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Abstract. In this paper we generalize the concept of Koliha-Drazin invertible operators by introducing
generalized Drazin-1-meromorphic invertible operators. A bounded linear operator T on a Banach space
X is said to be 1-meromorphic if every non-zero point of its spectrum is an isolated point. For T we say that
it is generalized Drazin-1-meromorphic invertible if there exists a bounded linear operator S acting on X
such that TS = ST, STS = S, TST − T is 1-meromorphic, while T admits a generalized Kato-1-meromorphic
decomposition if there exists a pair of T-invariant closed subspaces (M,N) such that X =M⊕N, the reduction
TM is Kato and TN is 1-meromorphic.

1. Introduction

Let X be an infinite dimensional Banach space and let L(X) be the Banach algebra of all bounded linear
operators acting on X. The group of all invertible operators is denoted by L(X)−1, and the set of all bounded
below (resp., surjective) operators is denoted by J(X) (resp., S(X)). Given T ∈ L(X), we denote by σ(T),
σap(T) and σsu(T) its spectrum, approximate point spectrum and surjective spectrum, respectively. The space
of bounded linear functionals on X is denoted by X′. For T ∈ L(X) we shall write α(T) for the dimension
of the kernel N(T) and β(T) for the codimension of the range R(T). We call T ∈ L(X) an upper semi-Fredholm
operator if α(T) < ∞ and R(T) is closed, and we say that T is a lower semi-Fredholm operator if β(T) < ∞.
We use Φ+(X) (resp. Φ−(X)) to denote the set of upper (resp. lower) semi-Fredholm operators. The set
of semi-Fredholm operators is defined by Φ±(X) = Φ+(X) ∪ Φ−(X), while the set of Fredholm operators is
defined by Φ(X) = Φ+(X) ∩Φ−(X). If T ∈ Φ±(X), the index is defined by i(T) = α(T) − β(T). For T ∈ L(X) the
semi-Fredholm spectrum of T and the Fredholm spectrum of T are defined, respectively, by:

σΦ± (T) = {λ ∈ C : T − λI < Φ±(X)},
σΦ(T) = {λ ∈ C : T − λI < Φ(X)}.

The sets of upper semi-Weyl, lower semi-Weyl and Weyl operators are defined byW+(X) = {T ∈ Φ+(X) :
ind(T) ≤ 0}, W−(X) = {T ∈ Φ−(X) : ind(T) ≥ 0} and W(X) = {T ∈ Φ(X) : ind(T) = 0}, respectively. An
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operator T ∈ L(X) is said to be a Riesz operator, if T−λ ∈ Φ(X) for every non-zero λ ∈ C, and this is equivalent
to the fact that its non-zero spectral points are poles of its resolvent of the finite algebraic multiplicity. An
operator T ∈ L(X) is meromorphic if its non-zero spectral points are poles of its resolvent, and in that case we
shall write T ∈ (M). Therefore, every Riesz operator is meromorphic.

If K ⊂ C, then ∂K is the boundary of K, acc K is the set of accumulation points of K, iso K = K \ acc K
and int K is the set of interior points of K. For λ0 ∈ C, the open disc, centered at λ0 with radius ϵ in C, is
denoted by D(λ0, ϵ).

If K ⊂ C is a compact set, we write f ∈ Holo(K) if f is a holomorphic function in a neighborhood of
K, and Holo1(K) ⊆ Holo(K) for those holomorphic functions 1 : U → C which are non constant on each
connected component of open U ⊇ K.

For T ∈ L(X), a subset σ of σ(T) is called a spectral set of T if it is both open and closed in the relative
topology of σ(T).

If M is a subspace of X such that T(M) ⊂ M, T ∈ L(X), it is said that M is T-invariant. We define
TM : M → M as TMx = Tx, x ∈ M. If M and N are two closed T-invariant subspaces of X such that
X = M ⊕ N, we say that T is completely reduced by the pair (M,N) and it is denoted by (M,N) ∈ Red(T). In
this case we write T = TM ⊕ TN and say that T is the direct sum of TM and TN.

For T ∈ L(X) we say that it is Kato if R(T) is closed and N(T) ⊂ R(Tn) for every n ∈ N. It is said that
T ∈ L(X) admits a Kato decomposition or T is of Kato type if there exist two closed T-invariant subspaces
M and N such that X = M ⊕ N, TM is Kato and TN is nilpotent. If we require that TN is quasinilpotent
instead of nilpotent in the definition of the Kato decomposition, then it leads us to the generalized Kato
decomposition, abbreviated as GKD. An operator T ∈ L(X) is said to admit a generalized Kato-Riesz
decomposition (a generalized Kato-meromorphic decomposition) if there exists a pair (M,N) ∈ Red(T) such
that TM is Kato and TN is Riesz (meromorphic), abbreviated as GKRD (GK(M)D) [15], [16].

For T ∈ L(X), the Kato type spectrum, the generalized Kato spectrum, the generalized Kato-Riesz
spectrum and the generalized Kato-meromorphic spectrum are defined, respectively, by:

σKt(T) = {λ ∈ C : T − λ is not of Kato type},
σ1K(T) = {λ ∈ C : T − λ does not admit a generalized Kato decomposition},
σ1KR(T) = {λ ∈ C : T − λ does not admit a GKRD},
σ1K(M)(T) = {λ ∈ C : T − λ does not admit a GK(M)D}.

An operator T ∈ L(X) is said to be Drazin invertible if there exists S ∈ L(X) such that TS = ST, STS = S and
TST − T is nilpotent. This concept has been generalized by Koliha [9]: an operator T ∈ L(X) is generalized
Drazin invertible (Koliha-Drazin invertible) if there is S ∈ L(X) such that

TS = ST, STS = S, TST − T is quasinilpotent. (1.1)

Recall that T is generalized Drazin invertible if and only if 0 < acc σ(T), and this is also equivalent to the
fact that T = T1⊕T2 where T1 is invertible and T2 is quasinilpotent. In [15] this concept is further generalized
by replacing the third condition in the previous definitions by the condition that TST − T is Riesz, and so
it is introduced the concept of generalized Drazin-Riesz invertible operators. Further generalization is
done in [16] by replacing the third condition in (1.1) by the condition that TST − T is meromorphic, and
so it is introduced the concept of generalized Drazin-meromorphic invertible operators. Recall that T is
generalized Drazin-Riesz invertible (generalized Drazin-meromorphic invertible) if and only if T = T1 ⊕ T2
where T1 is invertible and T2 is Riesz (meromorphic) [15], [16]. In [1] it is proved that T is generalized
Drazin-Riesz invertible if and only if 0 is not an accumulation point of its Browder spectrum.

In this paper we further generalize this concept of Koliha-Drazin invertibles by replacing the third
condition in (1.1) by the condition that TST − T is 1-meromorphic:

Definition 1.1. An operator T ∈ L(X) is said to be 1-meromorphic if every non-zero point of its spectrum is
an isolated point, and in that case we shall write T ∈ (1M).
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Definition 1.2. An operator T ∈ L(X) is generalized Drazin-1-meromorphic invertible, if there exists S ∈ L(X)
such that

TS = ST, STS = S, TST − T is 1 −meromorphic.

The set of all generalized Drazin invertible (Koliha-Drazin invertible) operators of the algebra L(X)
is denoted by L(X)1D, while the set of all generalized Drazin-1-meromorphic invertible operators of the
algebra L(X) is denoted by L(X)1D(1M).

Definition 1.3. An operator T ∈ L(X) is said to admit a generalized Kato-1-meromorphic decomposition, abbre-
viated to GK(1M)D, if there exists a pair (M,N) ∈ Red(T) such that TM is Kato and TN is 1-meromorphic (i.e.
TN ∈ (1M)). In that case we shall say that T admits a GK(1M)D(M,N).

We use the following notation:

R1(X) = L(X)−1 R2(X) = J(X) R3(X) = S(X)
R4(X) = Φ(X) R5(X) = Φ+(X) R6(X) = Φ−(X)

R7(X) =W(X) R8(X) =W+(X) R9(X) =W−(X)

Henceforth, in common with current practice ([12], [13]) we abbreviate Ri(X) to Ri, the Banach space X
being understood: for example, if T ∈ L(X), T ∈ Ri means T satisfies Ri(X). If T ∈ L(X) and 1 ≤ i ≤ 9, let
σRi (T) = {λ ∈ C : T − λ < Ri}. Recall that σRi (T) is closed, 1 ≤ i ≤ 9.

For T ∈ L(X) we write T ∈ GDRi if there exist (M,N) ∈ Red(T) such that TM ∈ Ri and TN is quasinilpotent,
1 ≤ i ≤ 9. For T ∈ L(X) the generalized Drazin spectrum is defined by:

σ1D(T) = {λ ∈ C : T − λ is not generalized Drazin invertible}.

If T ∈ L(X) and 2 ≤ i ≤ 9, let

σ1DRi (T) = {λ ∈ C : T − λ < GDRi}.

Definition 1.4. An operator T ∈ L(X) satisfies T ∈ GD(1M)Ri if there exist (M,N) ∈ Red(T) such that TM ∈ Ri
and TN ∈ (1M), 1 ≤ i ≤ 9.

This paper is divided into four sections. In the second section we give some preliminary results. In the
third section we give some properties of 1-meromorphic operators and show that T is generalized Drazin-
1-meromorphic invertible if and only if 0 is not an accumulation point of its generalized Drazin spectrum
and this is also equivalent to the fact that T is a direct sum of a 1-meromorphic operator and an invertible
operator, as well as to the fact that T admits a generalized Kato-meromorphic decomposition and 0 is not an
interior point of σ(T). Also we prove that T is generalized Drazin-1-meromorphic invertible if and only if
there exists a projection P ∈ L(X) such that P commutes with T, TP is 1-meromorphic and T+P is invertible.
We characterize bounded linear operators which can be expressed as a direct sum of a 1-meromorphic
operator and a bounded below (resp. surjective, upper (lower) semi-Fredholm, Fredholm, upper (lower)
semi-Weyl, Weyl) operator. In particular, we characterize the single-valued extension property at a point
λ0 ∈ C in the case that λ0 − T admits a generalized Kato-1-meromorphic decomposition, and in that way
we extend [2, Theorem 2., Theorem 2.5], [8, Theoem 3.5, Theorem 3.9], [15, Corollary 2.1], [16, Corollary
1, Corollary 2]. In the forth section we investigate corresponding spectra. In particular we give some
results regarding boundaries, connected hulls and isolated points of corresponding spectra, and improve
[2, Theorem 2.10 and Corollary 2.11], [8, Theorem 3.12 and Corollary 3.13], [15, Theorems 3.14 and 3.15]
and [16, Theorems 13, 14].
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2. Preliminary results

The following preliminary assertions will be needed in the sequel.

Lemma 2.1. ([15, Lemma 2.1]) Let T ∈ L(X) and (M,N) ∈ Red(T). The following statements hold:
(i) T ∈ Ri if and only if TM ∈ Ri and TN ∈ Ri, 1 ≤ i ≤ 6, and in that case ind(T) = ind(TM) + ind(TN);
(ii) If TM ∈ Ri and TN ∈ Ri, then T ∈ Ri, 7 ≤ i ≤ 9.
(iii) If T ∈ Ri and TN is Weyl, then TM ∈ Ri, 7 ≤ i ≤ 9.

Lemma 2.2. Let E,F ⊂ C. Then:
(i) If ∂F ⊂ E ⊂ F, then iso F ⊂ iso E.
(ii) If ∂F ⊂ E and F is closed, then ∂F ∩ iso E ⊂ iso F.

Proof. See [5, Lemma 2.2].

Lemma 2.3. ([16, Lemma 4]) Let X = X1 ⊕ X2 · · · ⊕ Xn where X1, X2, . . . ,Xn are closed subspaces of X and let Mi
be a closed subset of Xi, i = 1, . . . ,n. Then the set M1 ⊕M2 ⊕ · · · ⊕Mn is closed.

Lemma 2.4. Let T,U ∈ L(X) and let U be invertible such that TU = UT. Then T is generalized Drazin invertible if
and only if TU is generalized Drazin invertible.

Proof. Since generalized Drazin invertibles form a regularity [10, Theorem 1.2], applying [13, Proposition
6.2 (iii)] we obtain the desired conclusion.

Lemma 2.5. Let T ∈ L(X) and let (M,N) ∈ Red(T). Then T is generalized Drazin invertible if and only if TM and
TN are generalized Drazin invertible.

Proof. For any K1,K2 ⊂ C it holds
acc (K1 ∪ K2) = acc K1 ∪ acc K2

Really, from Ki ⊂ K1 ∪K2 it follows that acc Ki ⊂ acc (K1 ∪K2), i = 1, 2. Hence acc K1 ∪ acc K2 ⊂ acc (K1 ∪K2).
Let λ < acc K1 ∪ acc K2. Then there is an ϵ > 0 such that (D(λ, ϵ) \ {λ}) ∩ K1 = (D(λ, ϵ) \ {λ}) ∩ K2 = ∅.
Consequently, (D(λ, ϵ) \ {λ}) ∩ (K1 ∪ K2) = ∅, and so λ < acc (K1 ∪ K2). Applying [9, Theorem 4.2] we get

σ1D(T) = acc σ(T) = acc (σ(TM) ∪ σ(TN)) = acc σ(TM) ∪ acc σ(TN) = σ1D(TM) ∪ σ1D(TN).

It implies that T is generalized Drazin invertible if and only if 0 < σ1D(T) if and only if 0 < σ1D(TM) and
0 < σ1D(TN), i.e. TM and TN are generalized Drazin invertible.

3. GD(1M)Ri operators and 1-meromorphic operators

We start with some properties of 1-meromorphic operators.
From Definition 1.1 it is clear that

T is 1 −meromorphic⇐⇒ acc σ(T) ⊂ {0}. (3.1)

Therefore, T ∈ L(X) is 1-meromorphic if and only if σ(T) is finite or countable with σ(T) = {λn : n ∈
N} ∪ {0}, where (λn) is a sequence of isolated points of σ(T) which converges to 0.

Theorem 3.1. Let T ∈ L(X). Then the following conditions are equivalent:
(i) T is 1-meromorphic;
(ii) σ1D(T) ⊂ {0};
(iii) σ1DRi (T) ⊂ {0} for some i ∈ {1, . . . , 9};
(iv) σ1DRi (T) ⊂ {0} for every i ∈ {1, . . . , 9};
(v) σ1K(T) ⊂ {0}.
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Proof. (i)⇐⇒(ii): Since σ1D(T) = acc σ(T) [9, Theorem 4.2], from (3.1) it follows that T is 1-meromorphic if
and only if σ1D(T) ⊂ {0}.

(ii)⇐⇒(iii)⇐⇒(iv): From [5, Proposition 5.6] it follows that σ1D(T) is finite if and only if σ1DRi (T) is finite,
where i ∈ {2, . . . , 9}, and this is also equivalent to the fact that σ1K(T) is finite, whereby σ1K(T) = σ1DRi (T)
for every i ∈ {1, . . . , 9}. Hence, σ1DRi (T) ⊂ {0} for some i ∈ {1, . . . , 9} if and only if σ1K(T) = σ1DRi (T) ⊂ {0} for
every i ∈ {1, . . . , 9}.

Proposition 3.2. Let T ∈ L(X) and let (M,N) ∈ Red(T). Then T ∈ (1M) if and only if TM ∈ (1M) and TN ∈ (1M).

Proof. From the equality
σ1D(T) = σ1D(TM) ∪ σ1D(TN)

it follows that σ1D(T) ⊂ {0} if and only if σ1D(TM) ⊂ {0} and σ1D(TN) ⊂ {0}. Consequently, T is 1-meromorphic
if and only if TM and TN are 1-meromorphic.

Lemma 3.3. Let T ∈ L(X). Then T is 1-meromorphic if and only if T′ is 1-meromorphic.

Proof. It follows from the equality σ(T) = σ(T′).

Proposition 3.4. Let T ∈ L(X) be 1-meromorphic and let f ∈ Holo1(σ(a)) and f (0) = 0. Then f (T) is 1-
meromorphic.

Proof. By using [10, Theorem 1.4] and Theorem 3.1 we conclude that

σ1D( f (T)) = f (σ1D(T)) ⊂ f (0) = 0,

and so f (T) is 1-meromorphic.

Proposition 3.5. Let T,S ∈ L(X). Then TS is 1-meromorphic if and only if ST is 1-meromorphic.

Proof. From [14, Theorem 2.3] it follows that λ − TS is generalized Drazin invertible if and only if λ − ST
is generalized Drazin invertible, for every λ , 0. Hence σ1D(TS) ∪ {0} = σ1D(ST) ∪ {0}, which implies that
σ1D(TS) ⊂ {0} if and only if σ1D(ST) ⊂ {0}. Thus TS is 1-meromorphic if and only if ST is 1-meromorphic.

Remark 3.6. It is clear that every meromorphic operator is 1-meromorphic, and so every Riesz operator is
1-meromorphic. In contrast to Riesz operators, and as in the case of meromorphic operators, the sum of a
pair of commuting 1-meromorphic operators may not be a 1-meromorphic operator. For example, if A is a
Riesz operator with infinite spectrum, then A is 1-meromorphic, the indentity operator I is 1-meromorphic
and commutes with A. As σ1D(A) = {0}, we have that σ1D(I + A) = {1}, and so I + A is not 1-meromorphic.
Also, the product of two commuting operators, one of which is 1-meromorphic, may not be meromorphic.
For example, I and I + A commute, I is 1-meromorphic, but their product I + A is not 1-meromorphic.

Theorem 3.7. The following conditions are equivalent for T ∈ L(X) and 1 ≤ i ≤ 9:
(i) There exists (M,N) ∈ Red(T) such that TM ∈ Ri and TN ∈ (1M), that is T ∈ GD(1M)Ri;
(ii) T admits a GK(1M)D and 0 < acc σ1DRi (T);
(iii) T admits a GK(1M)D and 0 < int σ1DRi (T);
(iv) T admits a GK(1M)D and 0 < int σRi (T).

Proof. (i)=⇒(ii): Let there exists (M,N) ∈ Red(T) such that TM ∈ Ri and TN ∈ (1M). For 1 ≤ i ≤ 3, TM is
Kato, and so T admits a GK(1M)D. For 4 ≤ i ≤ 9, from [13, Theorem 16.20] there exists (M1,M2) ∈ Red(TM)
such that dimM2 < ∞, TM1 is Kato and TM2 is nilpotent. Then for N1 = M2 ⊕N we have that N1 is a closed
subspace and TN1 = TM2 ⊕ TN ∈ (1M) by Proposition 3.2. So T admits a GK(1M)D.

From TM ∈ Ri it follows that there exists ϵ > 0 such that for every λ ∈ C satisfying |λ| < ϵ we have
TM − λIM ∈ Ri. Since TN ∈ (1M), according to Theorem 3.1 we have that TN − λIN is generalized Drazin
invertible for every λ ∈ C such that λ , 0, and hence it is a direct sum of a quasinilpotent operator and an
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invertible operator. By using Lemma 2.1 (i), (ii) we conclude that T − λI ∈ GDRi for every λ ∈ C such that
0 < |λ| < ϵ, and so 0 < acc σ1DRi (T).

(ii)=⇒(iii): It is obvious.
(iii)⇐⇒(iv): From [16, Corollary 4] it follows that int σ1DRi (T) = int σRi (T).
(iv)=⇒(i): Suppose that T admits a GK(1M)D and 0 < int σRi (T). Then there exists a decomposition

(M,N) ∈ Red(T) such that TM is Kato and TN ∈ (1M). Fix ϵ > 0. From 0 < int σRi (T) it follows that there
exists λ ∈ C such that 0 < |λ| < ϵ and T − λI ∈ Ri. We prove that TM − λIM ∈ Ri. For 1 ≤ i ≤ 6 it follows
from Lemma 2.1 (i). Suppose that 7 ≤ i ≤ 9. Since TN ∈ (1M) we have that TN − λIN is generalized Drazin
invertible and therefore it is a direct sum of a quasinilpotent operator and an invertible operator, that is there
exists (N1,N2) ∈ Red(TN) such that TN1 − λIN1 is invertible and TN2 − λIN2 is quasinilpotent. According to
Lemma 2.1 (i) from T−λI ∈ Ri it follows that TN2 −λIN2 is semi-Fredholm. Consequently, σΦ± (TN2 −λIN2 ) = ∅
and hence σΦ(TN2 − λIN2 ) = ∅ according to [13, Theorem 21.11 (iii)]. It implies that dimN2 < ∞ and hence
TN2 − λIN2 is Weyl. Now Lemma 2.1 (ii) ensures that TN − λIN = (TN1 − λIN1 ) ⊕ (TN2 − λIN2 ) is Weyl. From
Lemma 2.1 (iii) it follows that TM − λIM ∈ Ri. Consequently, 0 < intσRi (TM). As TM is Kato, from [15,
Proposition 2.1] it follows that TM ∈ Ri.

Proposition 3.8. Let (M,N) ∈ Red(T). Then
T admits a GK(1M)D(M,N) if and only if T′ admits a GK(1M)D(N⊥,M⊥).

Proof. Let T admit a GK(1M)D(M,N). Then TM is Kato, TN ∈ (1M) and (N⊥,M⊥) ∈ Red(T′). Let PN
be the projection of X onto N along M. Then (M,N) ∈ Red(TPN), TPN = PNT, TPN = 0 ⊕ TN, and
Proposition 3.2 ensures that TPN ∈ (1M). According to Lemma 3.3 we have that T′P′N = P′NT′ ∈ (1M).
As (N⊥,M⊥) ∈ Red(T′P′N) and since R(P′N) = N(PN)⊥ = M⊥, according to Proposition 3.2 we conclude that
(T′P′N)M⊥ = T′M⊥ ∈ (1M). From the proof of Theorem 1.43 in [3] it follows that T′N⊥ is Kato. Therefore,
(N⊥,M⊥) is a GK(1M)D for T′.

Suppose that T′ admits a GK(M)D(N⊥,M⊥). Then T′N⊥ is Kato and T′M⊥ ∈ (1M). Since (N⊥,M⊥) ∈
Red(T′P′N), then T′P′N = (T′P′N)N⊥⊕(T′P′N)M⊥ = 0⊕T′M⊥ , and from Proposition 3.2 it follows that T′P′N ∈ (1M).
According to Lemma 3.3 we have that TPN ∈ (1M). Since TPN = 0 ⊕ TN, Proposition 3.2 ensures that
TN ∈ (1M). From the proof of [16, Theorem 4] it follows that TM is Kato. Consequently, T admits a
GK(1M)D(M,N).

Definition 3.9. An operator T ∈ B(X) is 1-meromorphic quasi-polar if there exists a bounded projection Q
satisfying

TQ = QT, T(I −Q) ∈ (1M), Q ∈ (L(X)T) ∩ (TL(X)). (3.2)

Theorem 3.10. The following conditions are mutually equivalent for operators T ∈ L(X):
(i) There exists (M,N) ∈ Red(T) such that TM is invertible and TN ∈ (1M).
(ii) T admits a GK(1M)D and 0 < int σ(T).
(iii) T admits a GK(1M)D and, T and T′ have SVEP at 0.
(iv) T is generalized Drazin-1-meromorphic invertible.
(v) T is 1-meromorphic quasi-polar.
(vi) There exists a projection P ∈ L(X) such that P commutes with T, TP ∈ (1M) and T + P is generalized Drazin
invertible.
(vii) There exists a projection P ∈ L(X) which commutes with T and such that TP ∈ (1M) and T(I − P) + P is
generalized Drazin invertible.
(viii) There exists (M,N) ∈ Red(T) such that TM is generalized Drazin invertible and TN ∈ (1M).
(ix) 0 < acc σ1D(T).
(x) There exists a projection P ∈ L(X) such that P commutes with T, TP ∈ (1M) and T + P is invertible.
(xi) There exists a projection P ∈ L(X) which commutes with T and such that TP ∈ (1M) and T(I − P) + P is
invertible.
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Proof. The equivalence (i)⇐⇒(ii) is already proved in Theorem 3.7.
(ii)=⇒(iii): Let T admits a GK(1M)D and 0 < int σ(T). Then 0 < σ(T) or 0 ∈ ∂σ(T). In both cases T and T′

have SVEP at 0.
(iii)=⇒(iv): Suppose that (M,N) ∈ Red(T), TN ∈ (1M) and TM is Kato. From Proposition 3.8 it follows

that T′N⊥ is Kato. Since T and T′ have SVEP at 0, it follows that TM and T′N⊥ also have SVEP at 0. According
to [3, Theorem 2.9] we conclude that TM and T′N⊥ are injective. As in the proof of [3, Lemma 3.13] it can be
proved that TM is surjective, and so TM is invertible. Let S = T−1

M ⊕ 0. Then we have

ST = TS, STS = S, TST − T = 0 ⊕ (−TN)

and according to Proposition 3.2 we conclude that TST − T ∈ (1M).
(iv)=⇒(v): Suppose that T is generalized Drazin-1-meromorphic invertible and let S be its generalized

Drazin-1-meromorphic inverse. Let Q = TS = ST. Then Q is a projector and

QT = TQ, Q ∈ TL(X) ∩ L(X)T and T(I −Q) ∈ (1M), (3.3)

and so T is 1-meromorphic quasi-polar.
(v)=⇒(vi): Suppose that there exists a projector Q ∈ L(X) such that (3.3) holds. Set P = I − Q. Then

TP ∈ (1M) and for N = P(X) and M = (I − P)(X) we have

PT = TP, TN ∈ (1M) and I − P = UT = TV

for some U,V ∈ L(X). Let U,V ∈ L(M ⊕ N) have the (2 × 2 matrix) representations U = [Ui j]2
i, j=1 and

V = [Vi j]2
i, j=1. Then[

U11 U12
U21 U22

] [
TM 0
0 TN

]
=

[
TM 0
0 TN

] [
V11 V12
V21 V22

]
=

[
IM 0
0 0

]
: (M ⊕N)→ (M ⊕N)

and it implies that TM is invertible, U21 = 0 = V12, U12TN = U22TN = 0 = TNV21 = TNV22, and hence
UTV + P = T−1

M ⊕ IN is invertible with (UTV + P)−1 = TM ⊕ IN = T(I − P) + P. As TP ∈ (1M), we have that
I + TP is generalized Drazin invertible, and hence according to Lemma 2.4 it follows that

T + P = (I + TP)(UTV + P)−1 = (UTV + P)−1(I + TP)

is generalized Drazin invertible.
(vi)=⇒(vii): Suppose that there exists a projection P ∈ B(X) such that P commutes with T, TP ∈ (1M)

and T+P is generalized Drazin invertible. Then for M = (I−P)X and N = PX we have that (M,N) ∈ Red(T),
T + P = TM ⊕ (TN + IN). According to Lemma 2.5 it follows that TM is generalized Drazin invertible. Since
T(I − P) + P = TM ⊕ IN, again from Lemma 2.5 it follows that T(I − P) + P is generalized Drazin invertible.

(vii)=⇒(viii): Suppose that (vii) holds. Set P(X) = N and (I − P)X = M. Then (M,N) ∈ Red(T) and
TN ∈ (1M). Since T(I−P)+P = TM ⊕ IN is generalized Drazin invertible, from Lemma 2.5 it follows that TM
is generalized Drazin invertible.

(viii)=⇒(ix): Suppose that there exists (M,N) ∈ Red(T) such that TM is generalized Drazin invertible and
TN ∈ (1M). Then there exists a decomposition M = M1 ⊕M2 of M such that TM1 is invertible and TM2 is
quasi-nilpotent [9]. Set M2 ⊕ N = N1 and define TN1 by TN1 = TM2 ⊕ TN. Then N1 is closed by Lemma
2.3, (M1,N1) ∈ Red(T) and TN1 ∈ (1M) according to Proposition 3.2. Now from Theorem 3.7 it follows that
0 < acc σ1D(T).

(ix)=⇒(iv) Suppose that 0 < acc σ1D(T). There are two cases:

1. If 0 < acc σ(T), then from [9, Theorem 4.2] it follows that there exists S ∈ L(X) such that TS = ST,
STS = S and TST−T is quasinilpotent and hence TST−T is 1-meromorphic. Consequently, T is generalized
Drazin-1-meromorphic invertible.

2. If 0 ∈ acc σ(T), then 0 ∈ acc σ(T) \ acc σ1D(T) = σ1D(T) \ acc σ1D(T) = iso σ1D(T). Hence there exists
an ϵ > 0 such that (D(0, ϵ) \ {0}) ∩ σ1D(T) = ∅ and so (D(0, ϵ) \ {0}) ∩ σ(T) ⊂ iso σ(T). As 0 ∈ acc σ(T), it
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follows that the set (D(0, ϵ) \ {0}) ∩ σ(T) is countable. Thus there exists a sequence (λn) of isolated points
of σ(T) which converges to 0, where {λn : n ∈ N} = (D(0, ϵ) \ {0}) ∩ σ(T) and |λ1| ≥ |λ2| ≥ |λ3| ≥ . . . .
There is n0 ∈ N such that for n ∈ N, n ≥ n0 implies that 0 < |λn| < 1. Then σn0 = {0, λn0 , λn0+1, . . . } is
a spectral set of T. Let Pσn0

be the spectral projection of T associated with σn0 . From [7, Theorem 49.1]
it follows that (R(Pσn0

),N(Pσn0
)) ∈ Red(T), σ(TR(Pσn0

)) = σn0 and σ(TN(Pσn0
)) = σ(T) \ σn0 . Since the spectral

radius r(TR(Pσn0
)) = sup{|λn0 |, |λn0+1|, . . . } = |λn0 | < 1, it follows that TR(Pσn0

) − IR(Pσn0
) is invertible, and since

0 < σ(TN(Pσn0
)), we have that TN(Pσn0

) is invertible. Now from

T − Pσn0
= (TR(Pσn0

) − IR(Pσn0
)) ⊕ TN(Pσn0

)

we conclude that T − Pσn0
is invertible. Then

Sσn0
= (T − Pσn0

)−1(I − Pσn0
)

is a generalized Drazin-1-meromorphic inverse for T.
Indeed, T commutes with Sσn0

,

TSσn0
= T(T − Pσn0

)−1(I − Pσn0
) = (T − Pσn0

)(T − Pσn0
)−1(I − Pσn0

) = I − Pσn0
,

and hence,
Sσn0

TSσn0
= Sσn0

(I − Pσn0
) = Sσn0

,

and
T − TSσn0

T = T − (I − Pσn0
)T = Pσn0

T = TPσn0
.

We have that T, as well as TPσn0
, is completely reduced by the pair (R(Pσn0

),N(Pσn0
)), T = TR(Pσn0

) ⊕ TN(Pσn0
)

and

TPσn0
= TR(Pσn0

) ⊕ 0. (3.4)

Since T − λk is generalized Drazin invertible, Lemma 2.5 ensures that TR(Pσn0
) − λk is generalized Drazin

invertible for every k ∈N. From (3.4) it follows that

TPσn0
− λk = (TR(Pσn0

) − λk) ⊕ (−λkIN(Pσn0
)),

and so again using Lemma 2.5 we obtain that TPσn0
− λk is generalized Drazin invertible, for every k ∈ N.

As σ(TPσn0
) = σn0 , it follows that σ1D(TPσn0

) = {0}, and therefore TPσn0
is 1-meromorphic.

(ix)=⇒(x): It follows from the proof of the implication (ix)=⇒(iv).
(x)=⇒(xi): Analogously to the proof of the implication (vi)=⇒(vii).
(xi)=⇒(vii): It is clear.

Remark 3.11. Let 0 ∈ acc σ(T)\acc σ1D(T) and letσn0 a spectral set as in the proof of the implication (ix)=⇒(iv)
in Theorem 3.10. If f = 1 in a neighborhood U0 of σn0 and f = 0 in a neighborhood U1 of σ(T) \ σn0 , then for
the function

1(λ) = (λ − f (λ))−1(1 − f (λ)) =

0, λ ∈ U0,
1
λ , λ ∈ U1

we have that 1(T) = (T − Pσn0
)−1(1 − Pσn0

) = Sσn0
and according to the spectral mapping theorem it follows

that

σ(Sσn0
) = 1(σ(T)) = {0} ∪ {

1
λ

: λ ∈ σ(T) \ σn0 }. (3.5)

If σn0+1 = {0} ∪ {λn0+1, λn0+2, . . . }, then we have that Sσn0+1 = (T − Pσn0+1 )−1(1 − Pσn0+1 ) is also a generalized
Drazin-1-meromorphic inverse of T and

σ(Sσn0+1 ) = {0} ∪ {
1
λ

: λ ∈ σ(T) \ σn0+1}. (3.6)



S. Č. Živković-Zlatanović / Filomat 36:8 (2022), 2813–2827 2821

As 1/λn0 ∈ σ(Sσn0+1 ) \ σ(Sσn0
), we conclude that Sσn0

, Sσn0+1 . Therefore, if T is generalized Drazin-1-
meromorphic invertible, then its generalized Drazin-1-meromorphic inverse may not be unique. This
also follows from [1, Theorem 2.3] since every generalized Drazin-Riesz invertible operator is generalized
Drazin-1-meromorphic invertible, but the proof above is more direct.

Corollary 3.12. For T ∈ L(X), T ∈ L(X)1D(1M)
\ L(X)1D if and only if there exist a spectral set σ ⊂ σ(T) and a

sequence (λn) of nonzero isolated points of σ(T) which converges to 0 such that

σ(T) = {0} ∪ {λn : n ∈N} ∪ σ.

Proof. From [9, Theorem 4.2] and Theorem 3.10 it follows that T ∈ L(X)1D(1M)
\ L(X)1D if and only if

0 ∈ acc σ(T) \ acc σ1D(T). The rest follows from the proof of the implication (ix)=⇒(iv) in Theorem 3.10.

Theorem 3.13. The following conditions are mutually equivalent for operators T ∈ L(X):
(i) There exists (M,N) ∈ Red(T) such that TM is bounded below and TN ∈ (1M);
(ii) T admits a GK(1M)D and 0 < int σap(T);
(iii) T admits a GK(1M)D and T has SVEP at 0;
(iv) T admits a GK(1M)D and 0 < acc σ1DJ (T);
(v) T admits a GK(1M)D and 0 < int σ1DJ (T).

Proof. The equivalences (i)⇐⇒(ii)⇐⇒(iv)⇐⇒(v) follow from Theorem 3.7.
(i)⇐⇒(iii): Similarly to the proof of the implications (i)=⇒(iii) and (iii)=⇒(iv) in Theorem 3.10.

Theorem 3.14. The following conditions are mutually equivalent for operators T ∈ L(X):
(i) There exists (M,N) ∈ Red(T) such that TM is surjective and TN ∈ (1M);
(ii) T admits a GK(1M)D and 0 < int σsu(T);
(iii) T admits a GK(1M)D and T′ has SVEP at 0;
(iv) T admits a GK(1M)D and 0 < acc σ1DS(T);
(v) T admits a GK(1M)D and 0 < int σ1DS(T).

Proof. The equivalences (i)⇐⇒(ii)⇐⇒(iv)⇐⇒(v) follow from Theorem 3.7.
(i)⇐⇒(iii): Similarly to the proof of the implications (i)=⇒(iii) and (iii)=⇒(iv) in Theorem 3.10.

P. Aiena and E. Rosas [2, Theorems 2.2 and 2.5] characterized the SVEP at a point λ0 in the case that λ0−T
is of Kato type. Q. Jiang and H. Zhong [8, Theorems 3.5 and 3.9] gave further characterizations of the SVEP
at λ0 in the case that λ0 − T admits a generalized Kato decomposition. In [15, Corollary 2.1] ([16, Corollary
1, Corollary 2]) the SVEP at λ0 is characterized in the case that λ0 − T admits a generalized Kato-Riesz
decomposition (a generalized Kato-meromorphic decomposition). Now we give characterizations for the
case that λ0 − T admits generalized Kato-1-meromorphic decomposition.

Corollary 3.15. Let T ∈ L(X) and let λ0 − T admit a GK(1M)D. Then the following statements are equivalent:
(i) T has the SVEP at λ0;
(ii) λ0 is not an interior point of σap(T);
(iii) σ1DJ (T) does not cluster at λ0.

Proof. It follows from the equivalences (ii)⇐⇒(iii)⇐⇒(iv) in Theorem 3.13.

Corollary 3.16. Let T ∈ L(X) and let λ0 − T admit a GK(1M)D. Then the following statements are equivalent:
(i) T′ has the SVEP at λ0;
(ii) λ0 is not an interior point of σsu(T);
(iii) σ1DS(T) does not cluster at λ0.

Proof. It follows from Theorem 3.14.
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Theorem 3.17. Let T ∈ L(X). The following statements are equivalent:

(i) T = TM ⊕ TN where TM is invertible and TN is 1-meromorphic with infinite spectrum;
(ii) T admits a GK(1M)D and there exists a sequence of nonzero isolated points of σ(T) which converges to 0.

Proof. (i) =⇒ (ii): Suppose that T = TM ⊕ TN where TM is invertible and TN is 1-meromorphic with infinite
spectrum. Then T admits a GK(1M)D(M,N) and σ(TN) = {0, µ1, µ2, . . .}where µn, n ∈N, are nonzero points
of σ(TN), all of them are isolated points of σ(TN) and

lim
n→∞
µn = 0. (3.7)

From Theorem 3.10 we have that 0 < acc σ1D(T), i.e. there exists ϵ > 0 such that µ < σ1D(T) for 0 < |µ| < ϵ.
From (3.7) it follows that there exists n0 ∈ N such that 0 < |µn| < ϵ for n ≥ n0. Hence µn ∈ σ(T) \ σ1D(T) =
σ(T) \ acc σ(T) = iso σ(T) for all n ≥ n0. Thus (µn)∞n=n0

is the sequence of nonzero isolated points of σ(T)
which converges to 0.

(ii)=⇒ (i): Suppose that T = TM⊕TN where TM is Kato, TN is 1-meromorphic and let (λn) be the sequence
of isolated points of σ(T) which converges to 0. Since λn < σ1D(T) for all n ∈N, it follows that 0 < int σ1D(T).
As in the proof of the implications (iii)=⇒ (iv)=⇒(i) of Theorem 3.7 we conclude that TM is invertible. Thus
there exists an ϵ > 0 such that D(0, ϵ)∩σ(TM) = ∅ and there exists n0 ∈N such that λn ∈ D(0, ϵ) for all n ≥ n0.
Consequently, λn < σ(TM) for all n ≥ n0 and and hence λn ∈ σ(TN) for all n ≥ n0, which implies that the
spectrum of TN is infinite.

Theorem 3.18. Let T ∈ GD(1M)Ri, f ∈ Holo1(σ(a)) and f−1(0) ∩ σRi (T) = {0}, 1 ≤ i ≤ 9. Then f (T) ∈
GD(1M)Ri.

Proof. It is known that f (σRi (T)) = σRi ( f (T)) for all f holomorphic on a neighbourhood of σ(T) and 1 ≤ i ≤ 6.
The corresponding inclusion for 7 ≤ i ≤ 9 is σRi ( f (T)) ⊂ f (σRi (T)). If T ∈ GD(1M)Ri, then there exists
a decomposition (M,N) ∈ Red(T) such that TM ∈ Ri and TN ∈ (1M). Furthermore f (T) = f (TM) ⊕ f (TN).
Since f (0) = 0, from Proposition 3.4 it follows that f (TN) ∈ (1M). Observe that 0 < σRi (TM) and since
f−1(0) ∩ σRi (T) = {0} we conclude that 0 < f (σRi (TM)). As f (σRi (TM)) ⊃ σRi ( f (TM)) for all 1 ≤ i ≤ 9, we
conclude that 0 < σRi ( f (TM)), and so f (TM) ∈ Ri. Therefore, f (T) ∈ GD(1M)Ri.

4. Spectra

For T ∈ L(X), set

σ1K(1M)(T) = {λ ∈ C : T − λ does not admit generalized Kato-1-meromorphic decomposition}

and
σ1D(1M)Ri (T) = {λ ∈ C : T − λ < 1D(1M)Ri(X)}, 1 ≤ i ≤ 9.

In the following we shorten, for convenience, σ1D(1M)L(X)−1 (T) to

σ1D(1M)(T) = {λ ∈ C : T − λ is not generalized Drazin-1-meromorphic invertible}.

Corollary 4.1. Let T ∈ L(X). Then
(i) σ1D(1M)(T) = acc σ1D(T);
(ii) σ1D(1M)Ri (T) = σ1K(1M)(T) ∪ acc σ1DRi (T), 2 ≤ i ≤ 9;
(iii) σ1D(1M)Ri (T) = σ1K(1M)(T) ∪ int σRi (T), 1 ≤ i ≤ 9.

Proof. (i) It follows from the equivalence (iv)⇐⇒(ix) in Theorem 3.10.
(ii), (iii): It follows from the equivalences (i)⇐⇒(ii)⇐⇒(iv) in Theorem 3.7.
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Corollary 4.2. For T ∈ L(X) if σRi (T) is countable or contained in a line, then

σ1D(1M)Ri (T) = σ1K(1M)(T), 1 ≤ i ≤ 9.

Proof. It follows from Corollary 4.1 (iii).

Theorem 4.3. Let T ∈ L(X) and let T admits a GK(1M)D(M,N). Then there exists ϵ > 0 such that T − λ admits a
GKD for each λ such that 0 < |λ| < ϵ.

Proof. If M = {0}, then T is 1-meromorphic and hence T − λ is generalized Drazin invertible for all λ , 0.
From [9, Theorem 7.1] it follows that T − λ can be decomposed into a direct sum of an invertible operator
and a quasinilpotent operator for all λ , 0. Hence T − λ admits a GKD for all λ , 0.

Suppose that M , {0}. From [3, Theorem 1.31] it follows that for |λ| < γ(TM), TM − λ is Kato. As TN is
1-meromorphic, TN − λ is generalized Drazin invertible for all λ , 0. Hence TN − λ can be decomposed
into a direct sum of an invertible operator and a quasinilpotent operator for all λ , 0. Let ϵ = γ(TM). Using
Lemma 2.3 and the fact that a direct sum of two Kato operators is Kato [4, Theorem 1.46], we conclude that
T − λ admits a GKD for each λ such that 0 < |λ| < ϵ.

Corollary 4.4. Let T ∈ L(X). Then
(i) σ1K(1M)(T) is compact;
(ii) The set σ1K(T) \ σ1K(1M)(T) consists of at most countably many points.

Proof. (i): According to Theorem 4.3, σ1K(1M)(T) is closed, and since σ1K(1M)(T) ⊂ σ(T), σ1K(1M)(T) is bounded.
Hence σ1K(1M)(T) is compact.

(ii): Suppose that λ0 ∈ σ1K(T) \ σ1K(1M)(T). Then T − λ0 admits a GK(1M)D and according to Theorem
4.3 there exists ϵ > 0 such that T − λ admits a GKD for each λ such that 0 < |λ − λ0| < ϵ. This implies that
λ0 ∈ iso σ1K(T). Therefore, σ1K(T) \ σ1K(1M)(T) ⊂ iso σ1K(T), which implies that σ1K \ σ1K(1M)(T) is at most
countable.

Corollary 4.5. Let T ∈ L(X) and 1 ≤ i ≤ 9. Then
(i) σ1D(1M)Ri (T) ⊂ σRi (T);
(ii) σ1D(1M)Ri (T) is compact;
(iii) int σ1D(1M)Ri (T) = int σRi (T);
(iv) ∂σ1D(1M)Ri (T) ⊂ ∂σRi (T);
(v) σ1DRi (T) \ σ1D(1M)Ri (T) = (iso σ1DRi (T)) \ σ1K(1M)(T);
(vi) The set σ1DRi (T) \ σ1D(1M)Ri (T) consist of at most countably many points.

Proof. (i): Obvious.
(ii): From Corollary 4.1 (ii) and Corollary 4.4 (i) it follows that σ1D(1M)Ri

(T) is closed as the union of two
closed sets, while from (i) it follows that σ1D(1M)Ri (T) is bounded, and so it is compact.

(iii): From Corollary 4.1 (iii) we have that int σRi (T) ⊂ σ1D(1M)Ri (T), and hence int σRi (T) ⊂ int σ1D(1M)Ri (T),
while from the inclusion (i) it follows that int σ1D(1M)Ri (T) ⊂ int σRi (T). Consequently, int σ1D(1M)Ri (T) =
int σRi (T).

(iv): Let λ ∈ ∂σ1D(1M)Ri (T). Since ∂σ1D(1M)Ri (T) ⊂ σ1D(1M)Ri (T) ⊂ σRi (T), from λ < int σ1D(1M)Ri (T) =
int σRi (T) we conclude λ ∈ ∂σRi (T). So, ∂σ1D(1M)Ri (T) ⊂ ∂σRi (T).

(v): It follows from Corollary 4.1 (ii).
(vi) It follows from (v).

Corollary 4.6. Let T ∈ L(X) and 1 ≤ i ≤ 9. Then

∂ σ1DRi (T) ∩ acc σ1DRi (T) ⊂ ∂ σRi (T) ∩ acc σ1DRi (T) ⊂ ∂ σ1K(1M)(T). (4.1)
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Proof. Let T−λI admit a GK(1M)D and let λ ∈ ∂ σRi (T). Then λ < int σRi (T) and according to the equivalence
(ii)⇐⇒(iv) in Theorem 3.7 it follows that λ < acc σ1DRi (T). Therefore,

∂ σRi (T) ∩ acc σ1DRi (T) ⊂ σ1K(1M)(T). (4.2)

Suppose that λ ∈ ∂ σRi (T) ∩ acc σ1DRi (T). Then there exists a sequence (λn) which converges to λ and such
that T−λn ∈ Ri for every n ∈N. According to [13, Theorem 16.21] it follows that T−λn admits a GK(1M)D,
and so λn < σ1K(1M)(T) for every n ∈N. Since λ ∈ σ1K(1M)(T) by (4.2), we conclude that λ ∈ ∂ σ1K(1M)(T). This
proves the second inclusion in (4.1).

From [16, Corollary 4 (iii)] it follows that int σ1DRi (T) = int σRi (T), and hence ∂ σ1DRi (T)
⊂ ∂ σRi (T). It implies the first inclusion in (4.1).

Corollary 4.7. Let T ∈ L(X).
(i) If T has the SVEP, then all accumulation points of σ1DJ (T) belong to σ1K(1M)(T).
(ii) If T′ has the SVEP, then all accumulation points of σ1DS(T) belong to σ1K(1M)(T).
(iii) If T and T′ have the SVEP, then all accumulation points of σ1D(T) belong to σ1K(1M)(T).

Proof. (i): It follows from the equivalence (iii)⇐⇒(iv) of Theorem 3.13.
(ii): It follows from the equivalence (iii)⇐⇒(iv) of Theorem 3.14.
(iii): It follows from the equivalence (iii)⇐⇒(ix) of Theorem 3.10.

The next corollary extends [3, Corollary 3.118] and [16, Corollary 7].

Corollary 4.8. Let T be unilateral weighted right shift operator on ℓp(N), 1 ≤ p < ∞, with weight (ωn), and let
c(T) = lim

n→∞
inf(ω1 · · · · · ωn)1/n = 0. Then σ1K(1M)(T) = σ1D(1M)Ri (T) = σ(T) = D(0, r(T)), 1 ≤ i ≤ 9.

Proof. From [3, Corollary 3.118] we have that σ(T) = D(0, r(T)), and T and T′ have the SVEP. The equivalence
(ii)⇐⇒(iii) in Theorem 3.10 ensures that D(0, r(T)) = int σ(T) ⊂ σ1K(1M)(T). As σ1K(1M)(T) is closed, it follows
that

D(0, r(T)) ⊂ σ1K(1M)(T) ⊂ σ1D(1M)Ri (T) ⊂ σ(T) = D(0, r(T)),

and so σ1K(1M)(T) = σ1D(1M)Ri (T) = σ(T) = D(0, r(T)).

The connected hull of a compact subset K of the complex plane C, denoted by ηK, is the complement of
the unbounded component of C \ K [6, Definition 7.10.1]. A hole of K is a bounded component of C \ K,
and so a hole of K is a component of ηK \ K. We recall that, for compact subsets H,K ⊂ C, the following
implication holds ([6, Theorem 7.10.3]):

∂H ⊂ K ⊂ H =⇒ ∂H ⊂ ∂K ⊂ K ⊂ H ⊂ ηK = ηH , (4.3)

and H can be obtained from K by filling in some holes of K. Evidently, if K ⊆ C is at most countable, then
ηK = K. Therefore, for compact subsets H,K ⊆ C, if ηK = ηH, then H is at most countable if and only if
K is at most countable, and in that case H = K.

Theorem 4.9. Let T ∈ L(X). Then
(i)

∂ σ1D(1M)J (T) ⊂ ∂ σ1D(1M)W+ (T) ⊂ ∂ σ1D(1M)Φ+ (T)
⊂ ⊂ ⊂ ⊂

∂ σ1D(1M) (T) ⊂ ∂ σ1D(1M)W (T) ⊂ ∂ σ1D(1M)Φ (T) ⊂ ∂ σ1K(1M) (T),
⊂ ⊂ ⊂ ⊂

∂ σ1D(1M)S(T) ⊂ ∂ σ1D(1M)W− (T) ⊂ ∂ σ1D(1M)Φ− (T)

(ii)
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iso σ1D(1M)J (T) ⊂ iso σ1D(1M)W+ (T) ⊂ iso σ1D(1M)Φ+ (T)
⊂ ⊂ ⊂ ⊂

iso σ1D(1M) (T) ⊂ iso σ1D(1M)W (T) ⊂ iso σ1D(1M)Φ (T) ⊂ iso σ1K(1M) (T),
⊂ ⊂ ⊂ ⊂

iso σ1D(1M)S (T) ⊂ iso σ1D(1M)W− (T) ⊂ iso σ1D(1M)Φ− (T)

(iii) ησ1D(1M)(T) = ησ1D(1M)Ri (T) = ησ1K(1M)(T), 2 ≤ i ≤ 9.
(iv) The set σ1D(1M)(T) consists of σ∗(T) and possibly some holes in σ∗(T) where σ∗ ∈ {σ1K(1M), σ1D(1M)W, σ1D(1M)Φ,
σ1D(1M)W+

, σ1D(1M)Φ+ , σ1D(1M)J , σ1D(1M)W−
, σ1D(1M)Φ− , σ1D(1M)S}.

(v) If one ofσ1K(1M)(T), σ1D(1M)(T), σ1D(1M)W(T), σ1D(1M)Φ(T), σ1D(1M)W+
(T), σ1D(1M)Φ+ (T), σ1D(1M)J (T), σ1D(1M)W−

(T),
σ1D(1M)Φ− (T), σ1D(1M)S(T) is finite (countable), then all of them are equal and hence finite (countable).

Proof. Since σ1K(1M)(T) and σ1D(1M)Ri (T), 1 ≤ i ≤ 9, are compact, according to (4.3), Lemma 2.2 (i) and the
inclusions

σ1D(1M)Φ+ (T) ⊂ σ1D(1M)W+ (T) ⊂ σ1D(1M)J (T)
⊂ ⊂ ⊂ ⊂

σ1K(1M)(T) ⊂ ⊂ σ1D(1M)Φ(T) ⊂ σ1D(1M)W(T) ⊂ σ1D(1M)(T).
⊂ ⊂ ⊂ ⊂

σ1D(1M)Φ− (T) ⊂ σ1D(1M)W− (T) ⊂ σ1D(1M)S(T)

it is enough to prove that

∂ σ1D(1M)Ri (T) ⊂ σ1K(1M)(T), 1 ≤ i ≤ 9. (4.4)

Since σ1D(1M)Ri (T) is closed, it follows that

∂ σ1D(1M)Ri (T) ⊂ σ1D(1M)Ri (T), 1 ≤ i ≤ 9. (4.5)

According to Corollary 4.1 (iii) and Corollary 4.5 (iii) we have that

σ1D(1M)Ri (T) = σ1K(1M)(T) ∪ int σ1D(1M)Ri (T). (4.6)

Now from (4.5) and (4.6) it follows (4.4).

Corollary 4.10. Let T ∈ L(X) and let C \ σ1K(1M)(T) has only one component. Then

σ1K(1M)(T) = σ1D(1M)(T).

Proof. Since C \ σ1K(1M)(T) has only one component, it follows that σ1K(1M)(T) has no holes, and so from
Theorem 4.9 (iv) it follows that σ1D(1M)(T) = σ1K(1M)(T).

Corollary 4.11. Let T ∈ L(X) and 1 ≤ i ≤ 9. Then

iso σ1K(1M)(T) ⊂ iso σ1D(1M)Ri (T) ∪ int σRi (T).

Proof. Suppose that λ0 ∈ iso σ1K(1M)(T) \ int σRi (T). Then λ0 ∈ σ1D(1M)Ri (T) and there exists a sequence (λn)
converging to λ0, such that T − λn admits a GK(1M)D and λn < σRi (T) for all n ∈ N. Hence λn < int σRi (T),
that is 0 < int σRi (T − λn) for all n ∈ N. Theorem 3.7 ensures that T − λn ∈ GD(1M)Ri for all n ∈ N.
Consequently, λ0 ∈ ∂ σ1D(1M)Ri (T) ∩ iso σ1K(1M)(T), which according to (4.4), Corollary 4.5 (ii) and Lemma
2.2 (ii) implies that λ0 ∈ iso σ1D(1M)Ri (T).

We shall say that an operator T ∈ L(X) is polynomially 1-meromorphic if there exists a nonzero complex
polynomial p(z) such that p(T) is 1-meromorphic.

Theorem 4.12. Let T ∈ L(X). The following statements are equivalent:
(i) σ1K(1M)(T) = ∅;
(ii) σ1D(1M)(T) = ∅;
(iii) σ1D(T) is a finite set;
(iv) σ(T) has finitely many accumulation points;
(v) T is polynomially 1-meromorphic.
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Proof. The equivalence (i)⇐⇒(ii) follows from Theorem 4.9.
(ii)⇐⇒(iii): From Corollary 4.1 (i) it follows that

σ1D(1M)(T) = ∅ ⇐⇒ acc σ1D(T) = ∅ ⇐⇒ σ1D(T) is finite.

(iii)⇐⇒(iv): It is clear since σ1D(T) = acc σ(T) [9, Theorem 4.2].
(iii)=⇒(v): Suppose that σ1D(T) is finite and let σ1D(T) = {λ1, . . . , λn}. According to the spectral mapping

theorem for the generalized Drazin spectrum [10, Theorem 1.4], for p(z) = (z − λ1) · · · · · (z − λn) we have
{0} = p(σ1D(T)) = σ1D(p(T)). From Theorem 3.1 it follows that p(T) is 1-meromorphic.

(v)=⇒(iii): Let T be polynomially 1-meromorphic. Then there exists a nonzero complex polynomial p(z)
such that p(T) is 1-meromorphic, and so σ1D(p(T)) ⊂ {0}. As p(σ1D(T)) = σ1D(p(T)) we obtain that σ1D(T) is
contained in the set of zeros of p, and hence it is finite.

P. Aiena and E. Rosas [2, Theorem 2.10] proved that if T ∈ L(X) be an operator for which σap(T) = ∂σ(T)
and every λ ∈ ∂σ(T) is not isolated in σ(T), then σap(T) = σKt(T), while Q. Jiang and H. Zhong [8, Theorem
3.12] improved this result by proving that under the same conditions it holds σap(T) = σ1K(T). Later it was
proved that σap(T) = σ1KR(T) = σ1K(M)(T) [15, Theorem 3.14], [16, Theorem 13]. The next theorem extends
these results.

Theorem 4.13. For T ∈ L(X) suppose that σap(T) = ∂σ(T) and every λ ∈ ∂σ(T) is not isolated in σ(T). Then

σ1K(1M)(T) = σ1D(1M)Φ+ (T) = σ1D(1M)W+
(T) = σ1D(1M)J (T) = σap(T). (4.7)

Proof. From the proof of [5, Corollary 5.11] we have that

σap(T) = acc σap(T) = ∂ σap(T). (4.8)

Also from [5, Corollary 5.11] it follows that σap(T) = σ1DJ (T), which together with (4.8) implies that

∂ σap(T) ∩ acc σ1DJ (T) = σap(T). (4.9)

According to the inclusion (4.2) it holds

∂ σap(T) ∩ acc σ1DJ (T) ⊂ σ1K(1M)(T). (4.10)

Now from (4.9) and (4.10) we conclude that σap(T) ⊂ σ1K(1M)(T), which together with the inclusions
σ1K(1M)(T) ⊂ σ1D(1M)Φ+ (T) ⊂ σ1D(1M)W+

(T) ⊂ σ1D(1M)J (T) ⊂ σap(T) gives the equalities (4.7).

The following theorem is an improvement of [2, Corollary 2.11], [8, Corollary 3.13], [15, Theorem 3.15] and
[16, Theorem 14].

Theorem 4.14. Let T ∈ L(X) be an operator for which σsu(T) = ∂σ(T) and every λ ∈ ∂σ(T) is not isolated in σ(T).
Then

σ1K(1M)(T) = σ1D(1M)Φ− (T) = σ1D(1M)W−
(T) = σ1D(1M)S(T) = σsu(T).

Proof. Follows from [5, Corollary 5.11] and the inclusion (4.2), analogously to the proof of Theorem 4.13.

Example 4.15. For the Cesáro operator Cp defined on the classical Hardy space Hp(D), D the open unit disc
and 1 < p < ∞, by

(Cp f )(λ) =
1
λ

∫ λ

0

f (µ)
1 − µ

dµ, for all f ∈ Hp(D) and λ ∈ D,

it is known that its spectrum is the closed disc Γp centered at p/2 with radius p/2, σ1K(M)(Cp) = σ1KR(Cp) =
σ1K(Cp) = σKt(Cp) = σap(Cp) = ∂Γp and also σΦ(Cp) = ∂Γp [11], [2], [15], [16]. From Theorem 4.13 it follows
that

σ1K(1M)(Cp) = σ1D(1M)Φ+ (Cp) = σ1D(1M)W+
(Cp) = σ1D(1M)J (Cp) = σap(Cp) = ∂Γp,

and since int σΦ(Cp) = int σΦ− (Cp) = ∅, according to Corollary 4.1 (iii) we have that

σ1D(1M)Φ(Cp) = σ1D(1M)Φ− (Cp) = σ1K(1M)(Cp) = ∂Γp.

As σW−
(Cp) = σW(Cp) = Γp, from Corollary 4.1 (iii) we conclude that σ1D(1M)W−

(Cp) = σ1D(1M)W(Cp) =
σ1D(1M)S(Cp) = σ1D(1M)(Cp) = Γp.
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