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Abstract. The purpose of this paper is to introduce and study a new class of operators that we call pseudo-
generalized invertible operators. This class includes both the class of generalized invertible operators
and the class of Drazin invertible operators. Some results connected with ascent and essential ascent
are also obtained for this new class. The relationship between pseudo-generalized invertible operators,
semi-Fredholm operators and generalized invertible operators is explored.

1. Introduction

In this paper, let X be an arbitrary infinite-dimensional complex Banach space and B(X) denotes the
algebra of all bounded linear operators acting on X. For T ∈ B(X) we use R(T) and N(T), respectively, to
denote the range and kernel of T.

We recall that T is called generalized invertible (1-invertible), if there is S ∈ B(X) for which TST = T.
In such a case, S is called a 11-inverse of T. Also, if T is 1-invertible, then necessarily it has a generalized
inverse, called also 12-inverse, which is an operator S ∈ B(X) satisfying the equations TST = T and STS = S.

Another characterization of 1-invertible operators has been established by Caradus [5], in terms of
range and kernel. More precisely, he proved that a bounded linear operator is 1-invertible if and only if
its range and kernel are both complemented. Moreover, if S ∈ B(X) is a 11-inverse then TS and I − ST are
two projections onto R(T) and N(T), respectively. We have also N(TS) = N(S) and R(ST) = R(S), if S is a
12-inverse of T. Consequently, we obtain in particular that every finite rank operator is 1-invertible, and a
compact operator is 1-invertible if and only if it is of finite rank (see [14, Theorem 6.3.4, Theorem 6.8.5]).

The notion of generalized inverse (known in the literature also as g-inverse) appears for the first time in
1903 by I. Fredholm [8], and in 1920 by E. H. Moore, who was the first to introduce generalized invertibility
for singular matrices [20]. The study of this notion has flourished since 1955, when R. Penrose redefined
Moore’s inverse, nowadays called the Moore-Penrose inverse, by showing that it is the only matrix satisfying
four matrix equations (see [23] and its sequel [24]). The past several decades have seen an interest in this
notion in various settings and the study on generalized inverse initiated a new direction of research, and
many applications to linear least-squares problems have been given. As a result, this concept became a
distinguished area and a great number of papers was published in which various aspects of generalized
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inverses and their applications, see for instance, [2, 6, 25, 26, 29] for matrix theory and the case of Hilbert
spaces, [5, 6, 29] for bounded and unbounded linear operators on complex Banach spaces, [4, 15] for C∗-
algebras and rings. For some applications, we refer the reader to see [2, 6, 22, 26]. Further applications can
be found also in numerical analysis and approximation methods, probability, statistics and econometrics,
optimization, system theory, cryptography theory and operations research methods (for more details see
[7], and the references therein).

Although this notion has been studied extensively and shows its usefulness considering its important
applications relevant to the various linear problems, to the best of our knowledge, only a few works deal
with the question of its extension. In [9], S. Guedjiba thought of generalizing the equations TST = T and
STS = S in the case of matrices, linear operators and bounded operators by introducing the Gk-inverses,
where the defined class of operators having Gk-inverse coincides with the class of 1-invertible operators
(see also [30]). In earlier work dating back to 1965, F. J. Beutler [3] extended the Moore-Penrose inverse,
defined in the Hilbert case, to operators which need not be bounded and which may not have a closed
range.

To deal with this problem for bounded operators, specifically in B(X), our work goes in the direction of
generalizing the equation TST = T. For this reason, we suggest the following subsets :

Ωℓn =
{
T ∈ B(X) : ∃S ∈ B(X) : TnST = Tn

}
,

and
Ωr

n =
{
T ∈ B(X) : ∃S ∈ B(X) : TSTn = Tn

}
,

with n ∈N. Furthermore, we define

Ωℓ =
∞⋃

n=0
Ωℓn and Ωr =

∞⋃
n=0
Ωr

n.

Clearly, the set of 1-invertible operators is Ωℓ1 (= Ωr
1) and it belongs to Ωℓn ∩Ωr

n, for all n ≥ 2. Contrary
to Gk-invertible operators, in our case, we obtain larger classes. In fact, the reverse inclusion could not be
true in general and so the subsets Ωℓ1 (= Ωr

1) and Ωℓn ∩ Ωr
n usually do not coincide. To see that, let H be a

separable Hilbert space with an orthonormal basis (ek)k>0, N ∈N\{0} and T ∈ B(H) defined as follows

T(ek) =


1
k ek+1 if k is even,

ek if k is odd and k ≤ N,
0 if not.

Then,

T2(ek) =


1
k ek+1 if k is even and k + 1 ≤ N,

ek if k is odd and k ≤ N,
0 if not.

We have T < Ωℓ1 (= Ωr
1) being a compact operator of infinite rank and as T2 is of finite rank then there

exists S ∈ B(X) such that T2 = T2ST2 = T2(ST)T = T(TS)T2, which implies that T ∈ Ωℓ2 ∩Ω
r
2 and hence Ωℓ1

(= Ωr
1) ⊂ Ωℓ2 ∩Ω

r
2.

It should be noted that not only 1-invertible operators are included in this new class, but there are a few
others, obviously one of which is the class of Drazin invertible operators [6, 18, 29]. Note also that every
nilpotent operator of degree k ≥ 1 belongs to Ωℓk ∩ Ω

r
k. Furthemore, in the Hilbert case, if the adjoint of T

is a solution of one of the equations TnST = Tn and TSTn = Tn, then we find the case of semi-generalized
partial isometries introduced by Garbouj and the second author in [10], that is to say GPSℓn (resp. GPSr

n) is
included in Ωℓn (resp. Ωr

n) and similarly we have GPSℓ ⊆ Ωℓ and GPSr
⊆ Ωr.

For n ∈ N, we will call n-left (resp. n-right) pseudo-generalized invertible operator, an operator
belonging to Ωℓn (resp. Ωr

n). More generally, if T ∈ Ωℓ (resp. Ωr), then T is referred to as a left (resp.
right) pseudo-generalized invertible operator. An operator inΩℓ ∪Ωr is simply called pseudo-generalized
invertible.
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Clearly, 0-left and 0-right pseudo-generalized invertible operators are left-invertible and right-invertible,
respectively. Also, it is not difficult to see that one-to-one (resp. surjective) operators inΩℓn (resp. Ωr

n) belongs
to Ωℓ0 (resp. Ωr

0), for all n ∈ N. Additionnaly, for any λ ∈ C and T ∈ Ωℓn we have λT ∈ Ωℓn and similarly for
Ωr

n.While, λT < Ωℓ (resp. Ωr), if T < Ωℓ (resp. Ωr) for all λ ∈ C∗.

The paper is organized in the following way. First, we study some basic properties of pseudo-generalized
invertible operators. Section 3 is devoted to the study of pseudo-generalized invertible operators having
finite ascent, or finite descent. In Section 4, we focus our attention on operators both semi-Fredholm
and pseudo-generalized invertible. Some decomposition results are also given. Section 5 deals with the
pseudo-generalized invertible operators which possess finite essential ascent or finite essential descent. In
Section 6, the topological complements of the kernel and image of pseudo-generalized invertible operators
and their powers are discussed. In Section 7, we give some sufficient conditions for operators to be pseudo-
generalized invertible. Finally, as applications, based on the notion of pseudo-generalized invertibility, we
are able to give some results for the 1-invertibility.

2. Some basic properties

In this section, we present some basic properties of pseudo-generalized invertible operators and we
introduce the concept of pseudo-generalized inverses.

Our starting point is the following result, which gives easily observable remarks.

Remark 2.1. Let T ∈ B(X).

1) If T is a nilpotent operator of degree k ≥ 1, then T ∈ Ωℓk ∩Ω
r
k.

2) Ωℓn ⊆ Ωℓn+1 and Ωr
n ⊆ Ω

r
n+1, for all n ∈N.

3) If Tn
∈ Ωℓ1 (= Ωr

1) for some n ∈N\{0}, then T ∈ Ωℓn ∩Ωr
n.

4) If X is a Hilbert space, then T ∈ Ωℓn if and only if T∗ ∈ Ωr
n.

According to the previous remark, n-left (resp. n-right) pseudo-generalized invertible operators are
clearly k-left (resp. k-right) pseudo-generalized invertible, for any k ≥ n, but the converse is not true in
general. In fact, there exists a nilpotent operator of degree n ≥ 2, and thus T is n-left (resp. n-right)
pseudo-generalized invertible, such that T < Ωℓn−1 ∪Ω

r
n−1. This can be seen in the next example.

Example 2.2. Let H be a separable Hilbert space with an orthonormal basis (ek)k>0. For s ∈ N\{0, 1}, we
define Rs ∈ B(H) as follows

Rs(ek) =
{

1
k ek+1 if k ∈N\sN,

0 if not.

We have, Rs
s = 0, then clearly Rs ∈ Ω

ℓ
s ∩Ω

r
s. On the other hand, we see that

Rs−1
s (ek) =


ek+s−1

s−2∏
m=0

(k +m)
if k ∈ sN + 1,

0 if not.

Suppose that there exists L ∈ B(H), such that Rs−1
s LRs = Rs−1

s .We set

L(ek) =
∞∑

n=1

αn,ken,
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where αn,k ∈ C, for any k ∈N\{0}. Now, let k ∈ sN + 1, then we have

Rs−1
s LR(ek) =

1
k

Rs−1
s L(ek+1) =

1
k

∑
n∈sN+1

αn,k+1en+s−1

s−2∏
m=0

(n +m)
.

However, since Rs−1
s LRs = Rs−1

s , then

1
k

∑
n∈sN+1

αn,k+1en+s−1

s−2∏
m=0

(n +m)
=

ek+s−1
s−2∏
m=0

(k +m)
.

Thus, for n = k,
1
k
αk,k+1

s−2∏
m=0

(k +m)
=

1
s−2∏
m=0

(k +m)
.

It is clear that αk,k+1 = k, so L is not bounded, which is a contradiction. As a consequence we see that
Rs < Ωℓs−1. In the similar way, we obtain the same conclusin for Ωr

s−1.

We also have the same result for non-nilpotent operators as can be seen in the following remark.

Remark 2.3. For s ∈ N\{0, 1}, there exists a non-nilpotent operator T ∈ Ωℓs ∩Ωr
s such that T < Ωℓs−1 ∪Ω

r
s−1.

To see that, let H be a separable Hilbert space with an orthonormal basis (ek)k>0 and N ≥ s − 1.We define
Ts ∈ B(H) as follows

Ts(ek) =


1
k ek+1 if k ∈N\{sN + s − 1} and k > N,

ek if k ∈ sN + s − 1 and k ≤ N,
0 if not.

We see that

Ts−1
s (ek) =


ek+s−1

s−2∏
l=0

(k + l)
if k ∈ sN and k > N,

ek if k ∈ sN + s − 1 and k ≤ N,
0 if not,

and

Ts
s(ek) =

{
ek if k ∈ sN + s − 1 and k ≤ N,
0 if not.

Since Ts
s is of finite rank, then Ts

s ∈ Ω
ℓ
1 (= Ωr

1) and therefore Ts ∈ Ω
ℓ
s ∩ Ω

r
s. Now, suppose that there exists

L ∈ B(H) such that Ts−1
s LTs = Ts−1

s .We consider

L(ek) =
∞∑

n=1

αn,ken,

where αn,k ∈ C, for any k ≥ 1. Now, for k ∈ sN,with k > N,we see that

Ts−1
s LTs(ek) =

1
k

( ∑
n∈sN,n>N

αn,k+1en+s−1

s−2∏
l=0

(n + l)
+

∑
n∈sN+s−1, k≤N

αn,k+1en

)
.

As Ts−1
s LTs = Ts−1

s , then

1
k

( ∑
n∈sN,n>N

αn,k+1en+s−1

s−2∏
l=0

(n + l)
+

∑
n∈sN+s−1, k≤N

αn,k+1en

)
=

ek+s−1
s−2∏
l=0

(k + l)
.

For n = k,we have αk,k+1 = k, hence L is not bounded, and thus Ts < Ωℓs−1. Similarly, we get Ts < Ωr
s−1. □
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This brings us directly to the following issue which remains open.

Question : Is there an infinite-dimensional Banach space X, such that Ωℓn = Ωℓk (resp. Ωr
n = Ω

r
k), for some

k,n ∈N\{0}?

Now, before proceeding with our study, we need to introduce the following subsets, for a given T ∈ B(X)
and n ∈N,

TSℓn =
{
S ∈ B(X) : TnST = Tn

}
and

TSr
n =
{
S ∈ B(X) : TSTn = Tn

}
.

An operator S ∈ TSℓn (resp. TSr
n), will be called a n-left (resp. n-right) pseudo-generalized inverse of T or

more generally, a left (resp. right) pseudo-generalized inverse. Also, for all non-negative integer n, any
operator belonging to TSℓn ∪ TSr

n will be simply called pseudo-generalized inverse.
Clearly, TSℓ0 is the set of right-inverses of T and TSr

0 is the set of left-inverses. Additionally, we have

TSℓ1 =
TSr

1 = {S ∈ B(X) : TST = T}

and for all n ∈N,
TSℓn ⊆

TSℓn+1,
TSr

n ⊆
TSr

n+1.

It is obvious to check that a n-left (resp. n-right) pseudo-generalized inverse is k-left (resp. k-right) pseudo-
generalized inverse, for all k ≥ n, but the converse need not be true in general. In fact, the following example
shows it.

Example 2.4. Let H be a separable Hilbert space with an orthonormal basis (ek)k>0 and N > 4. We define
T ∈ B(H) as follows :

T(ek) =


ek+1 if k ∈ 3N,
ek+1 if k ∈ 3N + 1 , k < N,

0 if not.

We have rank(T2) < +∞, then it is clear that T2
∈ Ωℓ1 (= Ωr

1) and therefore T ∈ Ωℓ2 ∩Ω
r
2.Moreover, we have

T3 = 0. Assume that there exists k < 3 such that TSℓ3 =
TSℓk (resp. TSr

3 =
TSr

2), then necessarily TSℓ3 =
TSℓ2

(resp. TSr
3 =

TSr
2). However, clearly we have 0 ∈

(
TSℓ3\

TSℓ2
)
∩

(
TSr

3\
TSr

2

)
, hence the result. □

Recall that in [6], S. R. Caradus proved that if T is 1-invertible and S0 is a 12-inverse of T, then the subset
{S0+U−S0TUTS0 , U ∈ B(X)} coincides with TSℓ1 (=TSr

1). Note that an operator ofΩℓ1 (= Ωr
1) always admits

a 12-inverse (see [6, Lemma 1, P. 10]). More generally, if S ∈ TSℓn, then clearly

{S +UTn−1
− STUTnS , U ∈ B(X)} ⊆ TSℓn,

and if S ∈ TSr
n, then we have

{S + Tn−1U − STnUTS , U ∈ B(X)} ⊆ TSr
n.

In the next remark, we further explore the nature of these inclusions.

Remark 2.5. Let T ∈ B(X). If T ∈ Ωℓn (resp. Ωr
n) and S ∈ TSℓn (resp. TSℓn),with n ≥ 2, then, in general,

{S +UTn−1
− STUTnS , U ∈ B(X)} , TSℓn (2.1)

and

{S + Tn−1U − STnUTS , U ∈ B(X)} , TSr
n. (2.2)
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Indeed, let X be a Banach space and T ∈ B(X) be a nilpotent operator of degree n ≥ 2. It is clear that

TSℓn =
TSr

n = B(X).

Suppose that for all S ∈ B(X), such that STS = S,we have

{S +UTn−1 , U ∈ B(X)} = B(X).

In particular, let S = 0, then we have

{UTn−1 , U ∈ B(X)} = B(X).

Hence, there exists U ∈ B(X), such that I = UTn−1 and therefore it follows that T = 0,which is a contradiction.
We then get

{UTn−1 , U ∈ B(X)} ⊊ TSℓn.

Similarly, we can see that
{Tn−1U , U ∈ B(X)} ⊊ TSr

n.

Hence the result. □

Based on the above remark, it is natural to ask the following question.

Question : If n ≥ 2, then can we have the equalities (2.1) and (2.2) in Remark 2.5, for a certain S ∈ TSℓn\{0}
(resp. TSr

n\{0})?

The proposition below presents some necessary and sufficient conditions to obtain pseudo-generalized
invertibility.

Proposition 2.6. Let T ∈ B(X) and n ∈N.

1) T ∈ Ωℓn ⇐⇒
(
∃S ∈ B(X) : R(I − ST) ⊆ N(Tn)

)
.

2) T ∈ Ωr
n ⇐⇒

(
∃S ∈ B(X) : R(Tn) ⊆ N(TS − I)

)
.

3) T ∈ Ωℓn ⇐⇒
(
∃S ∈ B(X) : ∀ k ∈N\{0} , (TS − I)(R(Tk)) ⊆ N(Tn−1), if n ≥ 1

)
.

4) T ∈ Ωr
n ⇐⇒

(
∃S ∈ B(X) : ∀ k ∈N\{0} , (ST − I)(R(Tn−1)) ⊆ N(Tk), if n ≥ 1

)
.

Lemma 2.7. Let T ∈ B(X) and n ∈N.

1) If T ∈ Ωℓn and let S ∈ TSℓn, then Tn(ST)k = Tn, for all k ∈N.

2) If T ∈ Ωr
n and let S ∈ TSr

n, then (TS)kTn = Tn, for all k ∈N.

The next proposition aims to extend [10, Proposition 2.4] for semi-generalized partial isometries defined
in the Hilbert space, to pseudo-generalized invertible operators, even in the case of Banach spaces.

Proposition 2.8.
Let T,S ∈ B(X) such that ∥T∥ ∥S∥ < 1 and n ∈N\{0}. The following assertions are equivalent :

(1) TnST = Tn,

(2) TSTn = Tn,

(3) T is a nilpotent operator of degree k ≤ n.



A. Lahmar, H. Skhiri / Filomat 36:8 (2022), 2551–2572 2557

Proof.
”(1) =⇒ (3)” If S = 0, the result is obvious. Now, if S , 0, then since ∥T∥ ∥S∥ < 1, we know that I − ST is
invertible. As TnST = Tn, then

Tn(I − ST) = 0.

Therefore Tn = 0 and T is nilpotent of degree k ≤ n.
”(2) =⇒ (3)” This implication can be proven similarly.
”(3) =⇒ (1)” and ”(3) =⇒ (2)” If T is nilpotent of degree k ≤ n, then Tn = 0 and T ∈ Ωℓn ∩Ωr

n. □

Also, we have the following topological property.

Remark 2.9. For all n ∈N\{0},Ωℓn (resp. Ωr
n) is not an open subset of B(X). Indeed, let k ∈N\{0} and S < Ωℓk,

(resp. Ωr
k). We know that λS < Ωℓk (resp. Ωr

k), for all λ ∈ C∗. We set λn =
1
n . It is clear that lim

n→+∞
λnS = 0.

Since λnS < Ωℓk (resp. Ωr
k), for all k ∈ N\{0} and 0 ∈ Ωℓk ∩Ω

r
k, then B(X)\Ωℓk (resp. B(X)\Ωr

k) is not closed
and therefore Ωℓk (resp. Ωr

k) is not open.
In the same way, we see that Ωℓ (resp. Ωr) is not an open subset of B(X).

Finally, we close this section with the proposition below which generalizes [5, Section 6, P. 25].

Proposition 2.10. Let T,S ∈ B(X) and n ∈N\{0}, then

1) I − TS ∈ Ωℓn ⇐⇒ I − ST ∈ Ωℓn.

2) I − TS ∈ Ωr
n ⇐⇒ I − ST ∈ Ωr

n.

Proof.
1) ” =⇒ ” Let W ∈ I−TSSℓn, then we have

(I − TS)n = (I − TS)nW(I − TS).

Consequently, by setting A = (I − TS)n
− (I − TS)nW(I − TS),we obtain

A =
n∑

k=0

Ck
n(−1)k(TS)k

−

n∑
k=0

Ck
n(−1)k(TS)kW +

n∑
k=0

Ck
n(−1)k(TS)kWTS = 0.

However, if we set B = (I − ST)n(I + SWT)(I − ST), then

B = (I − ST)n +

n∑
k=0

Ck
n(−1)k(ST)kSWT −

n∑
k=0

Ck
n(−1)k(ST)k+1

−

n∑
k=0

Ck
n(−1)k(ST)kSWTST.

Consequently,
B = (I − ST)n + SAT.

Therefore, since A = 0,we deduce that

(I − ST)n(I + SWT)(I − ST) = (I − ST)n.

Hence the result.
”⇐= ” If I−ST ∈ Ωℓn, then by interchanging the roles of T and S in the direct implication, we get I−TS ∈ Ωℓn.
2) Can be obtained in the same way as 1). □
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3. Pseudo-generalized invertible operators with finite ascent or finite descent

In this section, we are interested in the class of pseudo-generalized invertible operators which possess
finite ascent or finite descent. First, recall that for an operator T ∈ B(X), the ascent of T, denoted by a(T), is
the smallest non-negative integer n such that N(Tn) = N(Tn+1). If such an integer does not exist then a(T) = ∞.
The descent of T,denoted by d(T), is the smallest non-negative integer n such that R(Tn) = R(Tn+1). If such an
integer does not exist then d(T) = ∞.Note that if a(T) < +∞ (resp. d(T) < +∞), we have N(Ta(T)) = N(Ta(T)+l)
(resp. R(Td(T)) = R(Td(T)+l)), for all l ∈ N. We refer to [21, 27], for more results on ascent and descent of
bounded operators.

Now, we start our study with the following result which extends [5, Section 6, P. 25] that will be needed
in the sequel.

Lemma 3.1. Let T,S ∈ B(X) and n ∈N\{0}.

1) TnST − Tn
∈ Ωℓ1 if and only if T ∈ Ωℓn.

2) TSTn
− Tn

∈ Ωr
1 if and only if T ∈ Ωr

n.

Proof.

1) If T ∈ Ωℓn, then for all S ∈ TSℓn, we have TnST − Tn = 0 ∈ Ωℓ1. Conversely, if TnST − Tn
∈ Ωℓ1, then there

exists L ∈ B(X), such that
TnST − Tn = (TnST − Tn)L(TnST − Tn).

Consequently,
Tn = TnST − (TnST − Tn)L(TnST − Tn)

= Tn
(
S − (ST − I)L(TnS − Tn−1)

)
T.

2) This assertion can be proven as 1). □

Our first observation is the following proposition concerning pseudo-generalized invertible operators
of finite ascent or finite descent.

Proposition 3.2. Let T ∈ B(X).

1) If T ∈ Ωℓ and a(T) < +∞, then T ∈ Ωℓa(T) and TSℓa(T) =
TSℓn, for all n ≥ a(T).

2) If T ∈ Ωr and d(T) < +∞, then T ∈ Ωr
d and TSr

d(T) =
TSr

n, for all n ≥ d(T).

Proof.

1) Let n ∈ N, such that T ∈ Ωℓn. If n ≤ a(T), the result is obvious. Now, if n > a(T), then for all S ∈ TSℓn, we
have

R(I − ST) ⊆ N(Tn) = N(Ta(T)).

Consequently, we see that T ∈ Ωℓa(T) and TSℓa(T) =
TSℓm, for all m ≥ a(T).

2) Can be proven in the same way as the first assertion. □

As a direct consequence of Proposition 3.2, we obtain the following corollary concerning one-to-one
pseudo-generalized invertible operators.

Corollary 3.3. Let T ∈ B(X) be a one-to-one operator. If T ∈ Ωℓ, then T ∈ Ωℓ0 and for all k ∈N,

S ∈ TSℓk ⇐⇒ S ∈ TSℓ0.
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Similarly, for surjective pseudo-generalized invertible operators we obtain :

Corollary 3.4. Let T ∈ B(X), be a surjective operator. If T ∈ Ωr, then T ∈ Ωr
0 and for all k ∈N

S ∈ TSr
k ⇐⇒ S ∈ TSr

0.

From [21, 29] recall that an operator T ∈ B(X) is said to be Drazin invertible if there exists S ∈ B(X) such
that

TnST = Tn, STS = S and TS = ST. (3.1)

Also, the Drazin invertibility of T is equivalent to the fact a(T) < +∞ and d(T) < +∞. Recall also that the
index of T is defined by

i(T) = inf{n ∈N : TnTDT = Tn
}.

From [18, Theorem 4], we know that
i(T) = a(T) = d(T).

Particularly, if i(T) ≤ 1, then T is called group invertible.
A direct application of Proposition 3.2 to Drazin invertible operators gives the following result.

Corollary 3.5. Let T ∈ B(X) be a Drazin invertible operator, then T ∈ Ωℓi(T) ∩Ω
r
i(T) and we have

TSℓi(T) =
TSℓn and TSr

i(T) =
TSr

n, for any n ≥ i(T).

Particularly, if T is group invertible then every pseudo-generalized inverse of T is a 11-inverse of T.

In the sequel we need the following result due to Grabiner and Zemánek.

Lemma 3.6 ([13, Lemma 1.1]). Let T ∈ B(X) and n ∈N.

1) The following assertions are equivalent :

(i) a(T) ≤ n,
(ii) ∃m ≥ 1 : R(Tn) ∩ N(Tm) = {0},

(iii) R(Tn) ∩ N(Tm) = {0}, ∀m ≥ 1.

2) The following assertions are equivalent :

(i) d(T) ≤ n,
(ii) ∃m ≥ 1 : R(Tn) + N(Tm) = X,

(iii) R(Tn) + N(Tm) = X, ∀m ≥ 1.

We can now state the following proposition concerning the relationship between 1-invertibility and
pseudo-generalized invertibility.

Proposition 3.7. Let T ∈ B(X).

1) If T ∈ Ωℓ and dim
(
R(T) ∩ N(T)

)
< +∞, then T ∈ Ωℓ1. In particular, if R(T) ∩ N(T) = {0}, then T ∈ Ωℓa(T),

a(T) ≤ 1 and
TSℓa(T) =

TSℓk, ∀k ≥ a(T).

2) If T ∈ Ωr and codim
(
R(T) + N(T)

)
< +∞, then T ∈ Ωr

1. In particular, if R(T) + N(T) = X, then d(T) ≤ 1 and
we have

TSr
d(T) =

TSr
k, ∀k ≥ d(T).
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Proof.
1) First, if T ∈ Ωℓ1, then the result is obvious. Now, if T ∈ Ωℓn, where n ∈ N\{0, 1}, then there exists an
operator S ∈ B(X) such that Tn = TnST.We see that

R(Tn−1
− Tn−1ST) ⊆ R(T) ∩ N(T).

Using the fact that dim
(
R(T) ∩ N(T)

)
< +∞, we deduce that Tn−1

− Tn−1ST ∈ Ωℓ1. So by Lemma 3.1, we see
that T ∈ Ωℓn−1.
If n − 1 > 1,we can similarly see that T ∈ Ωℓn−2. Thus we finally obtain T ∈ Ωℓ1.
In particular, if R(T)∩N(T) = {0}, then by Lemma 3.6, we have a(T) ≤ 1 and hence the Proposition 3.2 allows
us to conclude.
2) Using arguments similar to 1) we can show this assertion. □

From the previous results we then have the following.

Remark 3.8. Let T ∈ B(X) such that T ∈ Ωℓ. It is clear that T is one-to-one if and only if a(T) = 0. Hence,
from Corollary 3.3, we get

a(T) = 0⇐⇒ T ∈ Ωℓ0.

Therefore, Lemma 3.6 and Proposition 3.7, show that if a(T) ≤ 1, then

a(T) = 1⇐⇒ T ∈ Ωℓ1\Ω
ℓ
0 ⇐⇒ T ∈ Ωℓ\Ωℓ0.

Similarly, for right pseudo-generalized invertible operators, we have :

Remark 3.9. Let T ∈ B(X) such that T ∈ Ωr. It is clear that T is onto if and only if d(T) = 0. By Corollary 3.4,
we can see

d(T) = 0⇐⇒ T ∈ Ωr
0.

Therefore, Lemma 3.6 and and Proposition 3.7 show that if d(T) ≤ 1, then

d(T) = 1⇐⇒ T ∈ Ωr
1\Ω

r
0 ⇐⇒ T ∈ Ωr

\Ωr
0.

We conclude this section with the following corollary which is simple to verify.

Corollary 3.10. Let T ∈ B(X).

1) If T ∈ Ωℓ such N(T) is complemented and X1 a topological complement of N(T) such that R(T) ⊆ X1, then
a(T) ≤ 1, T ∈ Ωa(T) and

TSℓa(T) =
TSℓk, ∀k ≥ a(T).

2) If T ∈ Ωr such that R(T) is complemented and X2 a topological complement of R(T) such that X2 ⊆ N(T), then
d(T) ≤ 1, T ∈ Ωr

d(T) and
TSr

d(T) =
TSr

k, ∀k ≥ d(T).

4. Semi-Fredholm and pseudo-generalized invertibility

In this section, we are interested in studying operators both semi-Fredholm and pseudo-generalized
invertible. Recall that an operator T ∈ B(X) is said to be left semi-Fredholm if T is of closed range and
α(T) < +∞, where α(T) denotes the dimension of N(T), and we call T right semi-Fredholm if β(T) < +∞,
where β(T) denotes the codimension of R(T). An operator is called semi-fredholm if it is left or right semi-
Fredholm. Notice that if β(T) < +∞, then R(T) must be closed [1, Corollary 1.15]. For more strong results
about semi-Fredholm operators one can see [1, 11, 21].

Clearly, from Proposition 3.7 all left (resp. right) semi-Fredholm operators belonging to Ωℓ (resp. Ωr)
are 1-invertible. More precisely we have
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Proposition 4.1. Let T ∈ B(X).

1) If T ∈ Ωℓ and α(T) < +∞, then T ∈ Ωℓ1 and so T is left semi-Fredholm.

2) If T ∈ Ωr and T is right semi-Fredholm, then T ∈ Ωr
1.

Recall the following result which will be used to prove Theorem 4.3.

Lemma 4.2 ([28, Lemma 3.4]). Let T ∈ B(X).

1) If α(T) < +∞, then α(Tn) < nα(T), for all n ≥ 1.

2) If β(T) < +∞, then β(Tn) < nβ(T), for all n ≥ 1.

We can now state some of the main results concerning operators both semi-Fredholm and pseudo-
generalized invertible.

Theorem 4.3. Let k ∈N\{0} and T ∈ B(X).
1) If T ∈ Ωℓ and α(T) < +∞.

i) For all S ∈ TSℓk, there exists an operator F ∈ B(X), such that rank(F) < kα(T) and T = TST + F.

ii) For all S ∈ TSℓk, there exists L ∈ TSℓk, such that T = TLT+TP,where P ∈ B(X) is a projection of range R(I−ST).

2) If T ∈ Ωr and β(T) < +∞.

i) For all S ∈ TSr
k, there exists an operator F ∈ B(X), such that rank(F) < kβ(T) and T = TST + F.

ii) For all S ∈ TSr
k, there exists L ∈ TSr

k, such that T = TLT + PT, where P ∈ B(X) is a projection of kernel
N(P) = N(I − TS).

Proof.
1) If T ∈ Ωℓ and α(T) < +∞, then T ∈ Ωℓ1 (see Proposition 4.1). Moreover, by Lemma 4.2, we have
α(Tk) < kα(T) < +∞. Let S ∈ TSℓk.

i) If we set F = T − TST and since R(I − ST) ⊆ N(Tk), then

rank(F) ≤ rank(I − ST) ≤ α(Tk) < kα(T).

ii) Since rank(ST − I) < +∞, then ST − I ∈ Ωℓ1 (see [5, Theorem 3.1] or [14, Theorem 6.2.6, Theorem 6.8.5]).
Let L0 be a 11-inverse of ST − I, then

(ST − I)L0(ST − I) = ST − I.

Hence,
I = ST − (ST − I)L0(ST − I)
= ST − STL0ST + STL0 + L0ST − L0
= (S − STL0S + L0S)T + (ST − I)L0.

Now, we set L = S − STL0S + L0S and P = (ST − I)L0. So

T = TLT + TP.

Moreover, we know that P is a projection of range R(ST − I). This implies that TkP = 0 and therefore

Tk = TkLT + TkP = TkLT.

Consequently, L ∈ TSℓk. Hence the result follows.
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2) Can be proven in the same way. □

Theorem 4.4. Let n ∈N\{0}, k ∈ {0, · · · ,n − 1}, T ∈ Ωℓ such that α(T) < +∞ and S ∈ TSℓn.

1) There exists F ∈ B(X), such that rank(F) < kα(T) and

Tn−k = Tn−kST + F.

2) There exists L ∈ TSℓn, such that Tn−k = Tn−kLT + PTn−k, where P ∈ B(X), is a projection of range R(P) =
R(Tn−kST − Tn−k).

Proof.
If T ∈ Ωℓ and α(T) < +∞, then T ∈ Ωℓ1 (see Proposition 4.1). Moreover, by Lemma 4.2, we have α(Tk) <
kα(T) < +∞.
1) Since R(Tn−k

−Tn−kST) ⊆ N(Tk), then rank(Tn−k
−Tn−kST) ≤ α(Tk) < kα(T) and by setting F = Tn−k

−Tn−kST,
we obtain

Tn−k = Tn−kST + F.

2) As rank(Tn−k
− Tn−kST) < +∞, then by [5, Theorem 3.1] (see also [14, Theorem 6.2.6, Theorem 6.8.5]), we

have Tn−k
− Tn−kST ∈ Ωℓ1. Let L0 ∈ B(X) be a 11-inverse of Tn−kST − Tn−k. So,

(Tn−kST − Tn−k)L0(Tn−kST − Tn−k) = Tn−kST − Tn−k.

Hence,
Tn−k = Tn−kST − (Tn−kST − Tn−k)L0(Tn−kST − Tn−k).

If we set P = (Tn−kST − Tn−k)L0 and L = S + L0Tn−kS − STL0Tn−kS, then

Tn−k = Tn−k(S + L0Tn−kS − STL0Tn−kS)T + (Tn−kST − Tn−k)L0Tn−k

= Tn−kLT + PTn−k.

Clearly, TkP = 0, and so L ∈ TSℓn. Since L0 is a 11-inverse of Tn−kST − Tn−k, then P is a projection of range
R(P) = R(Tn−kST − Tn−k). □

Finally, by a similar argument to the one in the proof of Theorem 4.4, we obtain :

Theorem 4.5. Let n ∈N\{0}, k ∈ {0, · · · ,n − 1}, T ∈ Ωr such that β(T) < +∞ and S ∈ TSr
n.

1) There exists F ∈ B(X), such that rank(F) < kβ(T) and

Tn−k = TSTn−k + F.

2) There exists L ∈ TSr
n, such that Tn−k = TLTn−k + Tn−kP, where P ∈ B(X) is a projection of kernel N(P) =

N(TSTn−k
− Tn−k).

5. Pseudo-generalized invertible operators with finite essential ascent or finite essential descent

This section aims to present some results for pseudo-generalized invertible operators having finite
essential ascent or finite essential descent. Note that operators with finite essential ascent or descent were
first studied in 1974 by S. Grabiner [12]. Recall that T ∈ B(X) is said to be of finite essential ascent if there
exists n ∈ N, such that dim

(
N(Tn+1)/N(Tn)

)
< +∞. In this case the essential ascent of T denoted by ae(T) is

defined by
ae(T) = inf{n ∈N : dim

(
N(Tn+1)/N(Tn)

)
< +∞}.
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Similarly, if there exists n ∈ N such that dim
(
R(Tn)/R(Tn+1)

)
< +∞, we say that T is of finite essential

descent. In this case the essential descent of T denoted by de(T) is defined by

de(T) = inf{n ∈N : dim
(
R(Tn)/R(Tn+1)

)
< +∞}.

Notice that ae(T) = 0 if and only if α(T) < +∞ and de(T) = 0 if and only if β(T) < +∞. We refer to
[12, 13, 19, 21], for more results on essential ascent and essential descent of bounded operators. Let us also
mention the lemma below, which is needed in the following.

Lemma 5.1. [13, Lemma 5.1] Let T ∈ B(X) and n ∈N.

1) The following assertions are equivalent :

(i) dim
(
N(Tn+1)/N(Tn)

)
< +∞,

(ii) ∃m ≥ 1 : dim
(
R(Tn) ∩ N(Tm)

)
< +∞,

(iii) dim
(
R(Tn) ∩ N(Tm)

)
< +∞, ∀m ≥ 1.

2) The following assertions are equivalent :

(i) dim
(
R(Tn)/R(Tn+1

)
< +∞,

(ii) ∃m ≥ 1 : codim
(
N(Tn) + R(Tm)

)
< +∞,

(iii) codim
(
N(Tn) + R(Tm)

)
< +∞, ∀m ≥ 1.

The next lemma will be used to prove Theorem 5.3.

Lemma 5.2. Let n ≥ 2, k ∈ {1, · · · ,n − 1} and T ∈ B(X).

1) If T ∈ Ωℓn and dim
(
N(Tk) ∩ R(Tn−k)

)
< +∞, then T ∈ Ωℓn−k.

2) If T ∈ Ωr
n and codim

(
R(Tk) + N(Tn−k)

)
< +∞, then T ∈ Ωr

n−k.

Proof.
1) Let S ∈ TSℓn. Since

R(Tn−kST − Tn−k) ⊆ N(Tk)

and
R(Tn−kST − Tn−k) ⊆ R(Tn−k),

it follows that
R(Tn−kST − Tn−k) ⊆ R(Tn−k) ∩ N(Tk).

Consequently, by hypothesis we see that rank(Tn−kST − Tn−k) < +∞ and from [14, Theorem 6.3.4], we get

Tn−kST − Tn−k
∈ Ωℓ1.

Finally, by Lemma 3.1, we conclude that T ∈ Ωℓn−k.
2) Can be seen in the same way. □

The main result of this section is the following theorem.

Theorem 5.3. Let T ∈ B(X).

1) If T ∈ Ωℓ and 1 ≤ ae(T) < +∞, then T ∈ Ωℓae(T).
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2) If T ∈ Ωr and 1 ≤ de(T) < +∞, then T ∈ Ωr
de(T).

Proof.

1) Let n ∈ N, such that T ∈ Ωℓn. If n ≤ ae(T), the result is obvious. Suppose that n > ae(T), then n ≥ 2
and there exists k ∈ {1, · · · , n − 1}, such that ae(T) = n − k. Consequently, by Lemma 5.1, we have
dim
(
R(Tn−k) ∩ N(Tk)

)
< +∞ and finally Lemma 5.2 can be applied to conclude the result.

2) Let n ∈ N, such that T ∈ Ωr
n. If n ≤ de(T), the assertion is obvious. Suppose that n > de(T), then

n ≥ 2 and there exists k ∈ {1, · · · , n − 1}, such that de(T) = n − k. Therefore, by Lemma 5.1, we have
codim

(
N(Tn−k) + R(Tk)

)
< +∞ and finally we can conclude the result by using Lemma 5.2. □

Clearly, if T ∈ B(X) is of finite ascent, then ae(T) ≤ a(T). Similarly, if T is of finite descent, then
de(T) ≤ d(T). Hence, we deduce the following result.

Corollary 5.4. Let T ∈ B(X).

1) If T ∈ Ωℓ of finite ascent and ae(T) ≥ 1, then T ∈ Ωℓae(T).

2) If T ∈ Ωr of finite descent and de(T) ≥ 1, then T ∈ Ωr
de(T).

Also, as a consequence of Theorem 5.3, we have the following result.

Corollary 5.5. Let T ∈ B(X). If T ∈ Ωℓ and α(T) is infinite and there exists p,m ≥ 1 such that dim
(
R(Tp) ∩

N(Tm)
)
< +∞, then 1 ≤ ae(T) < +∞ and T ∈ Ωℓae(T).

In particular, if R(Tp) ∩ N(Tm) = {0}, we have a(T) ≤ p, T ∈ Ωℓa(T) and

TSℓa(T) =
TSℓp =

TSℓk, ∀k ≥ a(T).

Proof.
By Lemma 5.1, it is clear that ae(T) < +∞. Also, since α(T) is infinite, then we deduce that 1 ≤ ae(T) < +∞.
Consequently, the result follows from Theorem 5.3.
Now, if R(Tp) ∩ N(Tm) = {0}, then by Lemma 3.6, we have a(T) ≤ p. Hence, we deduce the result from
Proposition 3.2. This completes the proof. □

In the same way, we obtain :

Corollary 5.6. Let T ∈ B(X). If T ∈ Ωr and β(T) is infinite and there exists p,m ≥ 1 such that codim
(
N(Tp) +

R(Tm)
)
< +∞, then 1 ≤ de(T) < +∞ and T ∈ Ωr

de(T).
In particular, if N(Tp) + R(Tm) = X, we have d(T) ≤ p, T ∈ Ωr

d(T) and

TSr
d(T) =

TSr
p =

TSr
k, ∀k ≥ a(T).

Corollary 5.7. Let T ∈ B(X).

1) If T ∈ Ωℓ and there exist p, m ≥ 1 such that N(Tm) is complemented and there exists Xm ⊆ X, a topological
complement of N(Tm) such that R(Tp) ⊆ Xm, then a(T) ≤ p, T ∈ Ωℓa(T) and

TSℓa(T) =
TSℓp =

TSℓk, ∀k ≥ a(T).

2) If T ∈ Ωr and there exist p, m ≥ 1 such that R(Tm) is complemented and there exists Xm ⊆ X, a topological
complement R(Tm) such that Xm ⊆ N(Tp), then d(T) ≤ p, T ∈ Ωr

d(T) and

TSr
d(T) =

TSr
p =

TSr
k, ∀k ≥ d(T).
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Proof.

1) This result is a simple consequence of Corollary 5.5, it suffices to see that the fact R(Tp) ⊆ Xm implies that
N(Tm) ∩ R(Tp) = {0}.

2) Since Xm ⊆ N(Tp), then R(Tm) + N(Tp) = X, so the result follows directly from Corollary 5.6. □

However, the following question remains open.

Question :

1) If T ∈ Ωℓ and ae(T) < +∞, as in the case of finite ascent, we don’t know if

TSℓae(T) =
TSℓk, ∀k ≥ ae(T) ?

2) If T ∈ Ωr and de(T) < +∞, as in the case of finite descent, we don’t know if

TSℓde(T) =
TSℓk, ∀k ≥ de(T) ?

6. Pseudo-generalized invertible operator : topological complements of the kernel and image

First, we recall that an operator in B(X) is 1-invertible if and only if its range and kernel are comple-
mented. In fact, if S is a 11-inverse of T, then we have

X = R(T) ∔ N(TS) and X = N(T) ∔ R(ST),

where the symbol ∔ denotes the topological direct sum. Particularly, we obtain R(S) = R(ST) and N(S) =
N(TS), if S is a 12-inverse [5]. On the contrary, the closure of R(T) is not always guaranteed for pseudo-
generalized invertible operators. For example, from Remark 2.3 and Example 2.2, we have Rs,Ts ∈ Ω

ℓ
s ∩Ω

r
s,

for s ≥ 2, while their ranges R(Rs) and R(Ts) are not closed because, as we know, the range of compact
operators of infinite rank is not closed. In this section, we discuss various special cases when this fact
remains valid for pseudo-generalized operators and their powers.

First we present in the following result some sufficient conditions under which the range of left pseudo-
generalized invertible operators remains closed.

Proposition 6.1. Let T ∈ B(X) and n ∈ N\{0}. If T ∈ Ωℓn and N(Tk) ⊆ R(T), for some k ≥ n − 1, then R(T) is
closed.

Proof.
Let S ∈ TSℓn and (xi)i∈N be a sequence of X such that

lim
i→+∞

Txi = y,

then we have
lim

i→+∞
Tnxi = lim

i→+∞
TnSTxi = Tn−1y = TnSy.

Consequently, we obtain
y − TSy ∈ N(Tn−1).

Now, as N(Tn−1) ⊆ N(Tk) ⊆ R(T), then we deduce that y ∈ R(T) and therefore R(T) is closed. □

For the powers of right pseudo-generalized invertible operators, we state the following results.

Proposition 6.2. Let T ∈ B(X) and n ∈N\{0}. If T ∈ Ωr
n and there exists S ∈ TSr

n\{0}, such that R(STn) is closed,
then R(Tn) is closed.
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Proof.
Let S ∈ TSr

n and (xi)i∈N be a sequence of X such that

lim
i→+∞

Tnxi = y,

then we have
lim

i→+∞
STnxi = Sy.

Now, since R(STn) is closed, then there exists z ∈ X such that Sy = STnz. Therefore, we obtain

lim
i→+∞

Tnxi = lim
i→+∞

TSTnxi = TSTnz = Tnz,

hence the result. □

Corollary 6.3. Let T ∈ B(X) and n ∈ N\{0}. If T ∈ Ωr
n and there exists S ∈ TSr

n\{0}, k ∈ N\{0}, such that
R((ST)k) ⊆ R(STn), then R(Tn) is closed.

Proof.
It is clear that STn = STSTn and hence R(STn) ⊆ N(I − ST). Conversely, let x ∈ N(I − ST), then

x = STx = (ST)kx ∈ R(STn)

and therefore R(STn) = N(I−ST),which implies that R(STn) is closed. Finally, by Proposition 6.2, we deduce
that R(Tn) is closed. □

Proposition 6.4. Let T ∈ Ωr. If there exists a non-zero operator S ∈ TSr
n, for some n ∈ N\{0}, such that X =

R(Tn) + N(S), then R(Tn) is complemented, S = STS and

X = R(Tn) ∔ N(S).

Proof.
Let n ∈N\{0}, such that T ∈ Ωr

n. Clearly, STn = STSTn and consequently

X = R(Tn) + N(S) ⊆ N(S − STS).

Hence, STS = S and so TS is a projection of kernel N(S). This implies that

R(Tn) ⊆ N(I − TS) = R(TS).

Conversely, let x ∈ R(TS), then by hypothesis, there exists x1 ∈ R(Tn), such that x − x1 ∈ N(S). Therefore

x − x1 ∈ R(TS) ∩ N(S) = {0}.

Consequently,
x = x1 ∈ R(Tn).

The proof is therefore complete. □

Recall that the reduced minimum modulus of the operator T ∈ B(X), denoted by γ(T), is defined to be

γ(T) = inf
{ ∥T(x)∥
dist(x,N(T))

: x < N(T)
}
. (6.1)

We see also

γ(T) = sup
{
a ≥ 0 : ∥T(x)∥ ≥ a dist(x,N(T))

}
(6.2)
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and

γ(T) = inf
{
∥T(x)∥, x ∈ X,dist(x,N(T)) = 1

}
. (6.3)

For more details about the reduced minimum modulus see [11, 16, 17, 21].
It is well-know that for all T ∈ B(X),

γ(T) > 0⇐⇒ R(T) is closed.

In the remainder of this section, we discuss the relationship between the notion of n-left pseudo-
generalized invertibility of an operator T and the complementarity of the subspace N(Tn).

Proposition 6.5. Let T ∈ B(X) and n ∈ N\{0}. If T ∈ Ωℓn and there exists a non-zero operator S ∈ TSℓn, such that
N(Tn) = N(ST), then N(Tn) is complemented and

X = N(Tn) ∔ R(ST).

Proof.
First, since N(ST) = N(Tn), then

γ(ST) = inf
{
∥STx∥, x ∈ X, dist

(
x,N(ST)

)
= 1
}

= inf
{
∥STx∥, x ∈ X, dist

(
x,N(Tn)

)
= 1
}
.

Now, since R(I − ST) ⊆ N(Tn),we deduce that

dist(x,N(Tn)) ≤ ∥x − (x − STx)∥ ≤ ∥STx∥, ∀x ∈ X.

Hence, for all x ∈ X such that dist
(
x,N(ST)

)
= 1,we have ∥STx∥ ≥ 1 and therefore,

γ(ST) = inf
{
∥STx∥, x ∈ X, dist

(
x,N(Tn)

)
= 1
}
≥ ∥STx∥ ≥ 1.

From [21, Theorem 2, P. 93], we conclude that R(ST) is closed. Now, let x ∈ N(ST)∩R(ST), then there exists
y ∈ X, such that x = STy. Since N(Tn) = N(ST), it follows that

0 = Tnx = Tny.

Now, as y ∈ N(Tn), then y ∈ N(ST) and x = STy = 0.Moreover, for all x ∈ X, we have x = (I − ST)x + STx.
Finally, since (I − ST)x ∈ N(Tn) = N(ST),we deduce that

X = N(ST) ∔ R(ST).

This completes the proof. □

As a consequence we obtain the following corollary.

Corollary 6.6. Let T ∈ Ωℓ. If there exists a non-zero operator S ∈ TSℓn, for some n ∈N\{0}, such that N(Tn)∩R(S) =
{0}, then N(Tn) is complemented, S = STS and

X = N(Tn) ∔ R(S).

Proof.
Since TnST = Tn, then clearly N(ST) ⊆ N(Tn). Now, let x ∈ N(Tn), then we have STx ∈ N(Tn) ∩ R(ST) = {0}
and therefore x ∈ N(ST) and N(Tn) = N(ST). Consequently, by Proposition 6.5, we obtain

X = N(Tn) ∔ R(ST).
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Now, since TnS = TnSTS, it follows that

R(S − STS) ⊆ N(Tn) ∩ R(S) = {0}.

Hence, STS = S, and this implies that ST is a projection of range R(S). Consequently,

X = N(Tn) ∔ R(S),

which completes the proof. □

By combining [5, Theorem 3.1], Proposition 6.4 and Corollary 6.6, we have the following result :

Corollary 6.7. Let n ∈ N\{0} and T ∈ B(X). If T ∈ Ωℓn ∩Ωr
n and there exists a non-zero operator S ∈ TSℓn ∩ TSr

n,
such that

(1) R(Tn) + N(S) = X,

(2) N(Tn) ∩ R(S) = {0},

then Tn
∈ Ωℓ1 (= Ωr

1).

Motivated by the last results, it is natural to ask the following question.

Question :

1) If T ∈ Ωℓn ∪Ωr
n,with n ≥ 2, can we find m ∈N\{0} such that R(Tm) is closed ?

2) If T ∈ Ωℓn ∪Ωr
n,with n ≥ 2, can we find m ∈N\{0} such that N(Tm) is complemented ?

7. Pseudo-generalized invertibility

In this section, some special cases giving pseudo-generalized invertibility are discussed.
We start with the following result.

Proposition 7.1. Let n ∈ N\{0} and T ∈ B(X). If there exists S ∈ B(X), such that I − ST ∈ Ωℓ1 and U ∈ B(X),
with UTn

∈
I−STSℓ1, then T ∈ Ωℓn.

Proof.
As UTn

∈
I−STSℓ1, then we have

I − ST = (I − ST)UTn(I − ST). (∗)

Hence, by multiplying the equation (∗) from the left-hand side by Tn,we obtain

Tn
− TnST = Tn(I − ST)UTn(I − ST).

Consequently,
Tn
− TnST = (Tn

− TnST)U(Tn
− TnST).

This proves that Tn
− TnST ∈ Ωℓ1 and by Lemma 3.1, we see that T ∈ Ωℓn. □

A similar argument can be used to show the next proposition.

Proposition 7.2. Let n ∈ N\{0} and T ∈ B(X). If there exists S ∈ B(X), such that I − TS ∈ Ωr
1 and U ∈ B(X),

with TnU ∈ I−TSSr
1, then T ∈ Ωr

n.

Lemma 7.3. Let n, k ∈N\{0} and T ∈ B(X).

1) If there exists S ∈ B(X), such that Tk
− TkST ∈ Ωℓn and TkS = STk, then T ∈ Ωℓnk.



A. Lahmar, H. Skhiri / Filomat 36:8 (2022), 2551–2572 2569

2) If there exists S ∈ B(X), such that Tk
− TSTk

∈ Ωr
n and TkS = STk, then T ∈ Ωr

nk.

Proof.
1) Let us first prove by induction that, for all n ∈N\{0}, there exists Un ∈ B(X) such that

(Tk
− TkST)n = Tnk + TnkUnT.

• For n = 1.We can take U1 = −S.
• Pour n = 2.We see that

(Tk
− TkST)2 = T2k

− T2kST − TkSTk+1 + TkSTk+1ST
= T2k

− T2kST − T2kST + T2k(ST)2

= T2k
− T2k(2S − STS)T.

Hence the first point is established.
• Now, assume that for n ≥ 2, there exists Un ∈ B(X), such that

(Tk
− TkST)n = Tnk + TnkUnT.

Our goal is to prove that there exists Un+1 ∈ B(X), such that

(Tk
− TkST)n+1 = T(n+1)k + T(n+1)kUn+1T.

First, we see that

(Tk
− TkST)n+1 = (Tk

− TkST)(Tk
− TkST)n

= (Tk
− TkST)(Tnk + TnkUnT)

= T(n+1)k + T(n+1)kUnT − TkSTnk+1
− TkSTnk+1UnT.

Now, as TnkS = STnk, then

(Tk
− TkST)n+1 = T(n+1)k + T(n+1)kUnT − T(n+1)kST − T(n+1)kSTUnT

= T(n+1)k + T(n+1)k(Un − S − STUn)T,

and by setting Un+1 = Un − S − STUn we obtain the desired result.
Now, let U ∈ B(X), such that

(Tk
− TkST)n = (Tk

− TkST)nU(Tk
− TkST).

From the above, it can be seen that there exists Un ∈ B(X),which satisfies

(Tk
− TkST)n = Tnk + TnkUnT.

As a result, we get
Tnk = −TnkUnT + (Tnk + TnkUnT)U(Tk

− TkST)
= Tnk

(
−Un + (I +UnT)U(Tk−1

− TkS)
)
T.

Consequently, T ∈ Ωℓnk.
2) This assertion can be proved in the same way as 1). □

Proposition 7.4. Let n, k ∈ N\{0} and T ∈ B(X). If there exist S, U ∈ B(X), such that I − ST ∈ Ωℓn, TkS = STk

and UTk
∈

I−STSℓn, then T ∈ Ωℓnk.
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Proof.
Since TkS = STk, then it is clear that

(Tk
− TkST)n = Tnk(I − ST)n

= Tnk(I − ST)nUTk(I − ST)
= (Tk

− TkST)nU(Tk
− TkST).

Therefore, by Lemma 7.3, we deduce the result. □

As in Proposition 7.4, we can obtain :

Proposition 7.5. Let n, k ∈ N\{0} and T ∈ B(X). If there exists S, U ∈ B(X), such that I − TS ∈ Ωr
n, TkS = STk

and TkU ∈ I−STSr
n, then T ∈ Ωr

nk.

Motivated by the last results, it is natural to ask the following question.

Question :

1) Let n ∈ N\{0}, T ∈ B(X) and k ∈ {1, · · · ,n − 1}. Suppose there exists S, U ∈ B(X), such that I − ST ∈ Ωℓk
and UTn

∈
I−STSℓk. Can we prove that T ∈ Ωℓn?

2) Let n ∈ N\{0}, T ∈ B(X) and k ∈ {1, · · · ,n − 1}. Suppose there exist S, U ∈ B(X), such that I − TS ∈ Ωr
k

and TnU ∈ I−TSSr
k. Can we prove that T ∈ Ωr

n?

8. Some applications to the 1-invertibility

In this last section, we prove some cases in which the pseudo-generalized invertibility allows us to
obtain the 1-invertibility. In the following, for T ∈ B(X) and M ⊆ X, we denote by T|M the restriction of T
from M onto M.

Let us start with the following result.

Proposition 8.1. Let T ∈ B(X), such that N(T) be a complemented subspace of X and let X1 be a topological
complement of N(T). If T(X1) ⊆ X1 and there exists n ∈N, such that T1 = T|X1 is n-left pseudo-generalized invertible,
then T ∈ Ωℓ1.

Proof.
It is clear that T1 is one-to-one. Now, since T1 is n-left pseudo-generalized invertible operator, then T1
is left-invertible and so R(T1) = R(T) is complemented in X1. Therefore R(T) is complemented in X and
T ∈ Ωℓ1. □

Proposition 8.2. Let T ∈ B(X), such that R(T) is complemented in X and let X2 be a topological complement of
R(T). If X2 ⊆ N(T) and there exists n ∈ N, such that T2 = T|R(T) is n-right pseudo-generalized invertible, then
T ∈ Ωr

1.

Proof.
First, as X2 ⊆ N(T),we have

R(T) = T(X) = T(R(T) ∔ X2) = T(R(T)) = T2(R(T)),

and so, T2 is onto. Now, since T2 is n-right pseudo-generalized invertible operator then T2 is 1-invertible.
Hence, there exists a subspace X1 ⊆ X, such that

R(T) = N(T2) ∔ X1.

Now, it is clear that
N(T2) = N(T) ∩ R(T)
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and
N(T) = (N(T) ∩ R(T)) ∔ (X2 ∩ N(T)).

As X2 ⊆ N(T), then
N(T) = N(T) ∩ R(T) ∔ X2

and consequently

X = R(T) ∔ X2 = N(T2) ∔ X1 ∔ X2 = (N(T) ∩ R(T)) ∔ X1 ∔ X2 = N(T) ∔ X1.

Therefore N(T) is complemented in X and T ∈ Ωr
1. □

Proposition 8.3. Let T ∈ B(X) and n ∈ N. If T ∈ Ωℓn and there exists S ∈ TSℓn such that R(I − ST) ⊆ N(I − T),
then T ∈ Ωℓ0 and S ∈ TSℓ0.

Proof.
If n = 0, the result follows from Corollary 3.3.
Now, if n ∈N\{0}. Suppose that there exists S ∈ TSℓn, such that R(I − ST) ⊆ N(I − T), then

(I − T)(I − ST) = 0.

Therefore,
T = I − ST + TST.

So,
Tn = Tn−1

− Tn−1ST + TnST
= Tn−1

− Tn−1ST + Tn.

This implies that,
Tn−1 = Tn−1ST.

Consequently, S ∈ TSℓn−1 and T ∈ Ωℓn−1. By repeating the same process n − 1 times, we obtain T ∈ Ωℓ0 and
S ∈ TSℓ0. □

Similarly, we can show the final proposition.

Proposition 8.4. Let T ∈ B(X) and n ∈N\{0}. If T ∈ Ωr
n and there exists S ∈ TSr

n such that R(I − T) ⊆ N(I − TS),
then T ∈ Ωr

0 and S ∈ TSr
0.
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[26] I. Stanimirović, Computation of Generalized Matrix Inverses and Applications, Apple Academic Press, 2017.
[27] A. E. Taylor, Introduction to functional analysis, John Wiley & Sons Inc., New York, 1958.
[28] A. E. Taylor, Theorems on Ascent, Descent, Nullity and Defect of Linear Operators, Math. Ann. 163 (1966), 18–49.
[29] G. Wang, Y. Wei, S. Qiao, Generalized Inverses: Theory and Computations, Science Press, New York, 2018.
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