

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Bilateral Upper-Left Shifts on Double Sequence Spaces

Zhitao Guo^a

^aSchool of Science, Henan Institute of Technology, Xinxiang, 453003, China

Abstract. In this paper, we study the bilateral upper-left shifts \mathcal{B} on the weighted double sequence spaces $\mathcal{L}^p(\mathbb{Z},v)$ and characterize the hypercyclicity and supercyclicity of $\mathcal{B}:\mathcal{L}^p(\mathbb{Z},v)\to\mathcal{L}^p(\mathbb{Z},v)$ based on Salas's previous results about the bilateral weighted backward shifts acting on $l^2(\mathbb{Z})$. Furthermore, we construct a special weight sequence such that \mathcal{B} and the weighted bilateral upper-left shifts \mathcal{B}_w are conjugate, and we generalize the results to $\mathcal{B}_w:\mathcal{L}^p(\mathbb{Z})\to\mathcal{L}^p(\mathbb{Z})$ via this conjugacy. Finally, we investigate the chaoticity of the bilateral upper-left shifts.

1. Introduction

Let \mathbb{N} , \mathbb{Z} be the sets of nonnegative integers, all integers, respectively. Let X be an infinite-dimensional separable Banach space and \mathbb{C} the complex plane. We denote by $\mathfrak{L}(X)$ the set of all continuous linear operators on X. The operator $T \in \mathfrak{L}(X)$ is said to be hypercyclic if there is some vector $x \in X$ such that the orbit $Orb(x,T) = \{T^nx; n \in \mathbb{N}\}$ is dense in X. Such a vector x is said to be hypercyclic for T, and the set of all hypercyclic vectors for T is denoted by HC(T). A vector $x \in X$ is called supercyclic for T if its projective orbit $\mathbb{K} \cdot Orb(x,T) := \{\lambda T^n(x); n \in \mathbb{N}, \lambda \in \mathbb{K}\}$ is dense in X, and the set of all supercyclic vectors for T is denoted by SC(T). It is well known that HC(T) and SC(T) are dense in X. A periodic point for T is a vector $x \in X$ such that $T^nx = x$ for some $n \in \mathbb{N}$. T is said to be chaotic in the sense of Devaney if T is hypercyclic and there exists a dense set of periodic points for T. For more details in this direction, see for instance the excellent books [3] and [6].

The classical examples of hypercyclic operator are Birkhoff's translation operator acting on the space $H(\mathbb{C})$ of entire functions [4], MacLane's differentiation operator on $H(\mathbb{C})$ [8]. The first example of a hypercyclic backward weighted shift was produced by Rolewicz [10]: on the space $X = l^p$, $1 \le p < \infty$, or $X = c_0$, the multiple of the backward shift λB is hypercyclic whenever $|\lambda| > 1$, where B is the (unilateral) backward shift

$$B(x_0, x_1, x_2, \cdots) = (x_1, x_2, x_3, \cdots).$$

In the present paper, we study the bilateral shifts on the double sequence spaces $\mathcal{L}^p(\mathbb{Z})$, which was introduced by Başar and Sever [2]. Let Ω be the set of all real or complex valued double sequences, $\mathcal{L}^p(\mathbb{Z})$

2020 Mathematics Subject Classification. Primary 47A16; Secondary 47B37

Keywords. Upper-Left shifts; Double sequence spaces; Hypercyclicity; Supercyclicity; Devaney chaos.

Received: 08 July 2021; Revised: 01 August 2021; Accepted: 07 August 2021

Communicated by Eberhard Malkowsky

Research supported by the National Natural Science Foundation of China (No. 12101188).

Email address: guotao60698@163.com (Zhitao Guo)

is defined as

$$\mathcal{L}^p(\mathbb{Z}) := \left\{ x = (x_{i,j})_{i,j \in \mathbb{Z}} \in \Omega; \sum_{i,j \in \mathbb{Z}} |x_{i,j}|^p < \infty \right\}, \quad 1 \le p < \infty,$$

normed by

$$||x|| = \left(\sum_{i,j\in\mathbb{Z}} |x_{i,j}|^p\right)^{\frac{1}{p}}, \quad x = (x_{i,j}) \in \mathcal{L}^p(\mathbb{Z}),$$

corresponding to the well-known space $l^p(\mathbb{Z})$ of absolutely p-summable bilateral single sequences. The reader can refer to the recent monographs [1] and [9] on the sequence spaces and summability theory, and the papers [14], [15] and [16] on the domain of certain four dimensional triangle matrices in the spaces of double sequences. By the same technique in [13, Theorem 2.1], it can be shown that $\mathcal{L}^p(\mathbb{Z})$ is a separable Banach space. For more knowledge about double sequence spaces one can consult Hardy [7], Bromwich [5], Başar and Sever [2], Başar [1].

The weighted double sequence spaces $\mathcal{L}^p(\mathbb{Z}, v)$ arose in [13, Section 5]:

$$\mathcal{L}^p(\mathbb{Z},v) := \left\{ x = (x_{i,j})_{i,j \in \mathbb{Z}} \in \Omega; \sum_{i,j \in \mathbb{Z}} |x_{i,j}|^p v_{i,j}^p < \infty \right\}, \quad 1 \le p < \infty,$$

where $v = (v_{i,j})_{i,j \in \mathbb{Z}}$ is a positive double sequence. Similarly, $\mathcal{L}^p(\mathbb{Z}, v)$ is a separable Banach space endowed with the norm

$$||x|| = \left(\sum_{i,i \in \mathbb{Z}} |x_{i,j}|^p v_{i,j}^p\right)^{\frac{1}{p}}, \quad x = (x_{i,j}) \in \mathcal{L}^p(\mathbb{Z}, v).$$

We consider the bilateral upper-left shift \mathcal{B} acting on $\mathcal{L}^p(\mathbb{Z}, v)$:

Let $(e_{i,j})_{i,j\in\mathbb{Z}}$ denote the canonical basis of $\mathcal{L}^p(\mathbb{Z},v)$, i.e., the element of $(e_{i,j})$ in the *i*th row, *j*th column is 1, and the other elements are zero. Then \mathcal{B} can also be presented as $\mathcal{B}(e_{i,j}) = (e_{i-1,j-1})$. \mathcal{B} is an continuous operator on $\mathcal{L}^p(\mathbb{Z}, v)$ if and only if there is an M > 0 such that for all $x = (x_{i,j}) \in \mathcal{L}^p(\mathbb{Z}, v)$,

$$\left(\sum_{i,j\in\mathbb{Z}}v_{i,j}^p|x_{i+1,j+1}|^p\right)^{\frac{1}{p}}\leq M\bigg(\sum_{i,j\in\mathbb{Z}}v_{i,j}^p|x_{i,j}|^p\bigg)^{\frac{1}{p}},$$

which is equivalent to $\sup_{i,j\in\mathbb{Z}} \frac{v_{i,j}}{v_{i+1,j+1}} < \infty$. In [11] and [12], Salas studied the hypercyclicity and supercyclicity of bilateral backward shifts B: $(\cdots, x_{-1}, x_0, x_1, \cdots) \rightarrow (\cdots, x_0, x_1, x_2, \cdots)$ acting on weighted sequence spaces

$$l^{2}(\mathbb{Z},\omega) = \left\{ x \in \mathbb{C}^{\mathbb{Z}}; ||x||^{2} := \sum_{n \in \mathbb{Z}} \omega_{n}^{2} |x_{n}|^{2} < \infty \right\}.$$

Inspired by the Salas's results, it is interesting to explore the hypercyclicity and supercyclicity of the bilateral upper-left shifts \mathcal{B} acting on the weighted double sequence spaces $\mathcal{L}^p(\mathbb{Z},v)$, and how about the chaoticity? In this paper, we study these problems.

The organization of this paper is as follows. In Section 2 we present some criterions that supply sufficient conditions for an operator to be hypercyclic, supercyclic and mixing, respectively. We also construct a special weight sequence such that \mathcal{B} and the weighted bilateral upper-left shifts \mathcal{B}_w are conjugate. In Section 3 we characterize the hypercyclicity, supercyclicity and mixing property of $\mathcal{B}: \mathcal{L}^p(\mathbb{Z}, v) \to \mathcal{L}^p(\mathbb{Z}, v)$. Finally, we investigate the chaoticity of the bilateral upper-left shifts.

2. Preliminaries

Recall that a continuous linear operator $T: X \to X$ is said to be (topologically) mixing if the following property holds: For any pair (U, V) of nonempty open subsets of X, one can find an $N \in \mathbb{N}$ such that $T^n(U) \cap V \neq \emptyset$ for all $n \geq N$. $T: X \to X$ is called weakly mixing if $T \times T$ is hypercyclic. The following observation is well known:

mixing \Rightarrow weaking mixing \Rightarrow hypercyclic \Rightarrow supercyclic.

The following three criterions are used frequently to show that an operator is hypercyclic, supercyclic and mixing, respectively.

Proposition 2.1. [6, Theorem 3.12] (Hypercyclicity Criterion). Let X be a Banach space and $T \in \mathfrak{L}(X)$. If there are dense subsets $\mathcal{D}_1, \mathcal{D}_2 \subset X$, an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of positive integers, and maps $S_{n_k} : \mathcal{D}_2 \to X$ such that, for any $x \in \mathcal{D}_1$, $y \in \mathcal{D}_2$,

- (i) $T^{n_k}x \to 0$,
- (ii) $S_{n_k} y \rightarrow 0$,
- (iii) $T^{n_k}S_{n_k}y \to y$,

then T is weakly mixing, and in particular hypercyclic.

Proposition 2.2. [3, Theorem 1.14] (Supercyclicity Criterion). Let X be a Banach space and $T \in \mathfrak{L}(X)$. If there are dense subsets $\mathcal{D}_1, \mathcal{D}_2 \subset X$, an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of positive integers, and maps $S_{n_k} : \mathcal{D}_2 \to X$ such that, for any $x \in \mathcal{D}_1$, $y \in \mathcal{D}_2$,

- (i) $||T^{n_k}x||||S_{n_k}y|| \to 0$,
- (ii) $T^{n_k}S_{n_k}y \rightarrow y$,

then T is supercyclic.

Proposition 2.3. [6, Theorem 3.4] (Kitai's Criterion). Let X be a Banach space and $T \in \mathfrak{L}(X)$. If there are dense subsets $\mathcal{D}_1, \mathcal{D}_2 \subset X$ and a map $S : \mathcal{D}_2 \to \mathcal{D}_2$ such that, for any $x \in \mathcal{D}_1$, $y \in \mathcal{D}_2$,

- (i) $T^n x \to 0$,
- (ii) $S^n y \to 0$,
- (iii) TSy = y,

then T is mixing.

Let $T: X \to X$ and $S: Y \to Y$ be two continuous maps acting on topological spaces X and Y. Then T is called quasiconjugate to S if there exists a continuous map $\phi: Y \to X$ with dense range such that $T \circ \phi = \phi \circ S$, that is, the diagram

$$\begin{array}{ccc} Y & \xrightarrow{S} & Y \\ \phi \downarrow & & \phi \downarrow \\ X & \xrightarrow{T} & X \end{array}$$

commutes. If ϕ can be chosen to be a homeomorphism then T and S are called conjugate. It is well known that all the dynamical properties are preserved under conjugacy. Using a suitable conjugacy, we can also consider the weighted bilateral upper-left shifts $B_w(e_{i,j}) = (w_{i,j}e_{i-1,j-1})$ acting on $\mathcal{L}^p(\mathbb{Z})$, where $w = (w_{i,j})_{i,j\in\mathbb{Z}}$ is a bounded sequence of positive real numbers. We define a special weight sequence $(v_{m,n})_{m,n\in\mathbb{Z}}$ by

$$v_{m,n} = \begin{cases} \left(w_{m,n} w_{m-1,n-1} \cdots w_{m-\xi,n-\xi} \right)^{-1}, & m \ge 1, n \ge 1, \\ 1, & m = 0, n \ge 0, \text{ or } n = 0, m \ge 0, \\ w_{m+1,n+1} w_{m+2,n+2} \cdots w_{m+\eta,n+\eta}, & m < 0, \text{ or } n < 0, \end{cases}$$

where both ξ and η are nonnegative integers such that $\min\{m - \xi, n - \xi\} = 1$ and $\min\{m + \eta, n + \eta\} = 0$. Consider the associated weighted double sequence spaces $\mathcal{L}^p(\mathbb{Z}, v)$, and the map

$$\phi_v: \mathcal{L}^p(\mathbb{Z}, v) \to \mathcal{L}^p(\mathbb{Z})$$
$$(x_{m,n}) \mapsto (x_{m,n}v_{m,n}).$$

We have that ϕ_v is a vector space isomorphism and the following diagram commutes:

$$\begin{array}{ccc}
\mathcal{L}^{p}(\mathbb{Z}, v) & \xrightarrow{B} & \mathcal{L}^{p}(\mathbb{Z}, v) \\
\phi_{v} \downarrow & \phi_{v} \downarrow \\
\mathcal{L}^{p}(\mathbb{Z}) & \xrightarrow{B_{w}} & \mathcal{L}^{p}(\mathbb{Z}).
\end{array}$$

In fact, one can easily verify that

$$\frac{v_{m,n}}{v_{m+1,n+1}} = w_{m+1,n+1}.$$

Then for any $(x_{m,n}) \in \mathcal{L}^p(\mathbb{Z}, v)$,

$$\phi_v \circ B_w(x_{m,n}) = \phi_v(x_{m-1,n-1}) = x_{m-1,n-1}v_{m-1,n-1},$$

and

$$\begin{split} B_w \circ \phi_v(x_{m,n}) &= B_w(x_{m,n}v_{m,n}) = w_{m,n}x_{m-1,n-1}v_{m,n} \\ &= \frac{v_{m-1,n-1}}{v_{m,n}}x_{m-1,n-1}v_{m,n} = x_{m-1,n-1}v_{m-1,n-1}. \end{split}$$

Thus we have $B_w \circ \phi_v = \phi_v \circ B$.

3. Hypercyclicity and supercyclicity

In this section, we discuss the hypercyclicity and supercyclicity of $\mathcal{B}: \mathcal{L}^p(\mathbb{Z}, v) \to \mathcal{L}^p(\mathbb{Z}, v)$, whose proofs are inspired by that of Salas [11, 12] (see also [3, pp. 18–19]). Meanwhile, we generalize the results to $\mathcal{B}_w: \mathcal{L}^p(\mathbb{Z}) \to \mathcal{L}^p(\mathbb{Z})$ via the conjugacy as in Section 2. The following theorem supplies the equivalent conditions for $\mathcal{B}: \mathcal{L}^p(\mathbb{Z}, v) \to \mathcal{L}^p(\mathbb{Z}, v)$ to be hypercyclic.

Theorem 3.1. Let $v = (v_{m,n})_{m,n \in \mathbb{Z}}$ be a sequence of positive numbers such that $\sup_{m,n} \frac{v_{m,n}}{v_{m+1,n+1}} < \infty$, and let \mathcal{B} be the bilateral upper-left shift acting on $\mathcal{L}^p(\mathbb{Z},v)$, $1 \le p < \infty$. Then the following statements are equivalent:

- (i) \mathcal{B} is hypercyclic;
- (ii) \mathcal{B} is weakly mixing;

(iii) There is an increasing sequence $(n_k)_{k\in\mathbb{N}}$ of positive integers such that, for any $i, j \in \mathbb{Z}$,

$$\lim_{k \to \infty} v_{n_k + i, n_k + j} = 0 \quad and \quad \lim_{k \to \infty} v_{-n_k + i, -n_k + j} = 0. \tag{1}$$

Proof. (i) \Rightarrow (iii). Suppose that \mathcal{B} is hypercyclic and fix $i, j \in \mathbb{Z}$. Since the hypercyclic vectors are dense in $\mathcal{L}^p(\mathbb{Z}, v)$. For any $\epsilon \in (0, 1)$, assume without loss of generality that $\epsilon < v_{i,j}$, one may find $x \in \mathcal{L}^p(\mathbb{Z}, v)$ and an integer n_k such that

$$||x - e_{i,j}|| < \epsilon$$
 and $||\mathcal{B}^{n_k} x - e_{i,j}|| < \epsilon$.

Looking at the (i, j)th and the $(n_k + i, n_k + j)$ th coordinate in the first inequality we have

$$|v_{i,j}(x_{i,j}-1)|<\epsilon,\tag{2}$$

and

$$|v_{n_k+i,n_k+j}x_{n_k+i,n_k+j}| < \epsilon. \tag{3}$$

Likewise, looking at the (i, j)th and the $(-n_k + i, -n_k + j)$ th coordinate in the second inequality, we can obtain

$$|v_{i,j}(x_{n_k+i,n_k+j}-1)|<\epsilon,\tag{4}$$

and

$$|v_{-n_k+i,-n_k+j}x_{i,j}| < \epsilon. \tag{5}$$

From (4) we have that $|x_{n_k+i,n_k+j}| > \frac{v_{i,j}-\epsilon}{v_{i,j}}$. Applying (3) yields

$$v_{n_k+i,n_k+j}<\frac{v_{i,j}\epsilon}{v_{i,j}-\epsilon}.$$

Similarly, combining (2) with (5) we obtain

$$v_{-n_k+i,-n_k+j} < \frac{v_{i,j}\epsilon}{v_{i,j}-\epsilon}.$$

Since ϵ is arbitrary, these give (1).

(iii) \Rightarrow (ii). Suppose that (1)) holds, and let us show that \mathcal{B} satisfies the Hypercyclicity Criterion. Let $\mathcal{D}_1 = \mathcal{D}_2 = \operatorname{span}\{e_{i,j}: i, j \in \mathbb{Z}\}$. For S_{n_k} we take the n_k th iterates of the low-righ shift

that is, $S_{n_k} = \mathcal{F}^{n_k} : \mathcal{D}_2 \to \mathcal{L}^p(\mathbb{Z}, v)$. Since $\mathcal{BF} = I$ on \mathcal{D}_2 , we only need to show that $\mathcal{B}^{n_k}e_{i,j}$ and $S_{n_k}e_{i,j}$ both tend to zero for any $i, j \in \mathbb{Z}$ (then we conclude by using linearity). But this is clear since

$$\|\mathcal{B}^{n_k}e_{i,j}\| = v_{-n_k+i,-n_k+j}$$
 and $\|S_{n_k}e_{i,j}\| = v_{n_k+i,n_k+j}$.

Thus \mathcal{B} is weakly mixing.

(ii)⇒(i). This is trivial. \Box

For the bilateral weighted upper-left shift \mathcal{B}_w on the unweighted double sequence spaces $\mathcal{L}^p(\mathbb{Z})$, $(1 \le p < \infty)$. Using the weight sequence $(v_{m,n})_{m,n\in\mathbb{Z}}$ in Section 2, we can easily get the following corollary.

Corollary 3.2. Let \mathcal{B}_w be a bilateral weighted upper-left shift on $\mathcal{L}^p(\mathbb{Z})$, $1 \leq p < \infty$, with weighted sequence $w = (w_{i,i})_{i,i \in \mathbb{Z}}$. Then the following statements are equivalent:

- (i) \mathcal{B}_w is hypercyclic;
- (ii) \mathcal{B}_w is weakly mixing;
- (iii) There is an increasing sequence $(n_k)_{k\in\mathbb{Z}}$ of positive integers such that, for all $i, j \in \mathbb{Z}$,

$$\lim_{k \to \infty} \frac{1}{w_{n_k + i, n_k + j} w_{n_k + i - 1, n_k + j - 1} \cdots w_{n_k + i - \xi, n_k + j - \xi}} = 0,$$

and

$$\lim_{k \to \infty} w_{-n_k + i + 1, -n_k + j + 1} w_{-n_k + i + 2, -n_k + j + 2} \cdots w_{-n_k + i + \eta, -n_k + j + \eta} = 0,$$

where ξ , η are nonnegative integers such that $\min\{n_k+i-\xi, n_k+j-\xi\}=1$ and $\min\{-n_k+i+\eta, -n_k+j+\eta\}=0$.

Next we consider the supercyclicity of the bilateral upper-left shift.

Theorem 3.3. Let $v = (v_{m,n})_{m,n \in \mathbb{Z}}$ be a sequence of positive numbers such that $\sup_{m,n} \frac{v_{m,n}}{v_{m+1,n+1}} < \infty$, and let \mathcal{B} be the bilateral upper-left shift acting on $\mathcal{L}^p(\mathbb{Z},v)$, $1 \le p < \infty$. Then \mathcal{B} is supercyclic if and only if there is an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of positive integers such that for any $i, j \in \mathbb{Z}$,

$$\lim_{k \to \infty} v_{n_k + i, n_k + j} v_{-n_k + i, -n_k + j} = 0.$$
(6)

Proof. Suppose that \mathcal{B} is supercyclic and fix $i, j \in \mathbb{Z}$. Since the supercyclic vectors are dense in $\mathcal{L}^p(\mathbb{Z}, v)$, for any $\epsilon \in (0, 1)$, one may find $x = (x_{i,j}) \in \mathcal{L}^p(\mathbb{Z}, v)$, $\lambda \in \mathbb{K} \setminus \{0\}$ and an integer n_k such that

$$||x - e_{i,j}|| < \epsilon$$
 and $||\lambda \mathcal{B}^{n_k} x - e_{i,j}|| < \epsilon$.

As in Theorem 3.1, we can get

$$|v_{i,j}(x_{i,j}-1)|<\epsilon$$
, $|v_{n_k+i,n_k+j}x_{n_k+i,n_k+j}|<\epsilon$,

from the first inequality, and

$$|v_{i,j}(x_{i,j}-1)| < \epsilon$$
, $|\lambda v_{-n_k+i,-n_k+j}x_{i,j}| < \epsilon$,

from the second inequality. Putting all this together, using the triangle inequality, we can conclude that

$$v_{n_k+i,n_k+j}v_{-n_k+i,-n_k+j} < \frac{\epsilon^2}{|\lambda||x_{i,j}||x_{n_k+i,n_k+j}|} < \left(\frac{v_{i,j}\epsilon}{v_{i,j}-\epsilon}\right)^2,$$

and (6) follows.

Conversely, if (6) holds, it is clear that the Supercyclicity Criterion is satisfied for $\mathcal{D}_1 = \mathcal{D}_2 = \text{span}\{e_{i,j} : i, j \in \mathbb{Z}\}\$ and the nth iterate of the low-right shift, i.e., $S_{n_k} := F^{n_k}$, since

$$||\mathcal{B}^{n_k}(e_{i,j})||||S_{n_k}(e_{i,j})|| = v_{-n_k+i,-n_k+j}v_{n_k+i,n_k+j}.$$

Corollary 3.4. Let \mathcal{B}_w be a bilateral weighted upper-left shift on $\mathcal{L}^p(\mathbb{Z})$, $1 \leq p < \infty$, with weight sequence $w = (w_n)_{n \in \mathbb{Z}}$. Then \mathcal{B}_w is supercyclic if and only if there is an increasing sequence $(n_k)_{k \in \mathbb{N}}$ of positive integers such that for any $i, j \in \mathbb{Z}$,

$$\liminf_{k\to\infty} \frac{w_{-n_k+i+1,-n_k+j+1}w_{-n_k+i+2,-n_k+j+2}\cdots w_{-n_k+i+\eta,-n_k+j+\eta}}{w_{n_k+i,n_k+j}w_{n_k+i-1,n_k+j-1}\cdots w_{n_k+i-\xi,n_k+j-\xi}} = 0,$$

where ξ , η are nonnegative integers such that $\min\{n_k + i - \xi, n_k + j - \xi\} = 1$ and $\min\{-n_k + i + \eta, -n_k + j + \eta\} = 0$.

By the same arguments using in the proof of Theorem 3.1, but employing Kitai's Criterion instead of the Hypercyclicity Criterion, we obtain a characterization of the mixing property for \mathcal{B} .

Theorem 3.5. Let $v=(v_{m,n})_{m,n\in\mathbb{Z}}$ be a sequence of positive numbers such that $\sup_{m,n}\frac{v_{m,n}}{v_{m+1,n+1}}<\infty$, and let $\mathcal B$ be the unweighted upper-left shift acting on $\mathcal L^p(\mathbb Z,v)$, $1\leq p<\infty$. Then $\mathcal B$ is mixing if and only if for any $i,j\in\mathbb Z$,

$$\lim_{n\to\infty} v_{n+i,n+j} = 0 \quad and \quad \lim_{n\to\infty} v_{-n+i,-n+j} = 0.$$

Corollary 3.6. Let \mathcal{B}_w be a bilateral weighted upper-left shift on $\mathcal{L}^p(\mathbb{Z})$, $1 \leq p < \infty$, with weight sequence $w = (w_n)_{n \in \mathbb{Z}}$. Then \mathcal{B}_w is mixing if and only if for any $i, j \in \mathbb{Z}$,

$$\lim_{n\to\infty}\frac{1}{w_{n+i,n+j}w_{n+i-1,n+j-1}\cdots w_{n+i-\xi,n+j-\xi}}=0,$$

and

$$\lim_{n \to \infty} w_{-n+i+1,-n+j+1} w_{-n+i+2,-n+j+2} \cdots w_{-n+i+\eta,-n+j+\eta} = 0,$$

where ξ , η are nonnegative integers such that $\min\{n_k + i - \xi, n_k + j - \xi\} = 1$ and $\min\{-n_k + i + \eta, -n_k + j + \eta\} = 0$.

4. Chaoticity

In the last section, we deal with the chaoticity of the bilateral upper-left shift. We give a sufficient condition and a necessary condition of $\mathcal{B}: \mathcal{L}^p(\mathbb{Z},v) \to \mathcal{L}^p(\mathbb{Z},v)$ to be chaotic.

Theorem 4.1. Let $v = (v_{m,n})_{m,n \in \mathbb{Z}}$ be a sequence of positive numbers such that $\sup_{m,n} \frac{v_{m,n}}{v_{m+1,n+1}} < \infty$, and let \mathcal{B} be the upper-left shift acting on $\mathcal{L}^p(\mathbb{Z},v)$, $1 \le p < \infty$. Then \mathcal{B} is chaotic if $\sum_{i,j \in \mathbb{Z}} v_{i,j}^p < \infty$.

Proof. Assume that $\sum_{i,j\in\mathbb{Z}} v_{i,j}^p < \infty$, it follows from Theorem 3.1 that \mathcal{B} is hypercyclic. It remains to show that \mathcal{B} has a dense set of periodic points. For any $\epsilon > 0$, there exist $K, L, M, N \in \mathbb{N}$ with K + L = M + N such that

$$\sum_{\substack{i \geq K, \text{ or } i \leq -L \\ j \geq M, \text{ or } j \leq -N}} v_{i,j}^p < \epsilon.$$

For $x=(x_{i,j})_{i,j\in\mathbb{Z}}\in\mathcal{L}^p(\mathbb{Z},v)$, we have $\sum_{i,j\in\mathbb{Z}}v_{i,j}^p|x_{i,j}|^p<\infty.$ Set

$$y_{i,j} = \begin{cases} x_{i \mp mt, j \mp mt}, & -L \pm mt \le i \le K + mt, -N \pm mt \le j \le M + mt, \\ & m = 0, 1, 2, 3, \dots, t = K + L + 1 = M + N + 1. \\ 0, & \text{otherwise.} \end{cases}$$

Then, $y = (y_{i,j})$ belongs to the space $\mathcal{L}^p(\mathbb{Z}, v)$, since

$$\begin{split} \|y\|_{p}^{p} &= \sum_{i,j \in \mathbb{Z}} v_{i,j}^{p} |y_{i,j}|^{p} \leq \sum_{\substack{-L \leq i \leq K, \\ -N \leq j \leq M}} v_{i,j}^{p} |x_{i,j}|^{p} + \sum_{\substack{i \geq K, \text{ or } i \leq -L \\ j \geq M, \text{ or } j \leq -N}} v_{i,j}^{p} |y_{i,j}|^{p} \\ &\leq \|x\|_{p}^{p} + \left(\sup_{\substack{-L \leq i \leq K, \\ -N \leq j \leq M}} |x_{i,j}|^{p}\right) \cdot \sum_{\substack{i \geq K, \text{ or } i \leq -L \\ j \geq M, \text{ or } j \leq -N}} v_{i,j}^{p} \\ &\leq \|x\|_{p}^{p} + \left(\sup_{\substack{-L \leq i \leq K, \\ -N \leq j \leq M}} |x_{i,j}|^{p}\right) \epsilon < \infty. \end{split}$$

Clearly, $\mathcal{B}^t y = y$. Therefore, we have that y is a periodic point whose period is t. Now we need to show that the set $A := \{y : y = (y_{i,j})\}$ is dense in $\mathcal{L}^p(\mathbb{Z}, v)$,

$$\begin{aligned} ||x - y||_{p}^{p} &= \sum_{\substack{i \geq K, \text{ or } i \leq -L \\ j \geq M, \text{ or } j \leq -N}} v_{i,j}^{p} |x_{i,j} - y_{i,j}|^{p} \\ &\leq \left(\sup_{\substack{i \geq K, \text{ or } i \leq -L \\ j \geq M, \text{ or } j \leq -N}} |x_{i,j} - y_{i,j}|^{p} \right) \sum_{\substack{i \geq K, \text{ or } i \leq -L \\ j \geq M, \text{ or } j \leq -N}} v_{i,j}^{p} \\ &\leq \left(\sup_{\substack{i \geq K, \text{ or } i \leq -L \\ i > M, \text{ or } i \leq -N}} |x_{i,j} - y_{i,j}|^{p} \right) \epsilon. \end{aligned}$$

Therefore \mathcal{B} is chaotic. \square

Theorem 4.2. Let $v = (v_{m,n})_{m,n \in \mathbb{Z}}$ be a sequence of positive numbers such that $\sup_{m,n} \frac{v_{m,n}}{v_{m+1,n+1}} < \infty$, and let B be the upper-left shift acting on $\mathcal{L}^p(\mathbb{Z},v)$, $1 \le p < \infty$. If B is chaotic, then

$$\sum_{i=\infty} v_{i,i+m}^p < \infty, \quad m \in \mathbb{Z}.$$

Proof. Assume that \mathcal{B} is chaotic, then \mathcal{B} has a dense set of periodic points. Let $x = (x_{i,j})_{i,j \in \mathbb{Z}}$ be periodic for \mathcal{B} with period t such that $x_{n,n} \neq 0$ for some $-t \leq n \leq t$, and we have that $x_{n,n} = x_{n+lt,n+lt}$ for $t \in \mathbb{Z}$. Then

$$\sum_{l\in\mathbb{Z}} v_{n+lt,n+lt}^p |x_{n,n}|^p \le \sum_{i,j\in\mathbb{Z}} v_{i,j}^p |x_{i,j}|^p < \infty.$$

It follows that $\sum_{l \in \mathbb{Z}} v_{n+lt,n+lt}^p < \infty$, that is to say

$$\sum_{l\in\mathbb{Z}}e_{n+lt,n+lt}\in\mathcal{L}^p(\mathbb{Z},v).$$

Applying the upper-left shift t - 1 times and adding the results we obtain

$$\sum_{i\in\mathbb{Z}}e_{i,i}\in\mathcal{L}^p(\mathbb{Z},v).$$

In the same way, we can get

$$\sum_{i\in\mathbb{Z}}e_{i,i+m}\in\mathcal{L}^p(\mathbb{Z},v),\quad m\in\mathbb{Z},$$

that is to say,

$$\sum_{i,j\in\mathbb{Z}}e_{i,j}\in\mathcal{L}^p(\mathbb{Z},v).$$

Equivalently, $\sum_{i \in \mathbb{Z}} v_{i,j}^p < \infty$. \square

Acknowledgements

The author is grateful to Prof. Yonglu Shu for useful discussions and to the referee for bringing important references to our attention and for his/her valuable comments which greatly improved the final version of this paper.

References

- [1] F. Başar, Summability theory and its applications, Bentham Science Publishers, İstanbul, (2012).
- [2] F. Başar, Y. Sever, The space \mathcal{L}_q of double sequences, Math. J. Okayama Univ. 51, (2009), 149–157.
- [3] F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Mathematics, 179, (2009), Cambridge University Press, Cambridge.
- [4] G. D. Birkhoff, Demonstration d'un theoreme elementaire sur les fonctions entires, C. R. Math. Acad. Sci. Paris, 189, (1929).
- [5] T. J. I. A. Bromwich, An Introduction to the Theory of Infinite Series, MacMillan, London, (1959).
- [6] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear Chaos, Universitext. Springer, London, (2011).
- [7] G. H. Hardy, On the convergence of certain multiple series, Proc. London Math. Soc. (2), 1 (1904), 124–128.
- [8] M. R. MacLane, Sequences of derivatives and normal families, J. Anal. Math. 2, (1952), 72-87.
- [9] M. Mursaleen, F. Başar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its Applications, Boca Raton · London · New York, (2020).
- [10] S. Rolewicz, On orbits of elements, Studia Math. 32, (1969), 17–22.
- [11] H. N. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347, (3) (1995), 993–1004.
- [12] H. N. Salas, Supercyclicity and weighted shifts, Studia Math. 135, (1) (1999), 55-74.
- [13] Y. Shu, W. Wang, X. Zhao, Backward Shifts on Double Sequence Spaces, Results Math. 72, (1-2) (2017), 793-811.
- [14] M. Yeşilkayagil, F. Başar, AK(θ)-property of the spaces of double series, Bull. Malays. Math. Sci. Soc. 44 (2021), 881–889.
- [15] M. Yeşilkayagil, F. Başar, Domain of Riesz mean in some spaces of double sequences, Indag. Math. (N.S.) 29, (3) (2018), 1009–1029.
- [16] M. Yeşilkayagil, F. Başar, Domain of Riesz mean in the space \mathcal{L}_s , Filomat 31, (4) (2017), 925–940.