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Abstract. Let R be a unit-regular ring, and let a, b, c ∈ R satisfy aba = aca. If ac or ba is Drazin invertible,
we prove that their Drazin inverses are similar. Furthermore, if ac and ba are group invertible, then ac is
similar to ba. For any n×n complex matrices A,B,C with ABA = ACA, we prove that AC and BA are similar
if and only if their k-powers have the same rank. These generalize the known Flanders’ theorem proved by
Hartwig.

1. Introduction

An element a ∈ R has Drazin inverse if there exists an element x ∈ R such that

ax = xa, xax = x, ak+1x = ak f or some k ∈N,

or equivalently,

ax = xa, xax = x, a2x − a ∈ N(R),

where N(R) denotes the set of all nilpotents in R. If a is Drazin invertible, the Drazin inverse of a is unique,
denote x by aD. The least nonnegative k which satisfies formulas above is called the index of a, denoted by
ind(a). If ind(a) =1, a is said to be group invertible. In this case, the element x is called the group inverse of
a and denoted by a#, that is ,

aa# = a#a, a#aa# = a#, aa#a = a.

We use R# to stand for the set of all group invertible elements of R. Two elements a, b ∈ R are similar,
i.e., a ∼ b, if there exists an invertible element s such that a = s−1bs.

The known Flanders’ theorem states that (AB)D is similar to (BA)D for any n × n matrices A and B over
a field. In [9], Hartwig extended Flanders’ Theorem. Let R be a strongly π-regular unit-regular ring and
a, b ∈ R. He proved that (ab)D and (ba)D are similar. Cao and Li considered Flanders’ theorem in a Bézout
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domain. Let R be a Bézout domain and A,B ∈ Rn×n. If (AB)# and (BA)# exist, then AB is similar to BA (see [2,
Theorem 3.6]). Afterwards, in [12, Theorem 2.2], Mihallović and Djordjević extended the proceeding results
to the general ring setting. Deng [7, Theorem 2.6] also considered the case for operators on Hilbert spaces.
Unfortunately, there are some gaps in their proofs. To be specific, for any a, b ∈ R, generally, the condition
that (ab)# and (ba)# exist do not imply ab ∼ ba. We will give a counter-example in the next section.

Recall that a ring R is unit-regular provided that for each a ∈ R, there is a unit u ∈ R such that aua = a.
For example, the ring of all n × n complex matrices is unit-regular. The main purpose of this paper is to
give a generalized Flander’s theorem in unit-regular rings. Let R be unit-regular, and let a, b, c ∈ R satisfy
aba = aca. If ac or ba is Drazin invertible, we prove that (ac)D

∼ (ba)D. If ac and ba is group invertible, we
further show that ac ∼ ba. For any n × n complex matrices A,B,C with ABA = ACA, we prove that AC and
BA are similar if and only if their k-powers have the same rank. Flanders’ theorem is thereby extended to
the case of triples (a, b, c) with aba = aca.

Throughout this paper, all rings are associative with an identity, the set of all invertible elements of R
will be denoted by U(R). N stands for the set of all natural numbers.

2. Main Results

We begin with a counter-example which infers that [12, Theorem 2.2] and [7, Theorem 2.6] are not true.

Example 2.1. Let V be an infinite dimensional vector space of a field F, and let R = EndF(V). Let
{x1, x2, · · · , xn, · · · } be a basis of V.

Definition

σ(xi) = xi+1 for all i ∈N,
τ(x1) = 0, τ(xi) = xi−1 for all i ≥ 2.

Then σ, τ ∈ R, and for any i ∈N,
τσ(xi) = τ(xi+1) = xi,

i.e., τσ = 1V. Therefore τσ is invertible in R, hence τσ ∈ R#.
Since στ(x1) = σ(0) = 0, we have στ , 1. But (στ)2 = σ(τσ)τ = στ, στ is an idempotent, and so στ ∈ R#.
We claim that τσ / στ, otherwise, there exists s ∈ U(R) such that τσ · s = s · στ which implies στ = 1, a

contradiction. □

Lemma 2.2. Let a, b, c ∈ R satisfy aba = aca.
(1) If (ac)D or (ba)D exists, then

(ba)D = b[(ac)D]2a, (ac)D = a[(ba)D]2c,

a(ba)D = (ac)Da, ab(ac)D = ac(ac)D.

(2) If (ac)# and (ba)# exist, then

(ba)# = b[(ac)#]2a, (ac)# = a[(ba)#]2c,

ab(ac)# = ac(ac)#, a(ba)# = (ac)#a.

Proof. (1) In view of [13, Theorem 2.7], we have (ba)D = b[(ac)D]2a and (ac)D = a[(ba)D]2c. Moreover, we
assume that (ac)D exists, we get

a(ba)D = ab[(ac)D]2a = ac[(ac)D]2a = (ac)Da,

ab(ac)D = abac[(ac)D]2 = acac[(ac)D]2 = ac(ac)D.

(2) Suppose that (ac)# and (ba)# exist. Then (ac)# = (ac)D and (ba)# = (ba)D, we obtain the result by (1). □

We come now to extend Flanders’ theorem to unit-regular rings.
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Theorem 2.3. Let R be a unit-regular ring and let a, b, c ∈ R with aba = aca. If (ac)D or (ba)D exists, then
(ac)D

∼ (ba)D. In this case, (ac)2(ac)D
∼ (ba)2(ba)D.

Proof. Without loss of generality, assume that (ac)D exists, by virtue of Lemma 2.2, we have (ba)D =
b[(ac)D]2a = b(ac)D(ac)Da. Let

x = b(ac)D, y = ac(ac)Da.

Then we check that

x(ac)Dy = b(ac)D(ac)Dac(ac)Da = (ba)D;
y(ba)Dx = ac(ac)Da(ba)Db(ac)D = ac(ac)D(ac)Dac(ac)D = (ac)D;

xyx = b(ac)Dac(ac)Dab(ac)D = b(ac)Dac(ac)D = x;
yxy = ac(ac)Dab(ac)Dac(ac)Da = ac(ac)Dac(ac)Da = y;

Since R is unit-regular, we have x = xvx for some v ∈ U(R). Set

u = (1 − xy − xv)v−1(1 − yx − vx).

Since (1 − yx − vx)2 = 1 and (1 − xy − xv)2 = 1, we verify that

(1 − xy − xv)v−1(1 − yx − vx)2v(1 − xy − xv) = 1,

(1 − yx − vx)v(1 − xy − xv)2v−1(1 − yx − vx) = 1,

i.e., u is invertible in R. Furthermore, we have

u−1 = (1 − yx − vx)v(1 − xy − xv) = v − vxv + y.

We check that
(ac)Du−1 = y(ba)Dxv(1 − xv) + (ac)Dac(ac)Da = (ac)Da,

u−1(ba)D = (1 − vx)vx(ac)Dy + ac(ac)Da(ba)D = (ac)Da.

Therefore
(ac)D = u−1(ba)Du.

i.e., (ac)D
∼ (ba)D.

Accordingly, by [9, Theorem 1], (ac)2(ac)D
∼ (ba)2(ba)D. □

Corollary 2.4. Let R be a unit-regular ring and let a, b, c ∈ R with aba = aca. If (ac)# and (ba)# exist, then
(ac)#

∼ (ba)#.

Proof. Since (ac)# and (ba)# exist, then (ac)D = (ac)# and (ba)D = (ba)#. So this is a direct consequence of
Theorem 2.3. □

Corollary 2.5. Let A,B,C ∈ Cn×n with ABA = ACA. If (AC)# and (BA)# exist, then (AC)#
∼ (BA)#.

Proof. By [4, Corollary 4.5], Cn×n is unit-regular. Therefore we complete the proof by Corollary 2.4. □

Contract to Corollary 2.4, we now derive

Theorem 2.6. Let R be a unit-regular ring and let a, b, c ∈ R satisfy aba = aca. If (ac)# and (ba)# exist, then ac ∼ ba.

Proof. Assume that (ac)# and (ba)# exist. Let x = b(ac)# and y = ac(ac)#a. Since R is unit-regular, there exists
some v ∈ U(R) such that x = xvx. Set

u = (1 − xy − xv)v−1(1 − yx − vx).

As in the proof of Theorem 2.3, we prove that u ∈ U(R). Moreover,

(ac)#u−1 = (ac)#a and u−1(ba)# = (ac)#a.
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Multiplying the first equality by (ac)2 from the left, we obtain

(ac)u−1 = aca.

Multiplying the second equality by (ba)2 from the right, we have

u−1(ba) = (ac)#a(ba)2 = (ac)#acaca = aca.

This implies that ac ∼ ba, as asserted. □

Corollary 2.7. Let A,B,C ∈ Cn×n with ABA = ACA. If (AC)# and (BA)# exist, then AC ∼ BA.

Proof. Since Cn×n is unit-regular, the result follows by Theorem 2.6. □

Bu and Cao proved that AB ∼ BA if AB and BA have group inverses(see [1, Corollary 4]). Corollary 2.7
is a nontrivial generalization of this result as the following shows.

Example 2.8. Let A =
[
0 1
0 1

]
,B =

[
1 1
1 1

]
and C =

[
0 0
1 1

]
in C2×2. Then ABA =

[
0 2
0 2

]
= ACA. We compute

that

AC =
[
1 1
1 1

]
, BA =

[
0 2
0 2

]
;

(AC)# =

[
1
4

1
4

1
4

1
4

]
, (BA)# =

[
0 1

2
0 1

2

]
.

Then AC = S−1BAS, (AC)# = S−1(BA)#S, where S =
[
1 0
1
2

1
2

]
. Therefore AC ∼ BA, (AC)#

∼ (BA)#. But B , C. □

Theorem 2.9. Let R be a unit-regular ring and let a, b, c ∈ R satisfy aba = aca. If (ac)D or (ba)D exists, then
(ac)s

∼ (ba)s for all s ≥ max{ind(ac), ind(ba)}.

Proof. By Lemma 2.2, if (ac)D or (ba)D exists, then both (ac)D and (ba)D exist. Construct u as in Theorem 2.3,
by the proof of Theorem 2.3,

(ac)Du−1 = (ac)Da, u−1(ba)D = (ac)Da.

Multiplying the first equality by (ac)s+1 from the left, we obtain

(ac)su−1 = (ac)sa.

Multiplying the second equality by (ba)2 from the right, we have

u−1(ba)s = (ac)sa.

Therefore (ac)s
∼ (ba)s. □

Corollary 2.10. Let A,B,C ∈ Cn×n with ABA = ACA. If s ≥ max{ind(AC), ind(BA)}, then (AC)s
∼ (BA)s.

Proof. Since Cn×n is unit-regular, A,B,C ∈ Cn×n with ABA = ACA, AC and BA are Drazin invertible, by using
Theorem 2.9, (AC)s

∼ (BA)s for all s ≥ max{ind(AC), ind(BA)}. □

Corollary 2.11. Let A,B ∈ Cn×n. If s ≥ max{ind(AB), ind(BA)}, then (AB)s
∼ (BA)s.

Proof. This is obvious by choosing “B = C” in Corollary 2.10. □

The following example illustrates Corollary 2.10 is a nontrivival generalization of [9, Corollary 2].



D. Liu, A. Fang / Filomat 36:8 (2022), 2807–2811 2811

Example 2.12. Let A = B =
[
0 1
0 1

]
, C =

[
0 1
1 0

]
∈ C2×2. Then ABA = ACA, while B , C. In this case,

ind(AC) = ind(BA) = 1. In view of Corollary 2.10, (AC)s
∼ (BA)s for all s ≥ 1. Evidently, AC =

[
1 0
1 0

]
and

BA =
[
0 1
0 1

]
are idempotent. Let U =

[
0 1
1 0

]
. Then (AC)s = U−1(BA)sU for all s ∈N. □

As an application of Theorem 2.3, we now ready to prove

Theorem 2.13. Let A,B,C ∈ Cn×n with ABA = ACA. Then AC ∼ BA if and only if rank(AC)k = rank(BA)k for
k = 1, 2, · · · .

Proof. The necessity is obvious. For the sufficiency, there exist two invertible matrices P and Q such that

PACP−1 =

(
U1

N1

)
, QBAQ−1 =

(
U2

N2

)
where U1,U2 are invertible, and N1,N2 are nilpotent. Choose s = ind(N1) + ind(N2), then

P(AC)sP−1 =

(
Us

1
O

)
, Q(BA)sQ−1 =

(
Us

2
O

)
.

Since rank(AC)s = rank(BA)s, we see that U1 and U2 have the same rank. It is easy to check that

(AC)D = P−1

(
U−1

1
O

)
P, (BA)D = Q−1

(
U−1

2
O

)
Q.

In view of Theorem 2.3, we have
(AC)D

∼ (BA)D,

i.e., (
U−1

1
O

)
∼

(
U−1

2
O

)
,

which follows U−1
1 ∼ U−1

2 , and so U1 ∼ U2. Moreover, as rank(AC)k = rank(BA)k, rank(N1)k = rank(N2)k for
all positive integers k. Since N1,N2 are nilpotent, by the Jordan forms of N1,N2, we have that N1 and N2
have the same Jordan forms. Hence N1 ∼ N2. Therefore AC ∼ BA, as asserted . □
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