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Abstract. In this paper, we establish some generalization of Ostrowski type inequalities for interval valued
functions by using the definitions of the gH-derivatives. At the end, a briefly conclusion is given as well.

1. Introduction and Preliminaries
In [15], the following Ostrowski classical integral inequality associated with the differentiable mappings
was given.

Theorem 1.1. Let ¢ : [x1, x2]— R be a differentiable mapping on x1, %) whose derivative ¢’ : (%1, #2)— R is
bounded on (%1, 1), i.e., ||

o= sup |¢’(t)| < 0. Then, the inequality holds:

TE %1,%2)

H1+HA 2

% E’_
qb(é)—ﬁfqﬁ@)d’[ < %+M

oo o | e o’

o0 1)

forall & €[4, #,]. The constant }I is the best possible.

In recent years, various generalizations, extensions and variants of inequality (1) have been obtained, see
[1,2,4,5,7,9,11, 14, 18-21, 24, 25].

We recall now some basic definitions that will be used in sequel.

Let R be the one-dimensional Euclidean space. Let K¢ denote the family of all bounded closed intervals of
R, that is,

Kc = {[%1, %2]|%1, Xy € Rand #; < %2}.
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The space (Kc, du) , where dy is the Pompei-Hausdorff metric is given by

}

for all [x1, #5], [%1,%’2] € K¢, is a complete metric space. A defined by ||A||= du (A,[0,0]) for all A € K¢

is quasinorm |[|.|| in K¢. The equality ”AZH = ||A|* holds for all A € K¢. Stefani and Bede introduced the
concept of generalized Hukuhara difference of two sets A, B € K¢ (gH difference for short) as follows:

drr ([%1,%21 , [%1,%3]) = maX{Im —- Aa|, U] = %)

AeHB—C:){ (@) A=B+C }
i B = .

or (b) B=A+(-1)C

In case (a), the gH difference coincide with the H difference. Thus, the gH difference is a generalization of
the H difference. On the other hand, gH difference exists for any two intervals A = [ﬂ, %_1] , B = [@, %_2]
€ Kc and

A,y B= [min{ﬁ—@}, max{%_l—%_z}].

Using the gH difference, Stefanini and Bede introduced a differentiability concept for interval valued
functions, which is more suitable than the H-differentiability.

The following definitions and theorems with respect to H derivative and gH derivative were referred in
[22].

Definition 1.2. F: T € R — K¢ given by O(x) = [@(x),@(x)] for all x € X, where ®,® : T — R are real valued
functions, with (&) < OE) for all & € T, it is called an interval function.

The functions ® and ®@ are called the lower and the upper functions of ®, respectively.

Definition 1.3. Let @ : T — K¢ be an interval valued function. LeKc is called a limit of F at & € T if for every
€ > 0 there exists 6 (e, o) = 0 > 0 such that H(P(E),L) < € forall £ € T with 0 < |& — &| < 6. This is denoted by
élir? (&) = L.

—co0

Theorem 1.4. Let @ : T — K¢ be an interval valued function such that (&) = [@(5),6(5)] forall & € T. Then

L =[Ly, Ly] €Kc is a limit of ® at & € T if and only if L; is the limit of ¢;at &y, i € {1,2}. Besides, if L is limit of ®
at &g, then

gmwa=y@yagm@a.

Definition 1.5. Let ® : T € R — K¢ be an interval valued function. @ is said to be continuous at &y € T, if
Lim (&) = D(&o).
c—¢c0

Theorem 1.6. Let @ : T C IR — K¢ be an interval valued function such that (&) = [@(5),5(5)] forall x € T. Then

D is continuous at & € T if and only if P and @ are continuous at &y. Besides, @ is continuous at &, then
lim (&) = [@(&0), D(&0)] -
[Sand=li]

Definition 1.7. Let @ : T — K¢ be an interval valued function. We say that F is H-differentiable at & € T, if there
exists an element F; (£0) € Kc such that the limits

i D (& + 1) — Py (o)
im
h—0* h
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and

i D (&) — Dy (&0 —h)
m
h—0+ h

exists and are equal to (D;{ (&o) . In this case @’H (&o) is called the H—derivative of ® at &.
Definition 1.8. The gH-derivative of an interval-valued function @ : T — Kc at &y € T is defined as

, o D&+ e Dy (Eo—h)
By (€0) = lim ————— . @

If (ID'gH (&0) € Kc satisfying is differentiable, then (2) exist and we say that F is generalized Hukuhara
differentiable (gH-differentiable, for short) at &.

Theorem 1.9. Let @ : T — K¢ be an interval valued function such that ® (&) = [@(é), 5(5)]f0r all £ € T. Then ®
is gH-differentiable at &y € T if and only if one of the following cases holds:

(i) f and g are differentiable at & and

D (o) = [min {@'(£), @ (&)}, max {@(£0), @ (£0)}] -
(i) @' (o), B_ (&), P, (£0) and B, (&) exists and satisfies D' (&) = @, (o) and @ (£9) = P, (&) . Moreover
Oy (E0) = [min{@ (o), B (&)}, max{® (%), P (o)
= [min{®, (%), P, (o)}, max{®, (o), P, (£0)]]-

Theorem 1.10. Let @ : [#1, #2] — Kc be a continuous interval valued function with ®(&) = [@(5),6(5)] for all
& € [n1, no] . If D is piecewise continuously gH differentiable on [x1, #,] and it has (if there exists) a finite number
of switching points on (1, x,), then ® and ® are absolutely continuous on [x1, %] .

Definition 1.11. A partition of [»1, %] is any finite ordered subset P having the form
P:xy=1t90<11<...<7TH = H>.

The mesh of a partition P is defined by
mesh(P) = max{t;—t1,-1:i=1,2,...,n}.

We denote by P ([, %;]) the set of all partition of [»1, %#,]. Let P (5, [%1, #,]) be the set of all P € P ([x1, x,])
such that mesh(P) < 6. Choosing an arbitrary point &; in interval [t;—1, 7;], foralli = 1,2,...,n, we define the
sum

n
S(@,P,6) = ) ®(&) [1i = Tia],
i=1
where @ : [, #,] = Ry. We call S(®, P, 6) a Riemann sum of ® corresponding to P € P (5, [»1, #2]).

Definition 1.12. [6, 16, 17] A function @ : [#1, #2] — Ry is called interval Riemann integrable (IR-integrable) on
[2t1, %], if there exists A € Ry such that, for each € > 0, there exists 6 > 0, where

d(S(@,P,5),A) < ¢
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for every Riemann sum S of O corresponding to each P € P (5, [x1, #2]) and independent of choice &; € [1i-1, 7] for
1 <i < n. In this case, A is called the IR-integral of © on [»1, #2] and is denoted by

A= (IR)f(D(T)dT.

The collection of all functions that are IR-integrable on [x1, %5] will be denote by TR, x,1)-

The following theorem gives relation between IR-integrable and Riemann integrable (R-integrable).

Theorem 1.13. Let @ : [x1, #,] — Ry be an interval-valued function such that ®(t = [Q(T)ra(’t)] @ € TR (101 12))
if and only if (1), B(1) € R ) and

(IR) f O(1)dt = |(R) f D(1)d, (R) f D(t)dr|,

where R(x,,x,)) denotes the set of all R-integrable functions.
Now, we recall the Riemann-Lioville integrals as follows:

Definition 1.14. [10] Let ¢ € Li[x1, %2]. The Riemann—Liouville integrals J5 . ¢ and J5, ¢ of order a > 0 with
1 > 0 are defined by

a — 1 ¢ a—1
0,0 = 1 | €07 owin, £>
and

1 [ .
96 = 1 fé (c - & P, £ < o,

respectively. Here, I'() is the Gamma function and ]21 L0&) =19, _p(&) = p(&).

Hy—

For more information about Riemann-Liouville integrals, see [8, 10, 13].

By considering Riemann-Liouville integral for real valued functions, Lupulescu in [12], defined the follow-
ing interval-valued left-sided Riemann-Liouville fractional integral:

Definition 1.15. Let @ : [, #] — Ry be an interval-valued function such that ®(t) = [9(’1’),6(’1’)] and let a > 0.
The interval-valued left-sided Riemann—Liouville fractional integral of function F is defined by

1

21+CD(£) = r(a)

&
(IR) f (€~ DT, &>,

where I is Euler Gamma function.

Based on the definition of Lupulescu, Budak et al. in [3], define the corresponding interval-valued right-
sided Riemann-Liouville fractional integral of function F by

1

- P(E) = @)

(IR) f " (1= &* T o(n)dr, &< x,.
&
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Theorem 1.16. If © : [x1, #2] — Ry is an interval-valued function such that ®(t [@ (7), CD(T)] then we have

4 DE) = [I5,, (), I, D)
and
- D(E) = [I5,-D(E), I, D)

On the other hand Tung in [23], define the following generalized fractional integrals of interval-valued
function:

Definition 1.17. Let p : [»1, #2] — R be an increasing and positive function on (%1, %2], having a continuous
derivative p’(x) on (1, #2) and ® € TRy, 3,7 The interval- valued left-sided and right-sided fractional integrals of
F with respect to the function p on [x1, #,] of order a > 0 are defined by

& ’
' p'(7)
) —————O(71)dr,
m+p &= F(a)( R) " [P(é)—P(T)]l_a (Ddt, &>
and
p'(7)
a0 = ()f—_@ by, &<,
PO e e per e
respectively.

Corollary 1.18. If® : [»1, 2] — Ry isaninterval-valued function such that (t) = [@(T), 5(7)] with O(7), (1) €
R and p = [#1, x2] — R be an increasing and positive function on (%1, %»], having a continuous derivative
p’ (&) on (31, 12), then we obtain the following relations

% @) = [15,4,2(6), I5, ., ()]

and

o pPE) =18, ,2(8), 1%, 2]

In [10], the generalized Riemann—Liouville fractional operators, I, .. ¢ and 1% _. ¢ are defined by

%1+p Ho—;p

o Vo
I;q+;p¢(5) Iﬂ(a)( )Ll qu)(’[)d’c, &>y
and
(0
I3, 96 = 5 ® f R £ <
respectively.

Motivated by above notions and results, we will establish in the next section some generalization of
Ostrowski type inequalities for interval valued functions by using the definitions of the gH-derivatives.
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2. Fractional Ostrowski Type Inequalities For Interval-Valued Functions
Sarikaya et al. in [19], obtain the following Ostrowski inequality for fractional integrals:

Theorem 2.1. Let ¢ : [, #2] — R be a differentiable mapping on (%1, #2) with 11 < #p and ¢’ € L[ny, %] . If

qb/ : (1, #2)— R is bounded on (11, %), i.e., = sup q,‘>’(t)| < oo, then for a > 0, the following inequality
T€(%1,%2)
for fractional integrals holds:
E—2)% + (uy = & F@+1)r, a
‘(( U0 g - LD [0 + 2.0 o) ®

|97l

Uy — A1

<

[(5 — 2"+ (g - 5)a+1] .

a+1
Farid in [7], obtain the following Ostrowski inequality for fractional integrals:

Theorem 2.2. Assume that the conditions of the Theorem 2.1 are satisfied. Then for a, f > 0, the following inequality
for fractional integrals holds:

(€= 50" + o =) p(&) - [T B+ DI @ +T @+ DI L6 O] @

< |

Basci and Baleanu in [2], proved the following Ostrowski type inequalities for generalized Riemann—
Liouville fractional integrals:

¢; [ﬁn‘%(% )ﬁ+1 ?(é %)a+1]

Theorem 2.3. Assume that the conditions of the Theorem 2.1 are satisfied. Also, suppose that the function p €
CY([x1, #2]) is increasing and positive and p’(x) > 1 for all x € (%1, %2). Then for a, B > 0, the following inequality
for fractional integrals holds:

() - peaa))” + (po02) - p(EY) p() ©)

_ [r B+ DI, ¢E)+T(@+1) I, ,0 (5)”

< il [ﬁH(p(}cz) PET + —— (p(&) — paa ))“”]

Now, using Theorems 2.1, 2.2 and 2.3, we prove some fractional Ostrowski type inequalities for interval-
valued functions.

Theorem 2.4. Let @ : [a,b] — K be an interval-valued function such that ®, ® are continuously differentiable
functions. Then, @ is continuously gH-differentiable and we have the following fractional Ostrowski type inequality
for interval-valued functions:

( e [Tt + é“_@(xl)]f((g_%l)a+(%2_5)a)cb(<z>)

(%2 Uy — A1

(5 - %1)‘”1 + (2 — é)““]

< o [T

(6)

forall & € [#1, np] and a > 0.
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Proof. By the fractional Ostrowski inequality (3), we have

H((i(“—” [72.000) + T2 060)], ((‘5’“1) e o) )@(5))

Uy — N

(E=n1)"+ (2= )
Ny — Hq

( F(az+1

(%2 =
Ia+1) ., i
max{ (2 — 1)" [Ia@(%z) + Ig_@(}tl)] _ (

Ia+1)
(2 — 11)"

ax{ “(9)’ ((«5 - %)™+ (2 - 5)‘”1) ”(6), ((5 - %)™ 4 G = ™! )}
Uy — U1 a+1 1%2—%1 a+1

(e (e )

(2 = 1) (@ +1)

[ D) + 12 Da), g+5(%2)+1g_5(%1)],( a)[@(g),@(g)])

(& =21)" + (2 - 5)a)

Hy — N

E-2)"+002-¢)
Ay — A

[12,002) + I¢_D(41)] - ( a)@é)'}

IN

_ el ((é—}tl)“”ﬂ%z—é)“”).

Ny — Hq a+1

The proof of Theorem 2.4 is completed. [

Remark 2.5. If we choose @ = 1 in Theorem 2.4, then we have the following inequality

H

||c1>'||o<, ((é — %1)" + (%o — 5)2)

— A 2

S (IR) f O(r)dr, DE) | <

Ao

which is proved by Chalco-Cano et al. in [4].

Theorem 2.6. Assume that the conditions of the Theorem 2.4 are satisfied. Then we have the following fractional
Ostrowski type inequality for interval-valued functions:

H(T(B+1)T%, @) + T (a+1)T%, D), ((€ - %) + (2 - ) (&) 7)
< Il [ﬁ’% (o - &P+ —— (£~ xl)““]

forall & € [»1, np] and a, > 0.

Proof. By the fractional Ostrowski inequality (4), we have
H(T(B+1)J%, (@) +T(a+1) T2, P (), ((€ - 2)" + (42 - £ ) 0())
_ [ T(p+1) [, 0@, I, ()] + T+ 1) [12,,2(), 12, ,D)], )
(& = 50)" + (a2 - &) [2(8), D)

H( [r B+ 1), _DE) +T(a+ DI, @E),T(B+1) 1, _BE) +T(a+ 1)1,{1+q>((§)], ]
(€ =30)" + (a2 - &) [2(8), (&)
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jr (B+ 1) B, D& + Tla+ DI, D) = (€ = 20)" + (2 = &) D
PG DL, F© T 118,30 - (€ - 50" + 602 - ) BE)

{i‘<)

l%(x —of e (- %)““]max{” @@

IA

[ﬁ+1 (%2 _ )ﬂ+1 + ail (E % )Ué+1:|,
ﬁ+1 -+ ar(E-x )Ml]

i

’ ﬁ p+1 a a+l
[|D ||oo[m(%2—5) +m(5—%1) ]

The proof of Theorem 2.6 is completed. [

Corollary 2.7. If we choose o = f in Theorem 2.6, then we have the following fractional Ostrowski type inequalities
for interval-valued functions:

H(T @+ 1] @) +T5.0©)], (€ ~30)" + (2~ ) (&)

’ o a+1 a+1
< 10l — [0 = O + (€ =)™
forall x € [#q, %] and a > 0.

Theorem 2.8. Assume that the conditions of the Theorem 2.4 are satisfied. Also, suppose that the function p €
CY([x1, #2]) is increasing and positive and p’(E) > 1 for all x € (%1, %2). Then we have the following generalized
fractional Ostrowski type inequality for interval-valued functions:

H(T(B+1)T%,,®@ ) +T(a+1)J%.,2 (&), ((pE) - pGa))® + (pi) — p&)’) (&)

< ||c1>'||m[ P (po) - pe)f + il(p(a)—p(xo)““]

p+1
forall & € [»1, np] and a, > 0.
Proof. By the fractional Ostrowski inequality (5) and Corollary 1.18, we have

H(T (B +1) %, ,@ @) +T(@+1)T% 1, @ @), ((p(E) = pe))* + (p(02) = p(&)) ) (&)
_ [r(/m)[ @), I5, ()] + T+ 1)[ 15, 2(), Iw@(é)],]
((p(&) - pGa)) + (p(12) - p©)Y ) [2(2), B(D)]

H( [T(g+1) 1, ,@(&) + T(a + DIL,,,0E),T(B+1) L5, B(E) +T(a+DIL, D), ]
((p(&) = pCa)* + (pG2) - p©))) [@(8), (&)

e T2 + T DI L2 ~ (O - pea)” + (6) - p@)) ) 20|,
TG+ ) 7,6 + T+ DT, 3 - ((76) - pee)” + (o) p(é))ﬁ)®<a>|

max ' (9) ‘ [m (p(;{Z) - P(é))ﬁﬂ + ﬁ (p(};) — P(%l))a+1] ,
|(6)I | [l% (p(%2) = P& + 2 (p(&) - p(%l))aﬂl

IN
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(@]}

B
p+1

7

(p62) = O™ + —= (p(&) - p(m))‘*“] max{ (@)

’ B B+1 o a+l
19l [ 5 (p(2) =P + —— (p() = pLe))™ |-
The proof of Theorem 2.8 is completed. [
Remark 2.9. If we choose p(&) = & for all £ € [#1, %] in Theorem 2.8, then Theorem 2.8 reduces to Theorem 2.6.

Corollary 2.10. If we choose o = f in Theorem 2.8, then we have the following fractional Ostrowski type inequality
for interval-valued functions:

H(T (@ +1) [T, ) + T2, @ ], (&) = pe))* + (p(2) - p(&))*) ()

<0l = [(Po2) = PEN™ + (p(E) - pea)) ]
forall & € [x1, #p] and a > 0.

Remark 2.11. If we choose p(&) = & for all £ € [#1, 2] in Corollary 2.10, then Corollary 2.10 reduces to Corollary
2.7.

3. Conclusion

In this paper, we given some new fractional Ostrowski type inequalities for interval valued functions
by using the definitions of the gH-derivatives. Interested readers can establish new inequalities via other
generalized operators using our technique. Also, this results can be applied in convex analysis, optimization
and different areas of pure and applied sciences.
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