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Abstract. In this paper we introduce a new definition of fractional Fourier transformation on the space
S of Schwartz test functions and study some of its properties. It turns out that this fractional Fourier
transform has many properties with the conformable fractional derivative that the conventional Fourier
transform has with the conventional (standard) derivative. We establish some operational formulas for
the new transform, and give a left inverse for it. We use duality to define fractional Fourier transform of
tempered distributions. Finally, we give two applications to ordinary and partial differential equations.

1. Introduction

The fractional Fourier transformation has been invented and studied several decades ago. Because
of the new applications of the transformation, it has been put under considerable study in the last two
decades. These applications include signal and image processing, physics, optimal controle, engineering
applications, and many other up-to-date applications. Depending on the application, there are in the
literature several definitions for the fractional Fourier transform. The recent studies of fractional Fourier
transform started with the work of Namias [8], and McBride and Kerr [7]. Zayed [9] has defined fractional
Fourier transform on some spaces of functions and extended the definition to generalized functions. He
accomplished that using two approaches, one is called the algebraic approach and the other one is called
the analytic (embedding) approach. The algebraic approach involves the theory of Boehmians. In the
analytic approach, the fractional Fourier transform is defined first for distributions with compact support,
and then extended it to larger spaces by continuity of the fractional Fourier transform. The basic idea of
the proceedure is the Hilbert space eigenfunction expansion. Khan et al. [4] adopted Zayed’s approach
and produced a theory of fractional Fourier transform using unbounded differential operator on some
subspaces of L2. Luchko et al. [6] gave a different definition of fractional Fourier transform on the Lizorkin
space of test functions, and established several operational relations for the transform. They developed
operational relations taking into consideration the Riemann-Liouville fractional derivatives. They also gave
application using the fractional Fourier transform to solve some fractional partial differential equations.

Kilbas at al. [5] continued the work done in [6]. They gave a left inverse of their fractional Fourier
transform, and studied composition of the fractional Fourier transform with fractional differentiation and
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fractional integration. They solved some fractional partial differential equations as application to their
results. In the litrature there are several definitions for the fractional derivative. A recent definition was
given by Khalil et al. [3], which they called conformable fractional derivative. The conformable fractional
derivative satisfies almost all the differentiation formulas satisfied by the traditional integer order derivative
(see [8], [1]). The conformable derivative has been used in many applications including ordinary and partial
differential equations and optimal controle problems (see [2])

In this paper we give a new definition for the fractional Fourier transform on the space S of Schwartz
test functions. We called it conformable fractional Fourier transform because we considered the operational
relations with the conformable fractional derivative of Khalil et al. [3]. We established some operational
relations, and proved that the fractional Fourier transform is continuous from S to itself. We also give a
left inverse for the transformation. As an application, we used the fractional Fourier transform to solve an
ordinary differential equation and a one dimentional fractional heat equation. Finally, we use duality to
define the fractional Fourier transform of tempered distributions. We also prove continuity of the transform
from S′ to S′ and some other properties.

The rest of the paper goes as follows. In Section 2 we give preliminary definitions and results that will be
used in the sequel. In Section 3 we give our definition of conformable fractional Fourier transform, establish
some of its properties, give its left inverse, and derive some operational formulas. Section 4 consists of two
applications.

2. Preliminaries

The space S of Scwartz test functions is the space of all functions φ ∈ C∞(R) such that

υk(φ) = sup
m≤k
x∈R

(1+ | x |2)k
| Dmφ(x) |< ∞; k = 1, 2, 3, .... (2.1)

The spaceSwith semi-norms υk, k = 1, 2, 3, ...is a Frechet space and the spaceD of test functions of compact
support is dense in S. Moreover, the space S is Montel. The strong dual of S is the space S

′

of tempered
distributions, which is provided with the strong dual topology. A sequence (T j) converges to 0 in S

′

if it
converges uniformly on every bounded subset of S.

There are several definitions for the fractional derivative of functions. We adopt the definition given by
Khalil et al. [3], which is called conformable fractional derivative. This definition has been the base of many
publications because, for one reason, the proofs of several results go similar to those of the conventional
integer order derivative (see [3]). We consider the fractional derivatives of order α ∈ [0, 1). If β > 1, the
fractional derivative of order β is defined to be the fractional derivative of order α ∈ [0, 1), where α = β − n,
where n is the greatest integer equal or less than β.

Definition 1. Let f : [0,∞)→ R. Then the conformable fractional derivative of f of order α is defined by

Tα ( f )(t) = lim
ϵ→0

f (t + εt1−α) − f (t)
ε

for all t > 0, α ∈ [0, 1). We also denote Tα ( f ) by f (α).

In the litresure, seversl results for the coformable fractional derivative, like linearity of the new deriva-
tive, the derivative of the constant is zero, the product and quotient rules, Rolle’s theorem and the mean
value theorem. Several authors proved results which are true for the conventional integer derivative. In
this direction we have

Theorem 1. Cauchy Mean Value Theorem for the Conformable Fractional Derivative.
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Let a > 0. Let f and 1 be continuous on [a, b] and α− differentiable on (a, b) for some α ∈ (0, 1), and assume that
1(α)(x) , 0 for all x in (a, b). Then there exists a point c in (a, b) such that

f (α)(c)
1(α)(c)

=
f (b) − f (a)
1(b) − 1(a)

.

Proof. Define the function

h(x) =
f (b) − f (a)
1(b) − 1(a)

(1(x) − 1(a)) − ( f (x) − f (a)); x ∈ [a, b].

Since f and 1 are continuous on [a, b] and α− differentiable on (a, b), it follows that the same is true for h. It follows
from the fractional form of Rolle’s theorem [8] that there exists a point c in (a, b) such that h(α)(c) = 0. This gives

h(α)(c) =
f (b) − f (a)
1(b) − 1(a)

1(α)(c) − f (α)(c) = 0,

which gives the result.

Theorem 2. L’Hospital’s Rule. Let 0 < a ≤ b < ∞ and let the functions f , 1 be α−differentiable on (a, b), such that
1(α)(x) , 0 for all x ∈ (a, b). Suppose that

lim
x→a+

f (x) = 0 = lim
x→a+
1(x).

(a) If lim
x→a+

f (α)(x)
1(α)(x) = L ∈ R,then lim

x→a+
f (x)
1(x) = L.

(b) If lim
x→a+

f (α)(x)
1(α)(x) = L ∈ [−∞,∞],then lim

x→a+
f (x)
1(x) = L.

Proof. As in the usual case, the proof uses Rolles’ theorem and the Cauchy mean value theorem for α−
fractional derivatives, and will be omitted.

3. Conformable Fractional Fourier Transform

Definition 2. Let φ ∈ S and 0 < α < 1.We define the conformable fractional Fourier transform of φ, denoted by
Fα(φ), as follows

Fα(φ)(x) =

∞∫
−∞

e−i xα
α tφ(t)dt, x ∈ R. (3.1)

We note that the integral is absolutely convergent because φ ∈ S, and when the function xα
α is multi-valued complex

function we take its principal branch.

It follows right away from the definition that Fα(φ)(x) = F (φ)( xα
α ). This enables one to find the con-

formable fractional Fourier transform of functions whose conventional Fourier transform is known when
the values of α and x are appropriate.

Example 1. Consider the pulse f (t) = c if | t |≤ A, f (t) = 0 if | t |> A, where c and A are positive constants. We
have Fα( f (t))(x) = −2icα 1

xα sinh( i xα
α A).
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Example 2. Consider the function f (t) = e−|t|. By carrying out the calculations one finds that Fα( f (t))(x) is defined
for x and α which make −1 < i xα

α < 1. The conventional Fourier transform of this function is defined for x where
−1 < ix < 1.

Next, we examine some properties of the conformable fractional Fourier transformFα. Being an integral
transform, it follows that Fα is linear. It is also injective, because if Fα(φ) = Fα(ψ);φ,ψ ∈ S, then φ = ψ
a.e.Hence φ = ψ because they are continuous. Next, we consider conformable fractional derivative of
translation and dilation. We recall that the translation operator is defined by (τhφ)(x) = φ(x − h) and the
dilation of φ by λ;λ > 0, is defined by ( Πλφ)(x) = φ(λx).

Lemma 1. Let φ ∈ S and 0 < α < 1.For h ∈ R and λ > 0, we have

Fα(τhφ)(x) = e−i xα
α h
Fα(φ)(x);

Fα(Πλφ)(x) =
1
λ
Fα(φ)(

x

λ
1
α

)

Proof. Both formulas follow right away from the definition by simple change of variables.

Lemma 2. Let φ ∈ S and 0 < α < 1. Then

D(Fα(φ))(x) = −ixα−1
Fα(tφ)(x); x , 0. (3.2)

Proof. The result follows by interchanging the derivative with the integral, integrating by parts and recalling
that lim

|t|→∞
φ(t) = 0.

We remark that further calculations show that

D2(Fα(φ))(x) = −i(α − 1)xα−2
Fα(tφ)(x) − x2α−2

Fα(t2φ)(x); x , 0.

One can continue to calculate higher derivatives of Fα(φ). The calculations give more and more terms
without a general formula.

Lemma 3. Let φ ∈ S, 0 < α < 1, and m ∈ N. Then

Fα(Dmφ)(x) = (i
xα

α
)m
Fα(φ)(x). (3.3)

Proof. For m = 1 the result follows by integrating by parts and recalling that lim
|t|→∞

φ(t) = 0. The general result

follows by induction.

Related to the above lemmas one has

Fα(tDφ(t))(x) = Fα(φ(t))(x) + i
xα

α
Fα(tφ(t))(x)

and

Fα(t2D2φ(t))(x) = −Fα(φ(t))(x) − (i + 2)
xα

α
Fα(tφ(t))(x) − (

xα

α
)2
Fα(t2φ)(x).

Theorem 3. Let 0 < α < 1. Then Fα maps S continuously into itself.
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Proof. Let φ ∈ S and k, p be any nonnegative integers. We show that there exists l ∈ N such that for any
φ ∈ S,

ρk,p(φ) = sup
ξ∈R,m≤p

(1+ | ξ |2)
k
2 | Dm(Fα(φ)(ξ) |≤ ρl(φ).

It follows from Lemmas 2 and 3 and the comments after them that, for any m ≤ p there exist three
polynomials P, q and Q such that

(1+ | ξ |2)
k
2 | Dm(Fα(φ)(ξ) |≤| P(ξ) || Fα(q(x)φ(x))(ξ) | (3.4)

= | Fα(Q(x)φ(x))(ξ) |=|

∞∫
−∞

e−i ξα .xQ(x)φ(x)dx |; (3.5)

≤

∞∫
−∞

| Q(x)φ(x) | dx; (3.6)

≤ sup
x∈R

(1+ | x |2)l
| φ(x) |≤ υl(φ); (3.7)

because Q(x)φ(x) is in S, where l is a large enough positive integer.This completes the proof of the
theorem.

The next result assures that the conformable fractional Fourier transform behaves like the usual Fourier
transform with convolution product. More precisely, the fractional Fourier transform of the convolution of
two functions is the product of their fractional Fourier transforms.

Theorem 4. Let φ,ψ ∈ S and 0 < α < 1. Then Fα(φ ∗ ψ) = Fα(φ)Fα(ψ).

Proof. By definition we have

Fα(φ ∗ ψ) =
∞∫
−∞

e−i xα
α t(φ ∗ ψ)(t)dt =

∞∫
−∞

e−i xα
α t
∞∫
−∞

φ(t − y)ψ(y)dydt.

By interchanging the order of integration and making the change of variable t = y+τ, the above equality
gives

Fα(φ ∗ ψ)(x) =

∞∫
−∞

e−i xα
α τφ(τ)dτ

∞∫
−∞

e−i xα
α yψ(y)dy

= Fα(φ)(x)Fα(ψ)(x).

Now we examine some operational formulas of the conformable fractional Fourier transform with the
conformable fractional derivative.

The first formula gives the conformable fractional derivative of the fractional Fourier transform.

Proposition 1. Let φ ∈ S and 0 < α < 1.Then

Tα(Fα(φ)(x)) = −iFα(tφ(t))(x).
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Proof. By definition, and interchanging the conformable derivative with integration, one gets

Tα(Fα(φ)(x)) = Tα
∞∫
−∞

e−i xα
α tφ(t)dt;

=

∞∫
−∞

Tα(e−i xα
α tφ(t))dt;

=

∞∫
−∞

x1−α d
dx

e−i xα
α tφ(t)dt;

=

∞∫
− ite−i xα

α tφ(t)dt;

= (−i)(Fα(tφ(t)(x).

The second formula gives the conformable fractional Fourier transform of the conformable fractional
derivative of functions in S.

Proposition 2. Let φ ∈ S and 0 < α < 1. Then

Fα(Tαφ(t))(x) = ixα−1
Fα(t2−αφ(t))(x) + Fα(t−αφ(t))(x).

Proof. By definition, we have

Fα(Tαφ(t))(x) =

∞∫
−∞

e−i xα
α t(Tαφ)(t)dt;

=

∞∫
−∞

e−i xα
α tt1−α d

dt
φ(t)dt because φ is differentiable.

Integrating by parts and recalling that lim
|t|→∞

φ(t) = 0, the above equality becomes

Fα(Tαφ(t))(x) = ixα−1

∞∫
−∞

e−i xα
α tt2−αφ(t)dt +

∞∫
−∞

e−i xα
α tt−αφ(t)dt (3.8)

= ixα−1
Fα(t2−αφ(t))(x) + Fα(t−αφ(t))(x) (3.9)

We remark that putting α = 1 in equality (3.9) does not give the corresponding formula for the usual
Fourier transform.

In the next definition we introduce an operator which turns out to be a left inverse of the conformable
fractional Fourier transform.
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Definition 3. Let 0 < α < 1.We define the operator Gα on the space Fα(S) as follows

Gα(ψ)(t) = 1
2π

∞∫
−∞

ei xα
α txα−1ψ(x)dx.

We remark that whenever the function xβ is multi-valued then we take its principal branch. The
following theorem establishes the fact that Gα is a left inverse of Fα.

Theorem 5. Let 0 < α < 1. Then for any φ ∈ S we have

Gα(Fα(φ)(t) = φ(t), t ∈ R.

Proof. By definition of Gα we have,

Gα(Fα(φ)(t) =
1

2π

∞∫
−∞

ei xα
α txα−1

Fα(φ)(x)dx;

=
1

2π

∞∫
−∞

ei xα
α txα−1

∞∫
−∞

e−i xα
α yφ(y)dydx. (3.10)

Making the change of variable u = xα
α in equality (3.10), we get

Gα(Fα(φ)(t) =
1

2π

∞∫
−∞

eiut

∞∫
−∞

e−iuyφ(y)dydu;

=
1

2π

∞∫
−∞

eiutφ̂(u)du = φ(t);

where ∧ denotes the usual (traditional) Fourier transform.

The follwing corollary follows from Theorems 4 and 5 .

Corollary 1. Let φ,ψ ∈ S and 0 < α < 1. Then Gα(Fα(φ)Fα(ψ)) = φ ∗ ψ.

We remark that Gα is not a right inverse of Fα. Actually FαGα(ψ)(x) = ψ( xα
α ). One might also think of

the operator Hα(φ)(x) =
∞∫
−∞

ei xα
α xφ(x)dx;φ ∈ S. We have FαHα(φ)(x) = φ( xα

α ), but it does not behave any

good from the left. Since one of the very important applications of fractional Fourier transform is solving
differential equations that can not be solved using other methods, what is useful is the left inverse of Fα not
the right inverse.

Problem 1. Let φ,ψ ∈ S and 0 < α < 1. Is it true that Fα(φψ) = Fα(φ) ∗ Fα(ψ). This problem is interesting
because if it is true then, together with Theorem 4, we will have a convolution theorem for the conformable α−fractional
Fourier transform.

The next result establishes continuity of the conformable fractional Fourier transform as function of the
index.
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Theorem 6. Let α, β ∈ (0, 1). Then lim
β→α
Fβ (φ) = Fα(φ) in S for all φ ∈ S.

Proof. It suffices to show that lim
β→α
| xmDn(Fβ(φ)(x) − xmDn(Fα(φ)(x) |= 0, where m,n are any nonnegative

integers. We recall that xmDn(Fα(φ)(x) =
∞∫
−∞

e−i xα
α tDm(tknφ(t))dt ;where kn is a positive integer which depends

on n. Indeed

lim
β→α

| xmDn(Fβ(φ)(x) − xmDn(Fα(φ)(x) |;

= lim
β→α
|

∞∫
(

−∞

e−i xβ
β t
− e−i xα

α t)Dm(tknφ(t))dt |

= lim
β→α
|

∞∫
(

−∞

∞∑
l=0

(−i)l

l!
((

xβ

β
)l
− (

xα

α
)l) | t |l| Dm(tknφ(t)) | dt;

≤

∞∑
l=0

lim
β→α
|

∞∫
−∞

1
l!
| (

xβ

β
)l
− (

xα

α
)l) || Dm(tknφ(t)) | dt.

Since (( xβ
β )l
− ( xα

α )l) converges to 0 as β→ α and Dm(tknφ(t)) is in S it follows that the right hand side of the
last inequality converges to 0 as β→ α.

Now, we are in a position to define the conformabel fractional Fourier transform of tempered distribu-
tions. As in the case of usual Fourier transform it is done by duality.

Definition 4. Let 0 < α < 1 and let T ∈ S′ .Then the conformable fractional Fourier transform of T is defined by the
equality〈

FαT, φ
〉
=
〈
T,Fαφ

〉
, φ ∈ S.

Theorem 7. The conformable fractional Fourier transform is continuous on S′ .

Proof. Since S′ is Montel space it suffices to show that Fα is sequentially continuous on S′ . Let (T j) be a sequence
which converges to 0 in S′ . We show that the sequence ( FαT j) converges to 0 in S′ . Let B be a bounded subset of S.
Since Fα is continuous on S (Theorem 1 ) it follows that Fα(B) is bounded in S.Thus〈

FαT j, φ
〉
=
〈
T j,Fαφ

〉
→ 0 uniformly in φ ∈ B.

We can also define Gα on S
′

by duality, and we have〈
Fα(Gα(T), φ

〉
=
〈
T,Gα(Fα(φ)

〉
=
〈
T, φ
〉

for all φ in S.

That is Gα is a right inverse of Fα on S
′

.

Example 3. Find Fα(δ), where 0 < α < 1 and δ is the Dirac function.
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Let φ ∈S. Then

〈
Fα(δ), φ

〉
=
〈
δ,Fα(φ)

〉
= Fα(φ)(0) =

∞∫
−∞

φ(x)dx =
〈
1, φ
〉
.

Thus Fα(δ) = 1 as tempered distributions.
In the next result we examine the conformable fractional Fourier transform of convolution operators

on S
′

. A tempered distribution S is a convolution operator on S
′

if S ∗ T ∈ S′ for all T ∈ S′ and the linear
mapping T→ S ∗T from S

′

into itself is continuous. The space of all convolution operators on S
′

is denoted
by O

′

c(S
′

: S
′

). In the proof, the following characterization of the members of O
′

c(S
′

: S
′

) will be used (see
[1] Theorem 6.6). A tempered distribution S is in O

′

c(S
′

: S
′

), if and only if for every k > 0 there is an integer
m = m(k) such that

S =
∑

0≤l≤m

Dl fl; (3.11)

where, for each l, fl is a continuous functions such that (1+ | x |2)
k
2 fl ∈ L∞.

Theorem 8. Let S ∈ O′c(S
′

: S
′

) and 0 < α < 1. Then Fα(S) is bounded by a polynomial in xα
α .

Proof. From equality (3.11), linearity of Fα and Lemma 3, we have Fα(S) =
∑

l≤m
(i)l
Fα( fl)(x)( xα

α )l, where Fα( fl)(x) is

bounded by a constant Cl.

We remark that Theorem 8 is similar to a corresponding result when α = 1.

In some applications conformable cosine and sine Fourier transforms might be needed. These are
defined similar to the corresponding ones for the traditional Fourier transform. They are

F
c
α (φ)(x) =

√
2
π

∞∫
0

φ(t) cos(
xα

α
t)dt;

F
s
α(φ)(x) =

√
2
π

∞∫
0

φ(t) sin(
xα

α
t)dt.

The following properties of F c
α and F s

α follow from the above definition, integration by parts and change
of variable.

Proposition 3. Let φ ∈ S and 0 < α < 1. Then

F
c
α (Dφ)(x) =

xα

α
F

s
α(φ)(x) −

√
2
π
φ(0),

F
s
α(Dφ)(x) = −

xα

α
F

c
α (φ)(x),

F
c
α (D2φ)(x) = −(

xα

α
)2
F

c
α (φ)(x) −

√
2
π
φ
′

(0),

F
s
α(D2φ)(x) = −(

xα

α
)2
F

s
α(φ)(x) +

√
2
π

xα

α
φ
′

(0),

F
c
α (Tαφ)(x) = −F

c
α (
φ(t)
tα

)(x) + F s
α(φ(t)t1−α)(x),

F
s
α(Tαφ)(x) = −F

s
α(
φ(t)
tα

)(x) −
xα

α
F

c
α (φ(t)t1−α)(x),

TαF c
α (φ)(x) = −(

1
α

)1−αx2α−α2
−1
F

s
α(φ(t)t2−α)(x).
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4. Applications

In this section we discuss two examples which show how conformable fractional Fourier transform is
used to solve differential equations. The first example is a second order ordinary differential equation and
the second example is a conformable heat equation.

Example 4. Use conformable fractional Fourier transform to solve the differential equation

u
′′

(x) + b2x2u(x) = 0, b > 0.

By taking the conformable fractional Fourier transform of both sides of the equationm, we get

(i
xα

α
)2U(ξ) + b2(α3ξ−2α−1

− α2ξ−2α)Dξ(U(ξ)) = 0,

which gives the ordinary differential equation in U(ξ)

U′

(ξ)
U(ξ)

= −
ξ4α+1

α2b2(α3 − α2ξ)
.

By solving the last differential equation for U(ξ) and taking α = 1
2 we get

U(ξ) = C exp(−
∫

16ξ3

b2( 1
2 − ξ)

dξ).

Applying the fractional operator G 1
2

from the left to U(ξ) ,we get

u(x) = G 1
2
(C exp(−

∫
16ξ3

b2( 1
2 − ξ)

dξ).

Remark 1. One might try to solve the the above differential equation using traditional Fourier transform. Doing
so, we get a second order differential equation with variable coefficients in û the Fourier transform of u. Solving this
equation using power sries, and taking the inverse Fourier transform of the power series solution gives a differential
operator of infinite order. One then has to determine in which space of distributions the differential operator is
convergent.

Example 5. Use conformable fractional Fourier transform to solve the conformable fractional heat equation

∂αu(x, t)
∂tα

= k
∂2u(x, t)
∂x2 ; −∞ < x < ∞, t ≥ 0,

u(0, t) = 0, t ≥ 0, u(x.0) = f (x).

By taking the conformable fractional Fourier transform of both sides with respect to x, we get

t1−α d
dt

û(ω, t) = −k
ω2α

α2 û(ω, t),

where û(ω, t) is the conformable fractional Fourier transform of u(x, t) with respect to x. The last differential equation
gives

û(ω, t) = C exp(−k
ω2α

α2

tα

α
).

Next, we take the fractional Fourier transform of the initial condition u(x, 0) = f (x), we get û(ω, 0) = f̂ (ω).
Substituting this in the last equality, one gets C = f̂ (ω). Hence

û(ω, t) = f̂ (ω) exp(−k
ω2α

α2

tα

α
).

Finally we apply the fractional operator Gα from the left and get

u(x, t) = Gα( f̂ (ω) exp(−k
ω2α

α2

tα

α
)).
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