ea) = r(Eb),
then φ(a) = φ(b), i.e. Kerφ(a, b) = E(a, b) = 1, or equivalently Ea = Eb. Therefore, r is an injective function.
Finally, E(r(Ea), a) = E(φ(a), a) = 1, and

(l · r)(a) = r(l(a)) = r(Ea) = φ(a),

for every a ∈ A, i.e. φ = l · r.
(iv) =⇒ (i): Suppose (iv) is true. Then, we have the following

E(φ(a), a) = E((l · r)(a), a) = E(r(l(a)), a) = E(r(Ea), a) = 1,

for every a ∈ A. By Lemma 3.1, we obtain φ ⩽ E.

Let us also note, that the previous lemma provides a method for constructing idempotent functions
whose kernel is equal to a given equivalence E ∈ 2A×A, where A is a finite set. The method is based on
choosing r(Ea) ∈ A, for every Ea ∈ A/E, provided E(r(Ea), a) = 1. Defined this way, the matrix r ∈ 2A/E×A is
injective. Further, φ = l · r, where l ∈ 2A×A/E is the canonical map w.r.t. E, and since φ(a) = r(Ea), it is clear
that Kerφ = E. Next example illustrates the above described construction.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2779

Example 3.3. Let A = {a1, a2, a3, a4, a5}, and E ∈ 2A×A an equivalence relation

E =


1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 1 1
0 0 0 1 1

 , where ith row of E represent an equivalence class of E determined by ai.

Since Ea1 = Ea2 = Ea3 , Ea4 = Ea5, i.e. A/E = {Ea1,Ea4}, in order to construct an injective function r ∈ 2A/E×A,
the following conditions have to be satisfied

r(Ea1) = r(Ea2) = r(Ea3) ∈ {a1, a2, a3} and r(Ea4) = r(Ea5) ∈ {a4, a5}.

Clearly, there are six possible functions r ∈ 2A/E×A that meet those requirements:

r1(Ea1) = a1, and r1(Ea4) = a4, i.e. r1 =

[
1 0 0 0 0
0 0 0 1 0

]
,

r2(Ea1) = a2, and r2(Ea4) = a4, i.e. r2 =

[
0 1 0 0 0
0 0 0 1 0

]
,

r3(Ea1) = a3, and r3(Ea4) = a4, i.e. r3 =

[
0 0 1 0 0
0 0 0 1 0

]
,

r4(Ea1) = a1, and r4(Ea4) = a5, i.e. r4 =

[
1 0 0 0 0
0 0 0 0 1

]
,

r5(Ea1) = a2, and r5(Ea4) = a5, i.e. r5 =

[
0 1 0 0 0
0 0 0 0 1

]
,

r6(Ea1) = a3, and r6(Ea4) = a5, i.e. r6 =

[
0 0 1 0 0
0 0 0 0 1

]
.

Moreover, since the canonical map l ∈ 2A×A/E w.r.t E, is the following matrix

l =



1 0
1 0
1 0
1 0
0 1
0 1


, and φ = l · r, all possible idempotent functions φ, such that Kerφ = E, are:

φ1 = l · r1 =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 1 0

 , φ2 = l · r2 =


0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 1 0

 , φ3 = l · r3 =


0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0

 ,

φ4 = l · r4 =


1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1

 , φ5 = l · r5 =


0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 0 0 1

 , φ6 = l · r6 =


0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1

 .

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2780

In the sequel, for an idempotent function φ ∈ 2A×A, with E = Kerφ, the canonical map l ∈ 2A×A/E w.r.t.
E, and the injective function r ∈ 2A/E×A, defined by r(Ea) = φ(a), for every a ∈ A, are denoted by lφ, and rφ,
respectively.

The importance of idempotent matrices emerges from their applications in a state reduction of weighted
finite automata, and will be carefully explained in Section 4. Namely, regarding solutions to the systems
of matrix equations, we establish two main goals: the first one is to find solutions whose rank is as small
as possible. The second one is to estimate their rank as well as possible, and to compute corresponding
decomposition. Our next result concerns ranks of idempotent matrices.

Theorem 3.4. Let φ ∈ SA×A be an idempotent function, and E = Kerφ. Then,

ρ(φ) = ρ(IA/E) ⩽ |A/E|.

Proof. Let ψ = rφ · φ · lφ. The definition of ψ yields ρ(ψ) ⩽ ρ(φ), and from the following

φ = φ3 = (lφ · rφ) · φ · (lφ · rφ) = lφ · (rφ · φ · lφ) · rφ = lφ · ψ · rφ,

we obtain the converse inequality ρ(φ) ⩽ ρ(ψ). Thus, ρ(φ) = ρ(ψ). Moreover, since

ψ(Ea) = (rφ · φ · lφ)(Ea) = lφ(φ(rφ(Ea))) = lφ(φ2(Ea)) = lφ(φ(a)) = Eφ(a) = Ea,

for every Ea ∈ A/E, we conclude that ψ = IA/E. Thus, ρ(φ) = ρ(ψ) = ρ(IA/E).

3.2. System X ·Mi =Mi, i ∈ I

The first system studied here is an instance of ordinary linear systems of matrix equations, i.e. a system
consisting of the following equations

X ·Mi =Mi, i ∈ I, (ls.1)

where I is a finite index set, Mi ∈ SA×B, i ∈ I are given, and X ∈ SA×A is an unknown matrix. In the further
text, when aiming to emphasize the set of matrices M = {M⟩ ∈ S

A×B
| ⟩ ∈ I}, the above system will be

called the system (ls.1) determined byM. Since for all the results concerning the system (ls.1), corresponding
results for the system

Mi · X =Mi, i ∈ I, (ls.2)

not only exist, but can be analogously proven, their statements and proofs will be omitted. Let El be an
equivalence relation, called the equivalence relation associated to (ls.1), defined by

El(a1, a2) = 1 ⇐⇒ Mi(a1, b) =Mi(a2, b), (6)

for every a1, a2 ∈ A, b ∈ B, and i ∈ I. The equivalence associated to the system (ls.1) play an important role
in this subsection, since they are used for characterization of functions that are solutions to (ls.1). Our next
result confirms this claim.

Theorem 3.5. Let φ ∈ 2A×A be a function and let El
∈ 2A×A be the equivalence relation associated to the system

(ls.1). Then, φ is a solution to (ls.1) if and only if φ ⩽ El.

Proof. Since, (φ ·Mi)(a, b) =
∑

c∈A φ(a, c) ·Mi(c, b) =Mi(φ(a), b), for every a ∈ A, b ∈ B, and i ∈ I, we have that
function φ is a solution to the system (ls.1) iff Mi(φ(a), b) = Mi(a, b), for every a ∈ A, b ∈ B, and i ∈ I. From
the definition of El and Lemma 3.1, the last assertion is equivalent to El(φ(a), a) = 1, for every a ∈ A, i.e. to
φ ⩽ El.

Our last result in this subsection is the following one.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2781

Theorem 3.6. Letφ ∈ 2A×A be a function such that Kerφ = El, where El
∈ 2A×A is the equivalence relation associated

to the system (ls.1). Then, φ is a solution to (ls.1) if and only if φ is idempotent.
Moreover, ρ(φ) ⩽ ρ(ψ), for an arbitrary function ψ which is a solution to (ls.1).

Proof. By the previous theorem, φ is a solution to (ls.1) if and only if φ ⩽ El, i.e. if and only if φ ⩽ Kerφ. By
Lemma 3.2, the last condition is equivalent to φ being idempotent.

If ψ is a solution to (ls.1), then, by Theorem 3.5 and Lemma 3.1, we obtain El(a, ψ(a)) = 1 for arbitrary a ∈
A. Thus, from the fact that Kerφ = El, we conclude that φ(a) = φ(ψ(a)), for every a ∈ A, i.e. φ = ψ ·φ. Hence,
ρ(φ) ⩽ ρ(ψ).

By the previous result, along with Theorem 3.4, we achieve both goals we pursued: in the set of functions
that are solutions to the system (ls.1), idempotent functions whose kernel is equal to El have the smallest
rank. Its rank is equal to the rank of the identity matrix IA/El and is smaller or equal to the cardinality of the
set A/El.

3.3. System X ·Mi · X =Mi · X, i ∈ I

The second system of matrix equations we study here is the system that consists of the equations

X ·Mi · X =Mi · X, i ∈ I, (wls.1)

where I is a finite index set, Mi ∈ SA×A, i ∈ I are given, and X ∈ SA×A is an unknown matrix. Similarly to the
system (ls.1), in the further text, in order to emphasize the set of matrices
M = {M⟩ ∈ S

A×A
| ⟩ ∈ I}, the above system will be called the system (wls.1) determined byM. Moreover, for

all the results regarding the system (wls.1), there are corresponding results for the system

X ·Mi · X = X ·Mi, i ∈ I, (wls.2)

but their statements and proofs will be omitted.
Let E be an equivalence relation satisfying the following condition

E(a, b) = 1 =⇒ (Mi · E)(a, c) = (Mi · E)(b, c), (7)

for every a, b, c ∈ A, and i ∈ I.
Let us recall that, in the automata theory, equivalence relations that are solution to (wls.1), where matrices

Mi, i ∈ I represent transition matrices of automata, are called: right invariant [9, 10, 14, 15, 22] – in theory of
NFAs and fuzzy automata, congruences [21] – in fuzzy automata theory, while in [3], bisimulations – in the
theory of weighted automata. Moreover, in the above mentioned papers, the existence of the greatest right
invariant equivalence (congruence, bisimulation) is proven, and efficient algorithms for their computations
are given. Thus, the following definition is justified: the greatest equivalence relation that satisfies (7) is
called the equivalence relation associated to (wls.1), and is denoted by Ewl.

Lemma 3.7. Let A and I be finite sets, Mi ∈ SA×A, i ∈ I, and E ∈ 2A×A an equivalence relation. If l : a 7→ Ea is the
canonical map w.r.t. E, then

(i) (Mi · E)(a, c) = (Mi · l)(a,Ec), for every a, c ∈ A, and i ∈ I.
(ii) If E satisfies (7), then

E(a, b) = 1 =⇒ (Mi · φ)(a, c) = (Mi · φ)(b, c), (8)

for every a, b, c ∈ A, and i ∈ I, where φ = l · r, where l is the canonical map w.r.t. E, and r ∈ 2A/E×A is an
arbitrary relation.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2782

Proof. (i) Since E(a, b) = 1 iff Ea = Eb iff l(a,Eb) = 1, the following equalities hold

(Mi · E)(a, c) =
∑
d∈A

Mi(a, d) · E(d, c) =
∑

d∈A, E(d,c)=1

Mi(a, d) · E(d, c) =
∑
d∈A

Mi(a, d) · l(d,Ec) = (Mi · l)(a,Ec),

for every a, c ∈ A, and i ∈ I.
(ii) Let E(a, b) = 1, for a, b ∈ A, and let r ∈ 2A/E×A be an arbitrary relation. Since, by (i) of this lemma,

(Mi · E)(a, c) = (Mi · l)(a,Ec), for every c ∈ A, we have that

(Mi · l)(a,Ec) = (Mi · E)(a, c) = (Mi · E)(b, c) = (Mi · l)(b,Ec),

for every c ∈ A. Moreover, if φ = l · r, we have

(Mi · φ)(a, c) = (Mi · (l · r))(a, c) = ((Mi · l) · r)(a, c) =
∑

Ed∈A/E

(Mi · l)(a,Ed) · r(Ed, c)

=
∑

Ed∈A/E

(Mi · l)(b,Ed) · r(Ed, c) = (Mi · φ)(b, c)

for every c ∈ A, and i ∈ I.

By the following result we give some necessary and sufficient conditions for functions to be solutions
to (wls.1).

Theorem 3.8. Let φ ∈ 2A×A be a function. The following statements are true

(i) If φ is a solution to (wls.1), then the equivalence Kerφ satisfies (7).
(ii) If φ is idempotent and φ ⩽ E, for some equivalence relation E ∈ 2A×A that satisfies (7), then φ is a solution to

(wls.1).

Proof. (i) Function φ is a solution to (wls.1) iff (φ ·Mi · φ)(a, b) = (Mi · φ)(a, b), for every a, b ∈ A, and i ∈ I, or
equivalently

(Mi · φ)(φ(a), b) = (Mi · φ)(a, b), (9)

for every a, b ∈ A, and i ∈ I. Letφ be a solution to (wls.1), and let E = Kerφ. From the previous consideration,
we have

(Mi · φ)(a, c) = (Mi · φ)(φ(a), c), and (Mi · φ)(b, c) = (Mi · φ)(φ(b), c),

for every a, b, c ∈ A, and i ∈ I. If E(a, b) = 1, for a, b ∈ A, or equivalently if φ(a) = φ(b), then (Mi · φ)(a, c) =
(Mi · φ)(b, c), thus, as a consequence of the following equalities

(Mi · E)(a, c) =
∑
d∈A

Mi(a, d) · E(d, c) =
∑

d∈A, E(d,c)=1

Mi(a, d) =
∑

d∈A, φ(d)=φ(c)

Mi(a, d)

=
∑
d∈A

Mi(a, d) · φ(d, φ(c)) = (Mi · φ)(a, φ(c)) = (Mi · φ)(b, φ(c))

= (Mi · E)(b, c),

for every c ∈ A, we have that E is an equivalence satisfying (7).
(ii) Let φ ⩽ E, for some equivalence E that satisfies (7). Then, E(φ(a), a) = 1, for every a ∈ A, and since

φ is idempotent, by (iv) of Lemma 3.2, we have that φ = lφ · rφ. By (ii) of Lemma 3.7, it is (Mi · φ)(a, b) =
(Mi ·φ)(φ(a), b), for every a, b ∈ A, and i ∈ I. Ultimately, from (9) we obtain that φ is a solution to (wls.1).

We are ready now for result regarding (wls.1) that corresponds to Theorem 3.6.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2783

Theorem 3.9. Let φ ∈ 2A×A be a function such that Kerφ = Ewl, where Ewl
∈ 2A×A is an equivalence relation

associated to the system (wls.1). Then, φ is a solution to (wls.1) if and only if φ is idempotent.
Moreover, ρ(φ) ⩽ ρ(ψ), for an arbitrary function ψ which is a solution to (wls.1).

Proof. Let φ be a solution to the system X ·Mi · X = Mi · X, i ∈ I, such that Kerφ = Ewl, and let F be an
equivalence relation associated to the system X·Ni = Ni, i ∈ I, where X is an unknown matrix, and Ni =Mi ·φ,
i ∈ I. If ψ is an idempotent function, such that Kerψ = F, then, by Theorem 3.6, we have ψ · Ni = Ni, i ∈ I,
and since φ · Ni = Ni, i ∈ I, by Theorem 3.5, we have φ ⩽ F. Therefore, F(a, φ(a)) = Kerψ(a, φ(a)) = 1, for
every a ∈ A, which implies ψ(φ(a)) = ψ(a), a ∈ A. In conclusion, ψ = φ · ψ. Further, from

ψ ·Ni = Ni =⇒ ψ ·Ni · ψ = Ni · ψ =⇒ ψ ·Mi · φ · ψ =Mi · φ · ψ =⇒ ψ ·Mi · ψ =Mi · ψ,

for every i ∈ I, by (i) of Theorem 3.8, we obtain that F satisfies (7), end therefore F ⩽ Ewl. The fact that
F ⩽ Ewl, along with ψ ⩽ F lead to the conclusion that ψ ⩽ Ewl, which results in φ = ψ · φ. Finally, since

φ2 = φ · (ψ · φ) = (φ · ψ) · φ = ψ · φ = φ,

a function φ is idempotent.
Conversely, if φ2 = φ and Kerφ = Ewl, then φ ⩽ Ewl, and by (ii) of Theorem 3.8, we obtain that φ is a

solution to (wls.1).
Let ψ be an arbitrary solution to (wls.1), and let Ψ = {ψk

| k ∈ N}. Obviously, all elements of Ψ are
solutions to the system (wls.1). Moreover, since (Ψ, ·) is a finite semigroup, there exist k ∈N such that ψk is
an idempotent function. By Lemma 3.2 and by (i) of Theorem 3.8, ψk ⩽ Kerψk and Kerψk is an equivalence
satisfying (7). Hence, Kerψk ⩽ Ewl, and therefore Ewl(a, ψk(a)) = 1, for every a ∈ A. Thus, φ(a) = φ(ψk(a)), for
every a ∈ A, i.e. φ = ψk

· φ. In conclusion, we have that ρ(φ) ⩽ ρ(ψk) ⩽ ρ(ψ).

LetM = {M⟩ ∈ S
A×A

| ⟩ ∈ I} and N = {N| ∈ SA×A | | ∈ J} be finite sets of matrices, and let (ls.1) and
(wls.1) be systems determined byM and N , respectively. If El and Ewl are equivalences associated to the
appropriate systems, then we have the following result.

Theorem 3.10. The following statements are true:

(i) There exists Elwl, the greatest equivalence that is contained in El and satisfies (7).
(ii) Every idempotent function φ ∈ 2A×A with Kerφ = Elwl is a solution to both the system (ls.1) and the system

(wls.1).
Moreover, if ψ is an arbitrary function that is a solution to both systems, then ρ(φ) ⩽ ρ(ψ).

Proof. (i) Proof of the first assertion was the subject of many papers, most of which are mentioned in this
paper with regard to right invariant equivalences, congruences and bisimulations, and therefore will be left
out.

(ii) The first part of the claim is the direct consequence of Lemma 3.2, Theorem 3.5 and Theorem 3.8.
Let ψ be an arbitrary function that is a solution to both the system (ls.1) and the system (wls.1). Since ψk

is also the solution to both the system (ls.1) and the system (wls.1), for every k ∈N, there exists k ∈N such
that ψk is idempotent function. The rest of the proof is similar to the proof of Theorem 3.9.

3.4. Computing solutions to the system (wls.1)

By Theorem 3.9, idempotent functions whose kernels are equal to Ewl are solutions to (wls.1) with the
smallest rank. As it is illustrated by Example 3.3, computation of those solutions is based on reckoning the
equivalence associated to (wls.1). As mentioned above, there are many algorithms for computing Ewl, that
work for systems (wls.1) over different underlining structures. The proof of the next theorem is similar to
proofs of corresponding theorems in [3, 9, 10, 14, 15, 21, 22], and will be omitted.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2784

Theorem 3.11. Consider the system (wls.1) determined byM = {M⟩ ∈ S
A×A

| ⟩ ∈ I}, and let {Ek}k∈N ⊆ 2A×A be a
sequence of equivalences on A inductively defined as follows

E1 = ∇A,

Ek+1(a, b) =

 1, if Ek(a, b) = 1 and (Mi · Ek)(a, c) = (Mi · Ek)(b, c), for all i ∈ I and c ∈ A
0, otherwise

,

for every a, b ∈ A. Then, the sequence {Ek}k∈N is finite and descending. Moreover, there exists the least k ∈ N such
that Ek = Ek+m, for each m ∈N, and Ek is the equivalence associated to (wls.1).

The time complexity of this algorithm is O(|I||A|5) ([11]), if the computation cost for performing operations
+ and · in S are equal to 1. However, time complexity of this algorithm is O(|I||A|5c+c·), where c+ and c· denote
the computation costs for performing operations + and c· in S respectively. Recall that 1 ⩽ c+ (1 ⩽ c·), and
therefore, O(n) ⩽ O(nc+) (O(n) ⩽ O(nc·)), since in most semirings the addition is derived from elementary
functions, for which the computational cost is at least 1.

Let us also note that the above algorithm can be easily modified with the purpose of computing solutions
to both a system (ls.1) and a system (wls.1). This modification is based on changing the starting equivalence
relation E1. It is easy to verify, that if E1 is an equivalence other than ∇A, then the algorithm computes the
greatest equivalence relation that both satisfies (7) and is contained in E1. In other words, if E1 = El, where
El is an equivalence relation associated to a certain system (ls.1), then by Theorem 3.10, the algorithm can
be used to compute functions with the smallest rank, that are solutions to both systems (ls.1) and (wls.1).
Our next example illustrates those computations.

Example 3.12. Let a semiring R be the field of real numbers and let A = {a1, a2, a3, a4}. Observe a system of matrix
equations over R, consisting of the system (ls.1):

X ·M =M,

where M =


1
1
0
0

, X ∈ 2A×A is an unknown matrix, and the system (wls.1):

X ·Ni · X = Ni · X,

where I = {1, 2}, and N1, N2 are matrices:

N1 =


0 0 1 0
0 0 0 1
0 0 0 −1
0 0 −1 0

 , N2 =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 .

Since, E1 = El =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

, in order to compute E2, we have to compute Ni · E1, for i ∈ {1, 2}.

N1 · E1 =


0 0 1 0
0 0 0 1
0 0 0 −1
0 0 −1 0

 ·

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 =

0 0 1 1
0 0 1 1
0 0 −1 −1
0 0 −1 −1

 ,

N2 · E1 =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 ·

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 =

0 0 0 0
0 0 0 0
0 0 −1 −1
0 0 −1 −1

 .

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2785

By Theorem 3.11, E2(ai, a j) = 1 iff E1(ai, a j) = 1 and ai(Ni · E1) = a j(Ni · E1), for i ∈ {1, 2}. Therefore, since
a1(Ni · E1) = a2(Ni · E1), for i ∈ {1, 2}, and E1(a1, a2) = 1, we have E2(a1, a2) = 1. In a similar way, we obtain
E2(a3, a4) = 1. It is also clear that E2(a1, a3) = 0. In conclusion,

E2 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .
Obviously, since E2 = E1, the algorithm stops and leads us to the conclusion that E2 is the greatest equivalence

that contains El and satisfies (7). Finally, by Theorem 3.9, and Theorem 3.8, functions with the smallest ranks that
are solutions to the system consisting of systems (ls.1) and (wls.1) are idempotent functions whose kernels are equal
to E2:

φ1 =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

 , φ2 =


1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

 , φ3 =


0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0

 , φ4 =


0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

 .
However, the algorithm, given in Theorem 3.11, can be improved. The improvement is based on

using successive refinements of an initial partition determined by a starting equivalence E1. Refinements
computed by the algorithm ultimately converge to the greatest equivalence satisfying (7) contained in E1.
In other words, the improvement can be done by adapting the well known partition refinement algorithms
given by Kanellakis and Smolka [8, 19], Paige and Tarjan [20], etc.

With this purpose, let us introduce the following notions: Partition π of a nonempty set A, is a set
π = {B1,B2, . . . ,Bk}, of nonempty mutually disjoint sets, such that

⋃k
i=1 Bi = A. Elements of a given partition

are called blocks. Let us recall that every partition π of A defines an equivalence relation on A, denoted as
Eπ, in the following way

Eπ(a, b) = 1 ⇐⇒ a, b ∈ Bi, (10)

for some i ∈ {1, 2, . . . , k}. Conversely, an equivalence relation E on a set A defines a partition of that set,
denoted as πE, as follows

πE = {B1,B2, . . . ,Bk}, (11)

where for every i ∈ {1, . . . , k} there exists a ∈ A, such that Bi = {b ∈ A | E(a, b) = 1}, and for every a ∈ A there
exists Bi ∈ πE that contains a. Partition πE is a refinement of a partition πF, if an equivalence E is contained
in F.

LetM = {M⟩ ∈ S
A×A
| ⟩ ∈ I} be an arbitrary finite set of matrices. Block B j is a splitter for a block Bi w.r.t.

M, if for some a, b ∈ Bi, there exists l ∈ I such that
∑

c∈B j
Ml(a, c) ,

∑
c∈B j

Ml(b, c). In case when a block Bi has
a splitter w.r.t. M it can be split into two sets

Ba,1
i =

{
c ∈ Bi |

∑
d∈B j

Ml(c, d) =
∑
d∈B j

Ml(a, d), for every B j ∈ πE

}
, Ba,2

i = Bi \ Ba,1
i .

for any a ∈ Bi, and any l ∈ I. This splitting results in a new partition πE′ = {B1, . . . ,Ba,1
i ,B

a,2
i . . . ,Bk}, which is

a refinement of πE. Partition π is stable w.r.t. M, if no block of π has splitters.

Lemma 3.13. LetM = {M⟩ ∈ S
A×A

| ⟩ ∈ I} be an arbitrary finite set of matrices and E an equivalence relation on
A. Partition πE is stable w.r.t. M if and only if E satisfies (7).

Proof. Partition πE is stable w.r.t. M iff for every Bi,B j ∈ πE, block B j is not a splitter for a block Bi, or
equivalently∑

c∈B j

Ml(a, c) =
∑
c∈B j

Ml(b, c),

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2786

for every a, b ∈ Bi,B j ∈ πE and every l ∈ I. Thus, if E(a, b) = 1, i.e. if a, b ∈ Bi, for some Bi ∈ πE, then for every
c ∈ A and i ∈ I we have

(Mi · E)(a, c) =
∑
d∈A

Mi(a, d) · E(d, c) =
∑

d∈A, E(d,c)=1

Mi(a, d) =
∑
d∈B j

Mi(a, d) =
∑
d∈B j

Mi(b, d)

=
∑

d∈A, E(d,c)=1

Mi(b, d) =
∑
d∈A

Mi(b, d) · E(d, c) = (Mi · E)(b, c),

where B j ∈ πE is a block that contains c.

Converse assertion can be easily derived in a similar manner.

Prior to present the Kanellakis and Smolka’s algorithm adapted to work with weights over semirings, let
us recall some facts and notions related to both the original and our algorithm. The basic idea that underlines
the algorithm given by Kanellakis and Smolka is to iterate splitting of blocks of a starting partition π w.r.t.
some finite set of matrices over Boolean semiring, until no further refinement of the current partition is
possible. The resulting partition is often called the coarsest stable partition and coincides with the greatest
equivalence contained in Eπ satisfying (7) (Theorem 3.14). Kanellakis and Smolka’s algorithm plays an
important role in the study of labelled systems, showing that the problem of deciding bisimilarity of
labelled transition systems can be solved efficiently. Since our version of this algorithm works with weights
over semirings we will introduce first the notion of weighted labelled transition system.

Let A be an arbitrary finite set and M = {M⟩ ∈ S
A×A

| ⟩ ∈ I} be a finite set set of matrices. Weighted
labelled transition system determined byM (abbr. WLTS determined byM) is a triple (A, I,w), where A is a set
of states, I is a set of labels and w : A × I × A→ S is a weight function defined by

w(a, i, b) =Mi(a, b), (12)

for every a, b ∈ A and i ∈ I. In case w(a, i, b) , 0, we say that there is a transition from a state a to a state
b labeled by i with weight s = w(a, i, b), denoted as (a, i, s, b). In that case, a is an outging state and b is a
target state. Otherwise, i.e if w(a, i, b) = 0, we say that there is no transition from a state a to b labeled by i.
Obviously, WLTS are an extension of the concept of labelled transition system, and for other notions and
notations concerning WLTS refer to [17].

Pseudo code given by Algorithm 1 presents the crucial function of the adapted Kanellakis and Smolka’s
algorithm, called Split(B, i, π). The purpose of this procedure is to detect if the block B ∈ π has a splitter
w.r.t. a label i ∈ I. With this purpose the procedure chooses a state a ∈ B and compares sums

∑
d∈C w(a, i, d)

and
∑

d∈C w(b, i, d), where C ∈ π and b ∈ B. In case when a splitter exists, i.e. the sums are not equal, the
procedure returns blocks Ba,1 and Ba,2 as a result of the splitting. Otherwise, block B is returned. Since the
efficiency of a splitting is crucial for the complexity of the algorithm, we will discuss it in more detail. In
order to efficiently compare sums

∑
d∈C w(a, i, d) and

∑
d∈C w(b, i, d), where C ∈ π and b ∈ B, one needs to order

transitions outgoing from all states belonging to the block B. Prior to discuss that ordering, we will assume
that the set of labels I is linearly ordered. Since I is the index set, the easiest way is to set I = {1, 2, . . . , k},
where k ∈ N. In addition, we impose an ordering to the blocks of π. The ordering of transitions will be
done in the following way: transitions are ordered by their labels, while transitions with the same label are
ordered by the blocks containing their target states.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2787

Algorithm 1

function Split(B, i, π) ▷ Function that returns split block B of π w.r.t. transitions labeled by i
choose some a ∈ B
Ba,1 := ∅, Ba,2 := ∅
for all b ∈ B do

splittin1 := f alse
for all C ∈ π do

if
∑

d∈C w(a, i, d) ,
∑

d∈C w(b, i, d) then splittin1 := true ▷ C is a splitter for B
end if

end for
if splittin1 then Ba,2 := Ba,2

∪ {b}
else Ba,1 := Ba,1

∪ {b}
end if

end for
if B2,a = ∅ then return {B}
else return {Ba,1,Ba,2

}

end if
end function

When a block is split, the ordering of transitions whose target states belong to that block can be contra-
vened. Therefore, one has to sort transitions outgoing from all states of a given block before attempting
to split it. Procedure TransitionsSort(B, i) uses lexicographic sorting to reorder the i-labelled transitions
outgoing from the block B, e.g. using the classic algorithm from Aho, Hopcroft and Ullman, 1974.

Algorithm 2
π := πE
chan1ed := true
while chan1ed do

chan1ed := f alse
πc := π
for all B ∈ πc do

for all i ∈ I do
TransitionsSort(B, i)
if Split(B, i, πc) , {B} then

π := (π \ {B}) ∪ Split(B, i, πc)
chan1ed := true
Break

end if
end for

end for
end while

As noted above, the purpose of Algorithm 2 is to perform successive refinements of partitions, starting
with the partition πE, by continuous splitting of their blocks, until no further refinements are possible.

Theorem 3.14. Let A be a finite set,M = {M⟩ ∈ S
A×A

| ⟩ ∈ I} a finite set set of matrices, and πE a partition on A.
If πF is the coarsest stable partition, then F is the greatest equivalence contained in E that satisfies (7).

Moreover, if |A| = m and n is the number of transitions of a WLTS determined byM, then Algorithm 2. takes
O(mnc+) time.

Proof. Obviously, πF is stable partition, and since πF is a refinement of πE, by Lemma 3.13, the equivalence

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2788

F is contained in E and satisfies (7). Let us prove that F is the greatest equivalence contained in E satisfying
(7).

Evidently, F ⩽ E. Let G be an arbitrary equivalence relation contained in E satisfying (7), and let
k ∈ N ∪ {0} be the number of repetition of the main loop of Algorithm 2. Denote by Fl, l ∈ {0, 1, . . . , k}, an
equivalence relation obtained by Algorithm 2, after l repetition of the main loop. Since F0 = E and G ⩽ E,
there exists the greatest s ∈ {0, 1, . . . , k}, such that G ⊆ Fs. If πFs = {B1,B2, . . . ,Bp} and s < k then πFs is not
stable, and therefore there exists a block Bi ∈ πFs that can be split into blocks Ba,1

i and Ba,2
i , for some a ∈ Bi.

Let Bl ∈ πFs be a splitter for Bi and let πF′s = {B1,B2, . . . ,Ba,1
i ,B

a,2
i , . . . ,Bp}. Since G ⩽ Fs, we have Bl =

⋃m
t=1 Ct,

for some blocks Ct ∈ πG, t ∈ {1, 2, . . . ,m}. If G(b, c) = 1, for some b, c ∈ A, the fact that G satisfies (7) results
in the following

∑
d∈Bl

w(b, j, d) =
m∑

t=1

∑
d∈Ct

w(b, j, d) =
m∑

t=1

∑
d∈Ct

M j(b, d) =
m∑

t=1

(M j · G)(b, dt)

=

m∑
t=1

(M j · G)(c, dt) =
m∑

t=1

∑
d∈Ct

M j(c, d) =
m∑

t=1

∑
d∈Ct

w(c, j, d)

=
∑
d∈Bl

w(c, j, d),

for any j ∈ I, where dt ∈ Ct, for every t ∈ {1, 2, . . . ,m}. Thus, if
∑

d∈Bl
w(a, j, d) =

∑
d∈Bl

w(b, j, d), then b, c ∈ Ba,1
i ,

otherwise, b, c ∈ Ba,2
i . Both cases lead to F′s(b, c) = 1, and therefore G ⩽ F′s. From the previous consideration

and the fact that Fs+1 is obtained from Fs by splitting some of the blocks of πFs , one conclude that G ⩽ Fs+1,
which contradicts to the assumption that s < k. Accordingly, s = k, i.e. G ⩽ Fk = F.

The main loop (while loop) of Algorithm 2 is repeated at most m times. Within one iteration of the
main loop, procedure Split is called for each block at most once for each label i ∈ I. In turn, procedure
Split, while calculating appropriate sums, considers each transition of every state in the block at most once.
Therefore, the calls to split within one iteration of the main loop take O(nc+) time. The calls to TransitionsSort
collectively take O(|I|+ n) time, or O(n) when the set of labels is bounded. Since O(n) ⩽ O(nc+), the running
time of Algorithm 2 is O(mnc+).

Let us observe that the time complexity of the algorithm given by Theorem 3.11 is greater or equal to
O(m3nc+c·) since n ⩽ |I||A|2, and therefore is less efficient then one given in the previous theorem.

4. Applications in a state reduction of weighted finite automata

Let S be a semiring and X an alphabet. A weighted finite automaton (WFA, for short) over X and S, is a
quadrupleA = (A,X, σA, δA, τA), where A is a finite nonempty set of states, δA : A ×X ×A→ S is a transition
function, σA

∈ SA is an initial vector and τA
∈ SA is a final vector. For each x ∈ X we define a transition matrix

δx ∈ SA×A with δA
x (a, b) = δA(a, x, b), for all a, b ∈ A. In addition, for every u ∈ X∗ we define δA

u , an A × A
matrix over S inductively as follows: δε = IA, and for every u ∈ X∗ and x ∈ X we set δux = δu · δx. Let us also
note that σA is considered as a row, and τA as a column vector.

A formal power series over X and S, or simply just a series, is any mapping φ : X∗ → S. The behaviour of a
WFAA = (A, δ, σ, τ) is the series [[A]] defined by

[[A]](ε) = σA
· τA,

[[A]](u) = σA
· δA

x1
· δA

x2
· · · · · δA

xn
· τA,

(13)

for any u = x1x2 . . . xn ∈ X+, where x1, x2, . . . , xn ∈ X and ε is an empty word. Weighted finite automata A
and B are isomorphic if there exists a bijection α : A→ B, such that

σA(a) = σB(α(a)), δA
x (a, b) = δB

x (α(a), α(b)), τA(a) = τB(α(a)) (14)

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2789

for every a, b ∈ A, and every x ∈ X∗. Weighted finite automataA and B are equivalent if they have the same
behaviour, i.e. if the following stands

[[A]](u) = [[B]](u), (15)

for every u ∈ X∗.
LetA = (A,X, σA, δA, τA) be an arbitrary WFA. Let l be an A × B matrix and r be an B × A matrix, for an

arbitrary finite set B. Weighted finite automaton B = (B,X, δB, σB, τB) is an (l, r)-transformation of a weighted
finite automatonA if B is the set of states of B and matrices δB

x , δB
y , σB and τB are defined by

δB
x = r · δA

x · l,

σB = σA
· l,

τB = r · τA.

(16)

The following result is presented and proven in ([23]), and also stand for weighted finite automata.

Theorem 4.1. Let A = (A,X, σA, δA, τA) be a weighted finite automaton and let B = (B,X, σB, δB, τB) be an (l, r)-
transformation of A for a B × A matrix l and an A × B matrix r, where B is a finite set. Automata A and B are
equivalent if and only if a matrix Q = l · r is a solution to the system of matrix equations

σA
· τA = σA

·U · τA,

σA
· δA

x1
· δA

x2
· · · · · δA

xn
· τA = σA

·U · δA
x1
·U · δA

x2
·U · · · · ·U · δA

xn
·U · τA,

(17)

for all n ∈N and x1, x2, . . . , xn ∈ X, where U is an uknown m ×m matrix.

In the sequel the system (17) will be called the general system.
State reduction of a weighted finite automaton A by using arbitrary (l, r)-transformation of A is per-

formed in the following way. Efficiently computing a solution Q to the general system, whose rank ρ(Q)
is as small as possible. Further, efficiently decomposing Q into k-decomposition (l, r), where k is also as
small as possible (with k = ρ(Q), if possible). Finally, we simply construct an (l, r)-transformation ofA, by
computing all its transition matrices. An (l, r)-transformation of A is a weighted finite automaton that is,
by Theorem 4.1, equivalent toA and has k states.

However, implementing the above state reduction method, includes dealing with several issues. The
first one is solving the general system that consists of infinitely many equations. Thus, instead of solving the
general system we solve its instance, i.e. a system whose solutions are also solutions to the general. With
this purpose, for a weighted finite automaton A = (A,X, δA, σA, τA) over X and S, we introduce a system
right-generated byA, consisting of one (ls.1) system and one (wls.1) system of matrix equation as follows

U · τA = τA,

U · δA
x ·U = δ

A
x ·U, x ∈ X,

(18)

where U ∈ SA×A is an unknown matrix. According to Theorem 3.10., Theorem 3.14. and Example 3.3,
functions with the smallest ranks that are solutions to the above system, can be efficiently computed.
Moreover, if φ is such a function, its k-decomposition (lφ, rφ) can be easily obtained, and by Theorem 3.4, k
is a good estimation of ρ(φ).

Let us note that, for all the results regarding the system (18), there are corresponding results for the
system

σA
·U = σA,

U · δA
x ·U = U · δA

x , x ∈ X,
(19)

where U ∈ SA×A is an unknown matrix. The above system is called a system left-generated by A, and all
statements and proofs regarding (19) will be omitted.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2790

At the end of this section, let us discuss about one more question regarding the state reduction of
weighted finite automata using (l, r)-transformations. Namely, as shown in Example 3.3 and Example 3.12,
for a given equivalence relation E there are exactly |B1| · |B1| · . . . · |Bk| idempotent functions whose kernels are
equal to E, where B1,B2, . . . ,Bk are all the blocks of πE. Consequently, there can be many different functions
with the smallest ranks that are solutions to the system (18), and accordingly, there can be many different
(l, r)-transformations of a given weighted finite automaton A. Our next result pertains to the relations
between those (l, r)-transformations.

Theorem 4.2. Let A = (A,X, δA, σA, τA) be a weighted finite automaton over an alphabet X and a semiring S.
If φ,ψ ∈ 2S are functions with the smallest ranks that are solutions to the system right-generated by A, then
(lφ, rφ)-transformation and (lψ, rψ)-transformation are isomorphic.

Proof. Theorem 3.10 implies Kerφ = Kerψ. If E is a kernel of φ and ψ, then, using Lemma 3.7, we have the
following

(rφ · δx · lφ)(Ea,Eb) = (δx · lφ)(φ(a),Eb) = (δx · E)(φ(a), b),

for every Ea,Eb ∈ A/E, and x ∈ X. In a similar manner we obtain

(rψ · δx · lψ)(Ea,Eb) = (δx · lψ)(ψ(a),Eb) = (δx · E)(ψ(a), b),

for every Ea,Eb ∈ A/E, and x ∈ X. On the other hand, φ and ψ are idempotent functions, and therefore
E(a, φ(a)) = E(a, ψ(a)) = 1, for every a ∈ A. As a result, we have that E(φ(a), ψ(a)) = 1, for every a ∈ A. Since
E satisfies a condition (7), we also have

E(φ(a), ψ(a)) = 1 =⇒ (δx · E)(φ(a), b) = (δx · E)(ψ(a), b),

for every a, b ∈ A and x ∈ X. In conclusion, we have that rφ · δx · lφ = rψ · δx · lψ.
It is easy to verify that σA

· lφ = σB
· lψ and rψ · σA = rψ · σB. In conclusion, (lφ, rφ)-transformation and

(lψ, rψ)-transformation are isomorphic.

In the next example we illustrate the above described state reduction method. Prior to do that, let us
recall that a WFA A can be presented by the labelled directed graph whose nodes are states of A, and an
edge from a node a into a node b is labelled by pairs of the form x/δA(a, x, b), for any x ∈ X. Also, for each
node a we represent its initial value σA(a) by drawing the ingoing arrow to a labelled by σA(a), and represent
τA(a) by double-circling node a, provided τA(a) , 0, and putting a label τ(a) by that node. We call this graph
the transition graph of A. Usually, edges and ingoing arrows labelled by 0 are not shown in the transition
graph. In addition, we do not explicitly show the label on the ingoing arrow or double-circled node if it is
equal to 1.

Example 4.3. Let a semiring R be the field of real numbers and let A = (A,X, σA, δA, τA) be a WFA automa-
ton over X = {x, y} and R, whose graph is presented by Figure 1.

Matrices δA
x , δA

y , σA and τA are given as follows

δA
x =


0 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0

 , δA
y =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 , σA =
[
1 1 0 0

]
, τA =


0
0
1
1

 .
By Theorem 3.10, the first step in computation of function with the smallest rank that is a solution to the system
right-generated by A is to compute an equivalence El associated to the matrix equation U · τA = τA, where U is an
unknown matrix. Obviously,

El =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2791

a1

a2

a3

a4

x/1

x/1

y/ − 1

x/
1

y/ − 1

Figure 1: Transition graph of the WFAA

The second step is to compute E, the greatest equivalence contained in El that satisfies (7). By using iterative method
of Theorem 3.11, one has to compute an equivalence E2, using products δA

x · E1 and δA
y · E1, where E1 = El.

δA
x · E1 =


0 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0

 ·

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 =

0 0 1 1
0 0 1 1
0 0 1 1
0 0 1 1

 ,

δA
y · E1 =


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 ·

1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 =

0 0 0 0
0 0 0 0
0 0 −1 −1
0 0 −1 −1

 .
It is easy to verify (see Theorem 3.11 and Example 3.12.) that

E2 =


1 1 0 0
1 1 0 0
0 0 1 1
0 0 1 1

 .
Since E2 = E1, the algorithm stops, and functions with the smallest ranks that are solutions to the system

right-generated byA are

φ1 =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

 , φ2 =


1 0 0 0
1 0 0 0
0 0 0 1
0 0 0 1

 , φ3 =


0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0

 , φ4 =


0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

 .
By Theorem 3.11, the (l, r)-transformation ofA does not depend on the choice of φi, i ∈ {1, 2, 3, 4}, thus we decompose
φ1. Obviously, φ1 = lφ1 · rφ1 , where

lφ1 =


1 0
1 0
0 1
0 1

 , and rφ1 =

[
1 0 0 0
0 0 1 0

]
.

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2792

The final step is building the resulting automaton B = (B,X, σB, δB, τB), by calculating matrices δB, σB and τB:

δB
x = rφ1 · δA

x · l
φ1 =

[
1 0 0 0
0 0 1 0

]
·


0 0 1 0
0 0 0 1
0 0 0 1
0 0 1 0

 ·

1 0
1 0
0 1
0 1

 =
[
0 1
0 1

]
,

δB
y = rφ1 · δA

y · l
φ1 =

[
1 0 0 0
0 0 1 0

]
·


0 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 −1

 ·

1 0
1 0
0 1
0 1

 =
[
0 0
0 −1

]
,

σB = σA
· lφ1 =

[
1 1 0 0

]
·


1 0
1 0
0 1
0 1

 =
[
2 0
]
,

τB = rφ1 · τA =

[
1 0 0 0
0 0 1 0

]
·


0
0
1
1

 =
[
0
1

]
.

In conclusion, the (lφ1 , rφ1)-transformation of A is the weighted finite automaton B with two states whose graph is
presented by Figure 2.

a12 a2
x/1

x/1, y/ − 1

Figure 2: Transition graph of the WFA B

5. Concluding remarks

In this paper we have dealt with functions over semirings that are solutions to the systems (ls.1) and
(wls.1) , with the special attention on solutions whose ranks are as small as possible. We have proved the
existence of functions that are solutions to the systems (ls.1) and (wls.1) with the smallest ranks, and gave
their characterization: as idempotent functions whose kernels satisfy certain conditions. Those results have
led us to the method for their construction. The method is based on computing particular equivalences, and
afterwards on computing idempotent functions whose kernels are exactly above-mentioned equivalences.
Regarding the system (wls.1), it appeared that kernels of solutions with the smallest ranks are equivalences
that satisfy condition (7), also known as right-invariant, congruences, bisimulations, coarsest stable, etc.

Using the fact that algorithms for computing equivalences satisfying (7) are based on partition refinement
algorithms, we have built one by adapting the well known Kanellakis and Smolka’s partition refinement
algorithm. Our algorithm works for matrices over semirings and its time complexity is less then the time
complexity of all known algorithms performing that task.

In the last section of our paper, we have implemented some of our results in a state reduction problem.
Namely, we have proved that decompositions of solutions to the system (wls.1) can be used for constructing
(l, r)-transformations of WFA. We have introduced a state reduction method, based on (l, r)-transformations,
and obtained state reduction of a starting WFA equal to those given by Peter Buchholz in [3]. In particular,
WFA produced by our method is isomorfic to one computed in [3]. However, since the rank of solutions to
the system (17) play the crucial role in a state reduction, our method gives potentially better results. More
precisely, we have proved that if there exists a semiring S such that ρ(IA) < |A|, for some finite set A, then

A. Stamenković et al. / Filomat 36:8 (2022), 2775–2793 2793

our method produces WFA with smaller number of states than the aggregated automaton introduced in
[3]. To the best of our knowledge, the existence of a semiring S such that ρ(IA) < |A|, for some finite set A,
is an open problem.

References

[1] R. Bělohlávek, Optimal decompositions of matrices with entries from residuated lattices, Journal of Logic and Computation 22 (2012)
1405–1425.

[2] R. Bělohlávek, J. Konecny, Row and Column Spaces of Matrices Over Residuated Lattices, Fundamenta Informaticae 4 (2012) 279–295.
[3] P. Buchholz, Bisimulation relations for weighted automata, Theoretical Computer Science 393 (2008) 109-–123.
[4] H. H. Cho, Regular fuzzy matrices and fuzzy equations, Fuzzy Sets and Systems 105 (1999) 445–451.
[5] Ćirić M, Ignjatović J, Bašić M, Jančić I (2014) Nondeterministic automata: equivalence, bisimulations, and uniform relations. Inf

Sci 261:185–218
[6] Ćirić M, Ignjatović J, Damljanović N, Bašić M (2012) Bisimulations for fuzzy automata. Fuzzy Sets Syst 186:100–139
[7] Ćirić M, Ignjatović J, Jančić I, Damljanović N (2012) Computation of the greatest simulations and bisimulations between fuzzy

automata. Fuzzy Sets Syst 208:22–42
[8] R. Cleaveland, O. Sokolsky,Equivalence and Preorder Checking for Finite-State Systems, In: J.A. Bergstra, A. Ponse, S. Smolka (eds.),

Elsevier Science, Handbook of Process Algebra (2001) 391—424.
[9] M. Ćirić, A. Stamenković, J. Ignjatović, T. Petković, Factorization of fuzzy automata, in: E. Csuhaj-Varju, and Z. Ésik (eds.), FCT

2007, Lecture Notes in Computer Science 4639 (2007) 213–225.
[10] M. Ćirić, A. Stamenković, J. Ignjatović, T. Petković, Fuzzy relation equations and reduction of fuzzy automata, Journal of Computer

and System Sciences 76 (2010) 609–633.
[11] Damljanović N, Ćirić M, Ignjatović, J (2014) Bisimulations for weighted automata over an additively idempotent semiring. Theor

Comput Sci 534:86–100
[12] J. Ignjatović, M. Ćirić, Weakly linear systems of fuzzy relation inequalities and their applications: A brief survey, Filomat 26 (2012)

207–241.
[13] J. Ignjatović, M Ćiric, S. Bogdanović, On the greatest solutions to weakly linear systems of fuzzy relation inequalities and equations,

Fuzzy Sets and Systems 161 (2010) 3081–3113.
[14] L. Ilie, S. Yu, Algorithms for computing small NFAs, in: K. Diks et al. (editors): MFCS 2002, Lecture Notes in Computer Science 2420

(2002) 328–340.
[15] L. Ilie, S. Yu, Reducing NFAs by invariant equivalences, Theoretical Computer Science 306 (2003) 373–390.
[16] Jančić Z, Micić I, Ignjatović J, Ćirić M, Further improvements of determinization methods for fuzzy finite automata, Fuzzy Sets Syst 301

(2016) 79–102.
[17] B. Klin, Structural operational semantics for weighted transition systems, In: J. Palsberg (editor), Semantics and Algebraic Specification,

Lecture Notes in Computer Science 5700 (2009) 121-–139.
[18] K. H. Kim and F. W. Roush, Generalized Fuzzy Matrices, Fuzzy Sets and Systems 4 (1980) 293–315.
[19] P. C. Kanellakis, S. A. Smolka, CCS expressions, finite state processes, and three problems of equivalence, Information and Computation

86 (1990) 43–68.
[20] R. Paige, R. E. Tarjan, Three partition refinement algorithms, SIAM Journal on Computing 16 (1987) 973–989.
[21] T. Petković, Congruences and homomorphisms of fuzzy automata, Fuzzy Sets and Systems 157 (2006) 444–458.
[22] A. Stamenković, M. Ćirić, Construction of fuzzy automata from fuzzy regular expressions, Fuzzy Sets and Systems 199 (2012) 1–27.
[23] A. Stamenković, M. Ćirić, M. Bašić, Ranks of fuzzy matrices. Applications in state reduction of fuzzy automata, Fuzzy Sets and systems

333 (2018), 124–139.
[24] A. Stamenković, M. Ćiric, J. Ignjatović, Reduction of fuzzy automata by means of fuzzy quasi-orders, Information Sciences 275 (2014)

168–198.
[25] S. Stanimirović, M. Ćirić, J. Ignjatović, Determinization of fuzzy automata by factorizations of fuzzy states and right invariant

fuzzy quasi-orders, Information Sciences 469 (2018) 79–100.

