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Abstract. In this paper, we present some refinements of reverse Young’s inequalities. Among other results,
a refinement of reverse operator Young inequalities says

A∇vB + 2λ(A∇B − A♯B) ≤
m∇λM
m♯λM

A♯vB,

where 0 < mI ≤ A,B ≤ MI, λ = min{v, 1 − v} and v ∈ [0, 1], extending a key result in [J. Math. Anal. Appl.
465 (2018) 267-280] and [Linear Multilinear Algebra 67 (2019) 1567-1578]. Furthermore, we give a reverse
of Young’s inequalities due to [Math. Slovaca 70 (2020), 453-466]. Moreover, we give a generalization of
reverse Young-type inequality, and we also show a new Young-type inequality which is either better or not
uniformly better than the main results in [Rocky Mountain J. Math. 46 (2016), 1089-1105]. As applications of
these results, we obtain some inequalities for operators, Hilbert-Schmidt norms, unitarily invariant norms
and determinants.

1. Introduction

Let (H , ⟨·, ·⟩) be a complex Hilbert space and letB(H) denote the algebra of all bounded linear operators
acting onH . A self adjoint operator A is said to be positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H , while it is said to be
strictly positive if A is positive and invertible. As usual, we say that A > B when A−B > 0 and A ≥ B when
A − B ≥ 0, respectively.

Moreover,Mn denotes the space of all n × n complex matrices. The unitarily invariance of the ∥ · ∥u on
Mn means that ∥UAV∥u = ∥A∥u for any A ∈Mn and all unitary matrices U,V ∈Mn. For A = [ai j] ∈Mn, the

Hilbert-Schmidt norm of A is defined by ||A||22 =
n∑

i, j=1
|ai j|

2, it is well know that ∥ · ∥2 is unitarily invariant. The

singular values of A, that is, the eigenvalues of the positive semi-definite matrix |A| = (A∗A)
1
2 , is denoted

by s j(A), j = 1, 2, · · · ,n, and arranged in a non-increasing order.
In addition, the Kantorovich constant and the Specht’s ratio are defined by

K(h) =
(h + 1)2

4h
for h > 0 and S(h) =


h

1
h−1

e log
(

h
1

h−1

) if h ∈ (0, 1) ∪ (1,∞),

1 if h = 1.
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For the notations adopted in this paper, we denote v-weighted operator arithmetic mean (AM) and geometric
mean (GM) as follows

A∇vB = (1 − v)A + vB and A♯vB = A
1
2 (A−

1
2 BA−

1
2 )vA

1
2 ,

where A,B ∈ B(H) are strictly positive operators and v ∈ R. Denoted by A∇B and A♯B for brevity respec-
tively when v = 1

2 for the sake of our convenience.
The operator Young’s inequality or v-weighted AM-GM mean inequalities states that

A♯vB ≤ A∇vB, (1)

where A,B ∈ B(H) are strictly positive operators and v ∈ [0, 1]. Refining this inequality has taken great
attention of a considerable number of researchers in this field.

Furuichi [6] and Tominaga [21] obtained respectively a refinement and reverse with Specht’s ratio

S((h′)r)A♯vB ≤ A∇vB ≤ S(h)A♯vB, (2)

where 0 < mI ≤ A ≤ m′I <M′I ≤ B ≤MI, h′ = M′
m′ , h = M

m , r = min{v, 1 − v} and v ∈ [0, 1].
Later, Zuo et. al. [25] and Liao et. al. [13] proved that if A,B ∈ B(H) are such that 0 < mI ≤ A ≤ m′I <

M′I ≤ B ≤MI or 0 < mI ≤ B ≤ m′I <M′I ≤ A ≤MI, then

K(h′)rA♯vB ≤ A∇vB ≤ K(h)RA♯vB, (3)

where h′ = M′
m′ , h = M

m , r = min{v, 1 − v}, R = max{v, 1 − v} and v ∈ [0, 1]. The authors [25] also showed
S(hr) ≤ K(h)r for h > 0, which implies the first inequality in (3) is better than the first one of (2).

Recently, Furuichi et. al. [8] and Gümüş et. al. [9] showed

A∇vB ≤
m∇λM
m♯λM

A♯vB, (4)

where 0 < mI ≤ A,B ≤ MI, λ = min{v, 1 − v} and v ∈ [0, 1]. Furthermore, they [9] also explained that (4) is
better than the corresponding one in (3) and the constant m∇λM

m♯λM is best possible.
Very recently, Beiranvand and Ghazanfari [4] gave a new refinements of (1), which reads as(

K(h2−n
)
)λn

A♯vB ≤
2n
−1∑

i=0

[
(i + 1 − 2nv)A♯2−niB + (2nv − i)A♯2−n(i+1)B

]
χAn,i ≤ A∇vB, (5)

where n ∈N∪0, v ∈ [0, 1], A,B are two invertible positive operators inB(H) and h is a positive real number

such that either A < hB ≤ B or A > hB ≥ B, and λn =
2n
−1∑

i=0
min{i + 1 − 2nv, 2nv − i}χAn,i .

Moreover, Bakherad, Krnić and Moslehian [3] presented a reverse Young-type inequality

(1 − v)a + vb ≤ a1−vbv, (6)

where a, b > 0 and v ∈ (−∞, 0) ∪ (1,∞). In the same paper, the authors [3] also showed

(1 − v)a + vb − v(
√

a −
√

b )2
≤ a1−vbv, (7)

where a, b > 0 and v ∈ (−∞, 0) ∪ ( 1
2 ,∞). It is clear that the inequality (7) can be regarded as a refinement of

(6) when v ∈ (−∞, 0).
For more information about Young’s inequalities, we refer the readers to [1, 2, 7, 10–12, 14–20, 22–24]

and references therein.
In this paper, we shall present a further refinement of reverse operator Young inequality (4). Moreover,

we also give some reverses of the first inequalities in (5). In addition, we show a new Young-type inequality,
which is either better or not uniformly better than (7) under the same conditions. In the end of this paper,
we give a generalization of the inequality (6). As applications of these results, we obtain some inequalities
for Hilbert-Schmidt norms, unitarily invariant norms and determinants.
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2. Main results

First of all, we present a further refinement of reverse AM-GM operator inequality (4).

Theorem 2.1. Let A,B ∈ B(H) be such that 0 < mI ≤ A,B ≤MI for some scalars 0 < m <M. Then

A∇vB + 2λ(A∇B − A♯B) ≤
m∇λM
m♯λM

A♯vB,

where λ = min{v, 1 − v} and v ∈ [0, 1].

Proof. For the sake of our convenience, we define

f (x) =
(1 − v) + vx + λ(

√
x − 1)2

xv ,

where v ∈ [0, 1] and x > 0. Then we have

f ′(x) =
{

v(
√

x − 1)((2 − 2v)
√

x + 1)x−v−1 for 0 ≤ v ≤ 1
2 ,

(1 − v)(
√

x − 1)(
√

x + 2v)x−v−1 for 1
2 ≤ v ≤ 1.

So, f ′(x) > 0 when x > 1 and f ′(x) < 0 when 0 < x < 1. Therefore, f (x) ≤ max{ f ( m
M ), f ( M

m )}.We now compare
between f ( m

M ) and f ( M
m ), letting

1(h) =
(1 − v) + vh + λ(

√
h − 1)2

hv −
(1 − v) + vh−1 + λ(

√

h−1 − 1)2

h−v .

Direct calculations show that

1′(h) =

 v(
√

h − 1)
(
(2 − 2v)h

3
2 + h − (2 − 2v)h2v

− h2v+ 1
2

)
h−v−2 for 0 ≤ v ≤ 1

2 ,

(1 − v)(
√

h − 1)
(
h

3
2 + 2vh − 2vh2v+ 1

2 − h2v
)
h−v−2 for 1

2 ≤ v ≤ 1.

Without lose of generality, we may assume h = M
m > 1.

Putting s1(v) = (2 − 2v)h
3
2 + h − (2 − 2v)h2v

− h2v+ 1
2 and s2(v) = h

3
2 + 2vh − 2vh2v+ 1

2 − h2v.

Then we have s′1(v) = −2h
3
2 + 2h2v

− 2(2 − 2v)h2v log h − 2h2v+ 1
2 log h, and s′′1 (v) = 4h2v

(
2(1 − log h) + (2v −

√
h ) log h

)
log h < 0 when 0 ≤ v ≤ 1

2 and h > 1. So s′1(v) < s′1(0) = −2h
3
2 + 2− 4 log h− 2

√
h log h < 0. Then we

have s1(v) > s1( 1
2 ) = 0; Similarly, we get s′2(v) = 2h − 2h2v+ 1

2 − 4vh2v+ 1
2 log h − 2h2v log h < 0 when 1

2 ≤ v ≤ 1
and h > 1,we have s2(v) < s2( 1

2 ) = 0.
That is 1′(h) > 0 when 0 ≤ v ≤ 1

2 and 1′(h) < 0 when 1
2 ≤ v ≤ 1. Therefore, we have 1(h) > 1(1) = 0 when

0 ≤ v ≤ 1
2 , and 1(h) < 1(1) = 0 when 1

2 ≤ v ≤ 1. It follows that

max
x∈[ m

M ,
M
m ]

f (x) =


m∇vM
m♯vM for 0 ≤ v ≤ 1

2 ,

M∇vm
M♯vm for 1

2 ≤ v ≤ 1.

Which is equivalent to saying

(1 − v) + vx + λ(x + 1 − 2
√

x ) ≤
m∇λM
m♯λM

xv, (8)

putting 0 < m
M I ≤ x = A−

1
2 BA−

1
2 ≤

M
m I, we can get Theorem 2.1 by (8) with a standard functional calculus.

Putting x =
(

b
a

)2
in (8), we can get the following corollary.
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Corollary 2.1. Let 0 < m ≤ a, b ≤M, λ = min{v, 1 − v} and v ∈ [0, 1]. Then we have(
(1 − v)a + vb

)2
+ (λ + v − v2)(a − b)2

≤

( (m2)∇λ(M2)
(m♯λM)2

)
(a1−vbv)2. (9)

In the next result, we give inequality (9) for Hilbert-Schmidt norms.

Theorem 2.2. Let A,B,X ∈Mn be such that 0 < mI ≤ A,B ≤MI. We have

||(1 − v)AX + vXB||22 + (λ + v − v2)||AX − XB||22 ≤
( (m2)∇λ(M2)

(m♯λM)2

)
||A1−vXBv

||
2
2,

where λ = min{v, 1 − v} and v ∈ [0, 1].

Proof. Since A,B are positive definite matrices, it follows by spectral theorem that there exist unitary matrices
U,V ∈Mn, such that A = UΛ1U∗ and B = VΛ2V∗,whereΛ1 = dia1(λ1, λ2, · · · , λn) andΛ2 = dia1(ν1, ν2, · · · , νn)
for λi, νi are eigenvalues of A,B respectively, so λi, νi > 0, i = 1, 2, · · · ,n. Let Y = U∗XV = [yil]. Then
(1− v)AX+ vXB = U[(1− v)Λ1Y+ vYΛ2]V∗ = U[((1− v)λi + vνl)yil]V∗ and A1−νXBν = U[(λ1−v

i ν
v
l )yil]V∗. By (9)

and the unitarily invariance of the Hilbert-Schmidt norm, we have( (m2)∇λ(M2)
(m♯λM)2

)
||A1−vXBv

||
2
2 =
( (m2)∇λ(M2)

(m♯λM)2

) n∑
i,l=1

(
λ1−v

i ν
v
l

)2
|yil|

2

=

n∑
i,l=1

[( (m2)∇λ(M2)
(m♯λM)2

)
(λ1−v

i ν
v
l )2
]
|yil|

2

≥

n∑
i,l=1

[(
(1 − v)λi + vνl

)2
+ (λ + v − v2)(λi − νl)2

]
|yil|

2

=

n∑
i,l=1

(
(1 − v)λi + vνl

)2
|yil|

2 + (λ + v − v2)
n∑

i,l=1

(λi − νl)2
|yil|

2

= ||(1 − v)AX + vXB||22 + (λ + v − v2)||AX − XB||22.

Here we complete the proof of Theorem 2.2.

Next, we show a unitarily invariant norm inequality involving operator monotone functions.

Theorem 2.3. Let 0 < mI ≤ A,B ≤ MI and f : [0,∞)→ [0,∞) be an operator monotone function. Then for every
unitarily invariant norm || · ||u, we have

|| f (A)♯v f (B)||u
||A♯vB||u

≤
m∇λM
m♯λM

∥∥∥∥∥ f (A♯vB)
A♯vB

∥∥∥∥∥
u
,

where λ = min{v, 1 − v} and v ∈ [0, 1].

Proof. Compute

|| f (A)♯v f (B)||u
||A♯vB||u

≤

||
m∇λM
m♯λM f (A♯vB)||u

||A♯vB||u

≤

∥∥∥∥∥m∇λM
m♯λM

f (A♯vB)
A♯vB

∥∥∥∥∥
u

=
m∇λM
m♯λM

∥∥∥∥∥ f (A♯vB)
A♯vB

∥∥∥∥∥
u
,

where the first inequality is by Theorem 2 in [9], and the second one is due to the submultiplicativity
property of unitarily invariant norm.
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Next, we present inequalities (8) for determinants.

Theorem 2.4. Let A,B ∈Mn be such that 0 < mI ≤ A,B ≤MI. Then we have

det(A∇vB) + λn det(2A∇B − 2A♯B) ≤
(m∇λM

m♯λM

)n
det(A♯vB),

where λ = min{v, 1 − v} and v ∈ [0, 1].

Proof. It is a fact that the determinant of a positive definite matrix is product of its singular values, by (8),
we obtain(m∇λM

m♯λM

)n
det(A−

1
2 BA−

1
2 )v = det

(m∇λM
m♯λM

(A−
1
2 BA−

1
2 )v
)

=

n∏
j=1

s j

(m∇λM
m♯λM

(A−
1
2 BA−

1
2 )v
)

=

n∏
j=1

(m∇λM
m♯λM

sv
j (A
−

1
2 BA−

1
2 )
)

≥

n∏
j=1

(
(1 − v) + vs j(A−

1
2 BA−

1
2 ) + λ

(
s

1
2
j (A−

1
2 BA−

1
2 ) − 1

)2)
≥

n∏
j=1

(
(1 − v) + vs j(A−

1
2 BA−

1
2 )
)
+

n∏
j=1

(
λ
(
s

1
2
j (A−

1
2 BA−

1
2 ) − 1

)2)
= det

(
(1 − v)In + vA−

1
2 BA−

1
2

)
+ λn det

(
(A−

1
2 BA−

1
2 )

1
2 − In

)2
.

Multiplying det(A
1
2 ) on both sides of inequalities above, we can get Theorem 2.4 directly, as desired.

Next, we give some reverses operator Young’s inequalities (5) as promised. Before that, we list a lemma
due to Dragomir [5].

Lemma 2.1. For i = 1, 2, · · ·,n, we consider pi > 0 with
n∑

i=1
pi = 1. If f is a convex function on a fixed closed interval

I, then
n∑

i=1

pi f (xi) − f
( n∑

i=1

pixi

)
≤ nλ

[ n∑
i=1

1
n

f (xi) − f
(1

n

n∑
i=1

xi

)]
,

where λ = max{p1, p2, · · ·, pn}.

If we take f (x) = − log x in Lemma 2.1, then we obtain the following corollary.

Corollary 2.2. Let xi ∈ I ⊂ [a, b] and
n∑

i=1
pi = 1 with 0 < a < b, pi > 0. Then we have

n∑
i=1

pixi

n∏
i=1

xpi

i

≤

( 1
n

n∑
i=1

xi

n∏
i=1

x
1
n
i

)nλ
,

where λ = max{p1, p2, · · ·, pn} and i = 1, 2, · · ·,n.
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Following an idea of Beiranvand and Ghazanfari [4], we suppose that f is a real convex function on
[0, 1] and n ∈N ∪ 0. Let A0,0 = [0, 1] and for n = 1, 2, · · ·, i = 0, 1, 2, · · ·, 2n

− 1,
An,i = [2−ni, 2−n(i + 1)),

fn(v) =
2n
−1∑

i=0

[
(i + 1 − 2nv) f (2−ni) + (2nv − i) f (2−n(i + 1))

]
χAn,i (v).

It can be easily shown that fn is continuous on [0,1] for every n ∈ N, and { fn} is a decreasing sequence that
converges pointwise to f .

Theorem 2.5. Let A,B ∈Mn be such that either 0 < A < B < hA or 0 < hA < B < A. Then(
K(h2−n

)
)λn

A♯vB ≥
2n
−1∑

i=0

[
(i + 1 − 2nv)A♯2−niB + (2nv − i)A♯2−n(i+1)B

]
χAn,i (v) ≥ A♯vB,

where n ∈N ∪ 0, v ∈ [0, 1] and λn =
2n
−1∑

i=0
max{i + 1 − 2nv, 2nv − i}χAn,i .

Proof. Taking f (v) = avb1−v, x1 = f (2−ni), x2 = f (2−n(i + 1)), p1 = i + 1 − 2nv and p2 = 2nv − i when
v ∈ [2−ni, 2−n(i + 1)) in Corollary 2.2, we get

f (2−ni)i+1−2nv f (2−n(i + 1))2nv−i
( 1

2

(
f (2−ni) + f (2−n(i + 1))

)
f (2−ni)

1
2 f (2−n(i + 1))

1
2

)2λn

≥ (i + 1 − 2nv) f (2−ni) + (2nv − i) f (2−n(i + 1)).

By some complex and direct computations, we have

K(h)λn avb1−v
≥ (i + 1 − 2nv) f (2−ni) + (2nv − i) f (2−n(i + 1)).

Moreover, using the well known Young’s inequality, we also have

(i + 1 − 2nv) f (2−ni) + (2nv − i) f (2−n(i + 1)) ≥ f (2−ni)i+1−2nv f (2−n(i + 1))2nv−i = avb1−v.

That is
K(h2−n

)λn avb1−v
≥ (i + 1 − 2nv)a2−nib1−2−ni + (2nv − i)a2−n(i+1)b1−2−n(i+1)

≥ avb1−v. (10)

Putting b = 1 in (10) and letting X = A−
1
2 BA−

1
2 , then we have hI > X > I or 0 < hI < X < I. Since K(h) is

continuous and monotone increasing on h ∈ (1,∞) and decreasing when h ∈ (0, 1), so we can complete the
proof easily with a standard functional calculus.

Theorem 2.6. Let A,B,X ∈Mn be such that A,B are positive definite. Let Sp(A) = {τ1, · · ·, τn} be the spectrum of
A, and Sp(B) = {µ1, · · ·, µn} be the spectrum of B. If v ∈ [0, 1], then

K2λn
n ||A

vXB1−v
||

2
2

≥

2n
−1∑

i=0

||(i + 1 − 2nv)A2−niXB1−2−ni + (2nv − i)A2−n(i+1)XB1−2−n(i+1)
||

2
2χAn,i

≥ ||AvXB1−v
||

2
2,

where Kn = max
{(

K( τi
µ j

)2−n
)

: k, j = 1, · · ·,m
}
, and λn =

2n
−1∑

i=0
max{i + 1 − 2nv, 2nv − i}χAn,i .

Proof. Using the same technique as in Theorem 2.2, we can similarly get the proof of Theorem 2.6 with (10).
So we omit the details for the sake of simplicity and unnecessary repetition of the article.

In the next step, we shall give a new reverse Young-type inequality, which is either better or not uniformly
better than (7) under the same conditions. Firstly, we show some scalars inequalities.
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Theorem 2.7. Let a, b > 0. If v ∈ (−∞, 0) ∪ ( 1
2 ,∞), then

(1 − v)2a + v2b − v2(
√

a −
√

b )2
≤ v2va1−vbv. (11)

Proof. Compute

(1 − v)2a + v2b − v2(
√

a −
√

b )2 = (1 − 2v)a + 2v(v
√

ab )

≤ a(1−2v)(v
√

ab )2v

= v2va1−vbv,

where the inequality is by (6).

Our next intention is to compare Theorem 2.7 with inequality (7). Taking
f (v) =

(
(1 − v)2a + v2b − v2(

√
a −
√

b )2
)
−

(
(1 − v)a + vb − v(

√
a −
√

b )2
)
= 2v(v − 1)

√
ab;

1(v) = v2va1−vbv
− a1−vbv =

(
v2v
− 1
)
a1−vbv.

Then we have
– f (v) ≥ 0 and 1(v) ≥ 0 when v ≥ 1;
– f (v) < 0 and 1(v) < 0 when v ∈ ( 1

2 , 1);
– f (v) > 0 and 1(v) > 0 when v ∈ (−1, 0);
– f (v) > 0 and 1(v) = 0 when v = −1;
– f (v) > 0 and 1(v) < 0 when v ∈ (−∞,−1);

Obviously, inequality (11) is not uniformly better than (7) when v ∈ (−1, 0) ∪ ( 1
2 ,∞), and inequality (11)

is better than (7) when v ∈ (−∞,−1]. However, the inequality (7) is less precise than (6) when v ∈ ( 1
2 ,∞). So

we take v ∈ (−∞, 0) in the following discussion.
By a standard functional calculus, we can easily get the following operators mean inequality with

Theorem 2.7.

Theorem 2.8. Let A,B are two invertible positive operators in B(H) and v ∈ (−∞, 0). Then

(1 − v)2A + v2B − 2v2(A∇B − A♯B) ≤ v2vA♯vB.

Corollary 2.3. Let a, b > 0 and v ∈ (−∞, 0). Then we have(
(1 − v)a + vb

)2
− v2(a − b)2

≤ v2v(a1−vbv)2 + 2v(1 − v)ab.

Proof. The proof come from Theorem 2.7 directly.

Next, we give an inequality for Hilbert-Schmidt norms using Corollary 2.3.

Theorem 2.9. Let v ∈ (−∞, 0) and let A,B,X ∈Mn be such that 0 < A,B. We have

||(1 − v)AX + vXB||22 − v2
||AX − XB||22 ≤ v2v

||A1−vXBv
||

2
2 + 2v(1 − v)||A

1
2 XB

1
2 ||

2
2.

Proof. Using the same technique as in Theorem 2.2, we can easily get the proof of Theorem 2.9. So we omit
the details.

Next, we give an inequality for determinant by Theorem 2.7.

Theorem 2.10. Let v ∈ (−∞, 0) and let A,B ∈Mn be such that 0 < B ≤ 4A. Then we have

(1 − v)2n det(B) + v2n det(2A♯B − B) ≤ v2vn det(B♯vA).



Y. Ren, P. Li / Filomat 36:8 (2022), 2541–2550 2548

Proof. Taking b = 1 and a = s j(A−
1
2 BA−

1
2 ) in Theorem 2.7. Since 0 < B ≤ 4A, which means that 0 <

s j(A−
1
2 BA−

1
2 ) ≤ 4, so we have

v2vn det(A−
1
2 BA−

1
2 )1−v = det

(
v2v(A−

1
2 BA−

1
2 )1−v
)

=

n∏
j=1

(
v2vs1−v

j (A−
1
2 BA−

1
2 )
)

≥

n∏
j=1

(
(1 − v)2s j(A−

1
2 BA−

1
2 ) + v2

− v2
(
s

1
2
j (A−

1
2 BA−

1
2 ) − 1

)2)
=

n∏
j=1

(
(1 − v)2s j(A−

1
2 BA−

1
2 ) + v2

(
2s

1
2
j (A−

1
2 BA−

1
2 ) − s j(A−

1
2 BA−

1
2 )
))

≥

n∏
j=1

(
(1 − v)2s j(A−

1
2 BA−

1
2 )
)
+

n∏
j=1

(
v2
(
2s

1
2
j (A−

1
2 BA−

1
2 ) − s j(A−

1
2 BA−

1
2 )
))

= (1 − v)2n det
(
A−

1
2 BA−

1
2

)
+ v2n det

(
2(A−

1
2 BA−

1
2 )

1
2 − A−

1
2 BA−

1
2

)
.

Multiplying det(A
1
2 ) on both sides of inequalities above, we get

v2vn det(B♯vA) = v2vn det(A♯1−vB) ≥ (1 − v)2n det(B) + v2n det(2A♯B − B),

as desired.

In the end of this paper, we give a natural generalization of the inequality (6), which can be regarded as
a reverse of the classical weighted arithmetic-geometric mean inequality

n∑
i=1

piai ≥

n∏
i=1

api

i ,

where ai, pi ≥ 0 and
n∑

i=1
pi = 1. Our generalization can be stated as follows.

Theorem 2.11. Let ai > 0 and let pi < [0, 1] be such that
n∑

i=1
pi = 1. Then we have

n∑
i=1

piai ≤

n∏
i=1

api

i , (12)

where pi ≥ p j when 1 ≤ i < j ≤ n, and with equality if a1 = a2 = · · · = an.

Proof. We use mathematical induction to prove the validity of the theorem. First, suppose that the inequality

(12) is true for all positive integer n = k ≥ 2. That is
k∑

i=1
piai ≤

k∏
i=1

api

i , and so we only need to prove it holds for



Y. Ren, P. Li / Filomat 36:8 (2022), 2541–2550 2549

n = k + 1. Thus,

k+1∏
i=1

api

i = ap1

1 × ap2

2 × · · · × apk

k × apk+1

k+1

=
(
a

p1
p1+p2+···+pk
1 × a

p2
p1+p2+···+pk
2 × · · · × a

pk
p1+p2+···+pk
k

)p1+p2+···+pk

× apk+1

k+1

≥ (p1 + p2 + · · · + pk)
(
a

p1
p1+p2+···+pk
1 × a

p2
p1+p2+···+pk
2 × · · · × a

pk
p1+p2+···+pk
k

)
+ pk+1ak+1

≥ (p1 + p2 + · · · + pk)
( p1

p1 + p2 + · · · + pk
a1 + · · · +

pk

p1 + p2 + · · · + pk
ak

)
+ pk+1ak+1

= p1a1 + p2a2 + · · · + pk+1ak+1

=

k+1∑
i=1

piai,

where the first inequality is by (6) and the second one is due to our assumption. We completed the proof.

Remark 1. We require pi ≥ p j when 1 ≤ i < j ≤ n in Theorem 2.11. This is because that we have to make sure
p1 + p2 + · · · + pk > 0 in the process of our proof. It may be wrong of Theorem 2.11 without this restriction. For
example, letting n = 3, a1 = 3, a2 = 2, a3 = 4, p1 = −2, p2 = 1.1, p3 = 1.9, then we have ap1

1 ap2

2 ap3

3 ≈ 3.317 ≤ 3.8 =
p1a1 + p2a2 + p3a3.

Motivated by the inequality (7), we now give a further refinement of Theorem 2.11.

Theorem 2.12. Let ai > 0 and let pi < [0, 1] be such that
n∑

i=1
pi = 1. If pi ≥ p j when 1 ≤ i < j ≤ n such that

pi − p j < [0, 1], then we have
n∑

i=1

piai − pn

( n∑
i=1

ai − n
n∏

i=1

a
1
n
i

)
≤

n∏
i=1

api

i ,

with equality if a1 = a2 = · · · = an.

Proof. Compute

n∑
i=1

piai − pn

( n∑
i=1

ai − n
n∏

i=1

a
1
n
i

)
=

n∑
i=1

(
pi − pn

)
ai + npn

n∏
i=1

a
1
n
i

= (p1 − pn)a1 + (p2 − pn)a2 + · · · + (pn−1 − pn)an−1 + npn

( n∏
i=1

a
1
n
i

)
≤ ap1−pn

1 × ap2−pn

2 × · · · × apn−1−pn

n−1 ×

( n∏
i=1

a
1
n
i

)npn

=

n∏
i=1

api

i ,

where the inequality is by (12). So we completed the proof.

Remark 2. Letting a1 = a, a2 = b, p1 = 1 − v, p2 = v, we can get the inequality (7) by Theorem 2.12 when n = 2
and v < 0.
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