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Abstract. In this paper, we show that an unbounded weakly S0-demicompact linear operator T, introduced
in [18], acting on a Banach space, can be characterized by some measures of weak noncompactness.
Moreover, our results are illustrated to discuss the relationship with Fredholm and upper semi-Fredholm
operators as well as the stability of the essential spectrum of T.

1. Introduction

Let X and Y be two Banach spaces. The set of all closed densely defined (resp. bounded) linear operators
acting from X into Y is denoted by C(X,Y) (resp. L(X,Y)). We denote by K (X,Y) the subset of compact
operators of L(X,Y). For T ∈ C(X,Y), we use the following notations: α(T) is the dimension of the kernel
N(T) and β(T) is the codimension of the range R(T) in Y. The next sets of upper semi-Fredholm, lower
semi-Fredholm, Fredholm and semi-Fredholm operators from X into Y are, respectively, defined by:

Φ+(X,Y) = {T ∈ C(X,Y) such that α(T) < ∞ and R(T) closed in Y},
Φ−(X,Y) = {T ∈ C(X,Y) such that β(T) < ∞ and R(T) closed in Y},

Φ(X,Y):= Φ−(X,Y) ∩Φ+(X,Y),

and

Φ±(X,Y):= Φ−(X,Y) ∪Φ+(X,Y).

The set of bounded upper (resp. lower) semi-Fredholm operators from X into Y is defined by

Φb
+(X,Y) = Φ+(X,Y) ∩ L(X,Y) (resp. Φb

−
(X,Y) = Φ−(X,Y) ∩ L(X,Y)).

We denote byΦb(X,Y) = Φ(X,Y)∩L(X,Y) the set of bounded Fredholm operators from X into Y. The index
of an operator T ∈ Φ±(X,Y) is defined by ind(T) := α(T) − β(T). A complex number λ is in Φ+T,Φ−T,Φ±T
or ΦT if λ − T is in Φ+(X,Y), Φ−(X,Y), Φ±(X,Y) or Φ(X,Y), respectively. If X = Y, then L(X,Y), C(X,Y),
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K (X,Y), Φ(X,Y), Φ+(X,Y), Φ−(X,Y) and Φ±(X,Y) are replaced byL(X), C(X),K (X), Φ(X), Φ+(X), Φ−(X) and
Φ±(X), respectively. If T ∈ C(X), we denote by ρ(T) the resolvent set of T and by σ(T) the spectrum of T.
Let T ∈ C(X). For x ∈ D(T), the graph norm ∥.∥T of x is defined by ∥x∥T = ∥x∥ + ∥Tx∥. It follows from the
closedness of T that XT := (D(T), ∥.∥T) is a Banach space. Clearly, for every x ∈ D(T) we have ∥Tx∥ ≤ ∥x∥T, so
that T ∈ L(XT,X). A linear operator B is said to be T-defined if D(T) ⊆ D(B). If the restriction of B toD(T)
is bounded from XT into X, we say that B is T-bounded.

Definition 1.1. Let X and Y be two Banach spaces and let F ∈ L(X,Y).
(a) The operator F is a Fredholm perturbation if T + F ∈ Φ(X,Y) whenever T ∈ Φ(X,Y).
(b) The operator F is an upper semi-Fredholm perturbation if T + F ∈ Φ+(X,Y) whenever T ∈ Φ+(X,Y).
(c) The operator F is a lower semi-Fredholm perturbation if T + F ∈ Φ−(X,Y) whenever T ∈ Φ−(X,Y).

Now, we define the S-resolvent set of T by

ρS(T) := {λ ∈ C such that λS − T has a bounded inverse}.

The S-spectrum of T is defined by
σS(T) := C\ρS(T).

A complex number λ is in Φ+S,T, Φ−S,T or ΦS,T if λS − T is in Φ+(X), Φ−(X) or Φ(X) respectively. Note
that the concept of S-essential spectrum is introduced in [9] as a generalization of the usual notion of Wolf
essential spectrum (see [31]). In the end of this section, we recall that there are many ways to define the
essential spectrum of an operator T ∈ C(X) (see for example [12, 26]). In this work, we are concerned
with the S-essential spectrum, the S-approximate essential spectrum (see [24, 25]) and the S-essential defect
spectrum of T (see [27]), defined respectively by

σe,S(T) :=
⋂

K∈K (X)

σS(T + K),

σeap,S(T) :=
⋂

K∈K (X)

σap,S(T + K),

and
σeδ,S(T) :=

⋂
K∈K (X)

σδ,S(T + K),

where
σap,S(T) := {λ ∈ C such that inf

∥x∥=1,x∈D(T)
∥(λS − T)x∥ = 0},

and
σδ,S(T) := {λ ∈ C such that λS − T is not onto}.

Now, we give some well-known properties.

Proposition 1.2. [1, 28] Let X be a Banach space. Then,
(i) The sets Φb

+(X), Φb
−

(X) and Φb(X) are open.
(ii) The index is constant on every component of each of the sets: Φb

+(X), Φb
−

(X) and Φb(X).
(iii) If S,T ∈ Φb

+(X) (resp. S,T ∈ Φb
−

(X) ), then ST ∈ Φb
+(X) (resp. ST ∈ Φb

−
(X)) and ind(ST) = ind(S) + ind(T).

If x ∈ X and r > 0, then B(x, r) will denote the closed ball of X with center at x and radius r. We denote
by BX the closed unit ball of X. The family of all nonempty and bounded subsets of X will be denoted by
MX andMw

X its subfamily consisting of all relatively weakly compact sets. Moreover, let conv(A) denotes
the convex hull of a set A ⊂ X. An operator T ∈ L(X,Y) is said to be weakly compact if T(M) is relatively
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weakly compact for every M ∈ MX. The family of weakly compact operators from X into Y is denoted
byW(X,Y). If X = Y, we denoteW(X) instead ofW(X,X). The setW(X) is a closed two-sided ideal of
L(X) containing K (X) (see [8, 10]). The operator T is said to be a Dunford-Pettis (for short property DP
operator) if it maps weakly compact sets into compact sets. In particular, if T is a DP operator, then xn

w
−→ 0

implies lim ∥Txn∥ = 0 (see [5]). The Banach space X is said to have the Dunford-Pettis property (see [7]) if
for each Banach space Y, every weakly compact operator T : X −→ Y takes weakly compact sets in X into
norm compact sets of Y. Note that, if X is a Banach space with the Dunford-Pettis property, then every
T ∈ W(X,Y) is a DP operator.

Definition 1.3. Let X be a Banach space and T ∈ L(X). We say that T has a right weak-Fredholm inverse if there
exists Tr ∈ L(X) such that I − TTr ∈ W(X). Let

Φr,w(X) =
{
T ∈ L(X) : T has a right weak-Fredholm inverse

}
.

We denote by Gr,w the set of right weak-Fredholm inverse of T.

In 1966, W. V. Petryshyn [22, 23] has developed the concept of demicompactness for nonlinear operator.
Several applications of this concept were provided, especially on fixed point theory. Moreover, the demi-
compactness concept was used to provide several results on Fredholm theory (see [2, 23]). The class of
demicompact operators acting on a Banach space contains the class of compact operator. Hence, the class
of demicompact operators play an important role when studying perturbations of Fredholm operators. Re-
cently, W. Chaker, A. Jeribi and B. Krichen [14] have utilized demicompact operators in order to investigate
the essential spectra of closed linear operators. In 2014, B. Krichen [17], introduced the relative demicom-
pactness class with respect to a given closed linear operator as a generalization of the demicompactness
notion. This definition asserts that if X is a Banach space, T : D(T) ⊂ X −→ X, and S0 : D(S0) ⊂ X −→ X
are two linear operators with D(T) ⊂ D(S0), then T is said to be S0-demicompact (or relative demicompact
with respect to S0), if every bounded sequence (xn)n in D(T) such that (S0xn − Txn)n converges in X, have a
convergent subsequence. Recently, B. Krichen and D. O’Regan developed in [18, 19] some Fredholm and
perturbation results involving the class of weakly demicompact linear operators. Moreover, they studied
the relationship between this class and measures of weak noncompactness of linear operator with respect
to an axiomatic one.

In this paper, we show that an unbounded weakly S0-demicompact linear operator T acting on a Banach
space, can be characterized by some measures of weak noncompactness. The obtained results are used to
discuss the relationship with Fredholm and upper semi-Fredholm operators as well as the invariance of
the essential spectrum of T. Finally, let us mention that results obtained in the paper generalize a few ones
contained in the papers [14, 17, 18], for example.

2. Measure of Weak Noncompactness

First, we recall the axiomatic approach in defining of measures of weak noncompactness [4]. Let (X, ∥ · ∥)
be an infinite dimensional complex Banach space. We denote byMw

X the subfamily ofMX consisting of all
relatively weakly compact sets, and M

w
denote the weak closure of a set M ⊂ X.

Definition 2.1. A function µ : MX −→ R+ is said to be a measure of weak noncompactness if, for all
A,B ∈ MX, it satisfies the following conditions:
(i) µ(A) = 0⇐⇒ A ∈ Mw

X.
(ii) A ⊂ B =⇒ µ(A) ≤ µ(B).
(iii) µ(conv(A)) = µ(A).
(iv) µ(A ∪ B) = max{µ(A), µ(B)}.
(v) µ(A + B) ≤ µ(A) + µ(B).
(vi) µ(λA) = |λ|µ(A), λ ∈ C.



A. Jeribi et al. / Filomat 36:9 (2022), 3051–3073 3054

Let us recall that each measure of weak noncompactness satisfies the Cantor intersection condition (see
[4]) i.e., If (An) ⊆ Mw

X such that An = An and An+1 ⊂ An for n = 1, 2, ... and if lim
n→+∞

µ(An) = 0, then

A∞ =
⋂+∞

n=1 An , ∅.
By using the relation

M ⊂M
w
⊂ conv(M),

we infer that the measure µ satisfies
µ(M) = µ(M

w
),

for all M ∈ MX.
A measure of weak noncompactnes is said to be regular if it satisfies the condition:

µ(M) = 0⇐⇒M ∈ Mw
X.

An important example of a regular measure of weak noncompactness is the De Blasi measure (see [6]),
defined as follows:

w(M) = inf{r > 0, there exists W ∈ Mw
X with M ⊆W + rBX},

for each M ∈ MX. This function has several useful properties (see [6]). For example, w(BX) = 0 whenever
X is reflexive and w(BX) = 1 otherwise.

In the sequel, all Banach spaces considered are supposed to be non reflexive.

Remark 2.2. We notice that the definition of a measure of weak noncompactness µ on a Banach space X
can be extended to all subsets by imposing the following condition: µ(D) = +∞ whenever the subset D is
unbounded. Obviously, the function µ defined on every set of X is a weak measure of noncompactness.

Now, we provide a definition which gives an axiomatic approach to the notion of measure of weak
noncompactness of operators.

Definition 2.3. Let X and Y be two complex Banach spaces, and let µ be a measure of weak noncompactness
in Y. We define the function

Ψµ : L(X,Y) −→ [0,+∞[
T 7−→ Ψµ(T) = µ(T(BX)).

Ψµ is called a measure of weak noncompactness of operators associated to µ.

In view of this definition, we get easily the following properties of the functionΨµ.

Proposition 2.4. Let X and Y be two complex Banach spaces, µ be a measure of weak noncompactness in Y
and letΨµ a measure of weak noncompactness of operators associated to µ. For all S, T ∈ L(X,Y), we have
(i)Ψµ(T) = 0⇐⇒ T ∈ W(X).
(ii)Ψµ(T) ≤ Ψµ(T) +Ψµ(S).
(iii)Ψµ(λS) = |λ|Ψµ(S), λ ∈ C.
(iv)Ψµ(S + K) = Ψµ(S), for all K ∈ W(X).

Definition 2.5. Let X and Y be two complex Banach spaces, µ be a measure of weak noncompactness in Y
and let Ψµ be a measure of weak noncompactness of operators associated to µ. Ψµ is said to be algebraic
semi-multiplicative if it satisfies the condition:

Ψµ(ST) ≤ Ψµ(S)Ψµ(T), for all S, T ∈ L(X,Y).

Let us recall an important example of measure of weak noncompactness of operators.
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Definition 2.6. Let X and Y be two complex Banach spaces and w be the De Blasi measure of weak
noncompactness in the space Y. We define the function

Θw : L(X,Y) −→ [0,+∞[
T 7−→ Θw(T) = w(T(BX)).

Θw is a measure of weak noncompactness of operators associated to w.

Now, we give some properties of Θw.

Proposition 2.7. Let X and Y be two complex Banach spaces and T, S ∈ L(X,Y). Then,
(i) w(T(D)) ≤ Θw(T)w(D) for every D ∈ MX.
(ii) Θw(T) ≤ ∥T∥.
(iii) If X = Y then, Θw(ST) ≤ Θw(S)Θw(T).
(iv) Θw(S + T) ≤ Θw(S) + Θw(T).
(v) If X = Y, then Θw(Tn) ≤ (Θw(T))n for every n ∈N.
(vi) Let C ≥ 0 such that for every x ∈ X, ∥Tx∥ ≤ C∥x∥. Then,

w(T(D)) ≤ Cw(D).

(vii) Let C ≥ 0 such that for every x ∈ X, ∥x∥ ≤ C∥Tx∥. Then,

w(D) ≤ Cw(T(D)),

and the result holds even if T ∈ C(X).
(viii) If Θw(T) = 0, then T ∈ W(X,Y).

Proof. (i) Let D ∈ MX and r > w(D). Then, there exists W ∈ Mw
X such that D ⊆W + rBX. Hence,

T(D) ⊆ T(W) + rT(BX).

Accordingly,
w(T(D)) ≤ rw(T(BX)).

Taking into account the fact that w(T(BX)) = Θw(T) and letting r→ w(D) we deduce that

w(T(D)) ≤ Θw(T)w(D).

For the proof of (ii), it suffices to see that T(BX) ⊆ ∥T∥BX. Then,

Θw(T) = w(T(BX))
≤ ∥T∥.

Now, let S, T ∈ L(X,Y), then

Θw(S + T) = w
(
(S + T)(BX)

)
≤ w

(
S(BX)

)
+ w
(
T(BX)

)
= Θw(S) + Θw(T).

This proves (iii).
To prove (iv), let S, T ∈ L(X,Y), then

Θw(ST) = w(ST(BX))
≤ Θw(S)w(T(BX))
= Θw(S)Θw(T).
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We prove easily (v) by induction. For the proof of (vi), take D ∈ MX and r > w(D) such that D ⊆ W + rBX.
Then,

T(D) ⊆ T(W) + rT(BX).

Since we have ∥Tx∥ ≤ C∥x∥ for every x ∈ X, we infer that

T(BX) ⊆ CBX.

Hence,
T(D) ⊆ T(W) + rCBX.

Accordingly,
w(T(D)) ≤ rC.

Letting r→ w(D) we deduce that
w(T(D)) ≤ Cw(D).

Now, let us prove (vii). Suppose that T ∈ C(X) satisfies the inequality ∥x∥ ≤ C∥Tx∥, for some positive scalar
C. It yields that T has a bounded inverse T̃−1 : T(X) −→ X. Let D be a bounded set of D(T). If w(T(D)) = +∞,
then we have clearly w(D) ≤ w(T(D)). Suppose that w(T(D)) < +∞, then T(D) is bounded. Furthermore, we
have D ⊂ T̃−1T(D). One can readily show that ∥T̃−1

∥ ≤ C. This fact combined with property (vi) achieves
the proof of (vii).
Now, suppose that Θw(T) = 0. Let D ∈ MX, then there exists r > 0 such that D ⊆ rBX. Thus, w

(
T(D)

)
≤

rΘw(T)). This implies that w
(
T(D)

)
= 0 which means that T(D) ⊆ Mw

Y . This achieves the proof of (viii). □

3. Relatively weakly demicompact operators and measures of weak noncompactness

We denote→ for the strong convergence and⇀ for the weak convergence. Recall the following definition
introduced in [18].

Definition 3.1. Let X be a Banach space and let A : D(A) ⊂ X −→ X,S0 : D(S0) ⊂ X −→ X be two linear
operators with D(A) ⊂ D(S0). The operator A is said to be weakly S0-demicompact (or weakly relative
demicompact with respect to S0), if for every bounded sequence (xn)n ⊂ D(A) such that S0xn −Axn ⇀ x ∈ X,
for some x ∈ X, then there exists a weakly convergent subsequence of (xn)n.

Given a Banach space X and S0 ∈ L(X), we define the following sets:

WDC(S0)(X) := {T ∈ C(X), such that T is weakly S0-demicompact },

and
WDC

b(S0)(X) :=WDC(S0)(X) ∩ L(X).

Note that if we put S0 = I, then we recover the usual definition of weakly demicompact operator. Fur-
thermore, the spaces WDC(S0)(X) and WDCb(S0)(X) will be replaced, respectively, by WDC(X) and
WDC

b(X).
Next, we introduce special classes of weakly demicompact operators. Before that, let us recall some
definitions.

Definition 3.2. [13, 16, 21] Let X be a Banach space and T ∈ L(X). T is said to be weakly quasi-compact if
there exists a positive integer m and W ∈ W(X) such that ∥Tm

−W∥ < 1.

We noteWQP(X) for the set of weakly quasi-compact operators acting on a Banach space X.

Remark 3.3. Let X be a Banach space. Then, one can check thatK (X) ⊆W(X) ⊆WQP(X).
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Proposition 3.4. Let X be a Banach space. Then,

WQP(X) ⊂WDCb(X).

Proof. Let T ∈ WQP(X). Then, there exists a positive integer m and W ∈ W(X) such that ∥Tm
−W∥ < 1.

By using Newmann series, we readily see that I − Tm +W is boundedly invertible. Moreover, we have(
I − Tm +W

)−1
=

+∞∑
k=0

(Tm
−W)k. Now, take a bounded sequence (xn)n such that

xn − Txn ⇀ x ∈ X.

Put z = x + Tx + ...Tm−1x ∈ X. Then,
xn − Tmxn ⇀ z.

Since W is weakly demicompact, there exists a subsequence (xφ(n))n and y ∈ X such that

Wxφ(n) −→
→+∞

y.

Thus,
xφ(n) − Tmxφ(n) +Wxφ(n) ⇀ z + y.

Accordingly,

xφ(n) −→
→+∞

(
I − Tm +W

)−1
(z + y).

Hence, T ∈ WDCb(X). This completes the proof. □

Proposition 3.5. Let X be a Banach space and let T and S0 be two bounded operators on X. Then, we have

T is weakly S0 − demicompact =⇒ Gr,w(I − S0 + T) ⊆WDCb(X).

Proof. Let A ∈ Gr,w(I − S0 + T), then there exists W ∈ W(X) such that

(I − S0 + T)A = I +W.

Now, let (xn)n be a bounded sequence of X such that

xn − Axn ⇀ x ∈ X.

Then,
xn − (I +W − TA + S0A)xn ⇀ x.

It follows that
−Wxn + (T − S0)Axn ⇀ x.

Since W is weakly compact, then there exists a subsequence (xφ(n)) such that

Wxφ(n) ⇀ a ∈ X.

Therefore,
(T − S0)Axφ(n) ⇀ a + x.

By observing that
(T − S0)xφ(n) = (T − S0)(xφ(n) − Axφ(n)) + (T − S0)Axφ(n),

for all n ∈ N, we deduce that
(
(T − S0)(xφ(n)

)
n

converges. Since T is weakly S0-demicompact, we conclude

that (xn)n has a weakly convergent subsequence, then A ∈ WDCb(X). This achieves the proof. □
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Proposition 3.6. Let Z be a Banach space, T ∈ L(Z) and T be the unit circle of the complex plane.
(i) If Tm is weakly demicompact for some positive integer m, then T is weakly demicompact.
(ii) If T is weakly demicompact and σ(T) ∩ T = ∅, then Tm is weakly demicompact for all m ∈N\{0}.

Proof. Let (xn)n be a bounded sequence in Z such that

xn − Txn ⇀ x ∈ Z.

Then,
xn − Tmxn ⇀ x + Tx + ... + Tm−1x.

Since Tm is weakly demicompact, (xn)n has a weakly convergent subsequence. This achieves the proof of
(i).
Now, we prove (ii). Let m ∈N\{0} and suppose that T is weakly demicompact. We may suppose that m ≥ 2.
Let (xn)n be a bounded sequence in Z such that

xn − Tmxn ⇀ x ∈ Z.

Equivalently,
Q(T)(I − T)xn ⇀ x.

where Q(X) = 1 + X + ... + Xm−1
∈ C[X]. According to the spectral mapping theorem, σ

(
Q(T)

)
= Q
(
σ(T)
)
.

Now, note that if λ ∈ C satisfies Q(λ) = 0, then λm = 1 so that λ ∈ T. Hence, 0 < σ
(
Q(T)

)
.

This implies
xn − Txn ⇀ Q(T)−1x.

Since T is weakly demicompact, (xn)n has a convergent subsequence. We conclude that Tm is weakly
demicompact. □

Definition 3.7. Let X, Y be two Banach spaces. An operator T : D(T) ⊆ X −→ Y is said to be weakly closed,
if for every sequence (xn)n in D(T) such that xn ⇀ x ∈ X and Txn ⇀ y ∈ Y, we have x ∈ D(T) and y = Tx.

Remark 3.8. Let X and Y be two Banach spaces and T ∈ L(X,Y). Then, T is weakly closed.

The following key lemma will be useful for some proofs.

Lemma 3.9. [30] An operator A is in Φ+(X) with ind(A) ≤ 0, if and only if, there exists two operators A0 and
K such that A0 is in Φ+(X) and one to one, and K is a finite rank operator such that A = A0 + K.

Now, we are in position to state the following result.

Theorem 3.10. Let X be a Banach space and T, S0 ∈ C(X) with D(T) ⊂ D(S0). Suppose that
(i) T(D(T)) ⊆ D(T) and S0(D(T)) ⊆ D(T).
(ii) S0 − T is weakly closed.
(iii) There exists a complex polynomial P such that P(1) = 1 and P(I − S0 + T + K) is a DP operator for all
K ∈ K (X).
Then,

T is weakly S0-demicompact, if and only if, S0 − T ∈ Φ+(X).

Proof. First, note that, since S0 − T is weakly closed then S0 − T is closed. By applying Theorem 1 in [30],
it suffices to prove that, for any compact operator K ∈ K (X), α(S0 − T − K) < ∞. To do so, it suffices to
establish that, for every K ∈ K (X), the set BX ∩N(S0 − T −K) is compact. Let K ∈ K (X) and take a sequence
(xn)n ⊆ BX ∩N(S0 − T − K). Then, for every n ∈N,

(S0 − T − K)xn = 0. (1)
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Since K is compact, there exists a subsequence of (xn)n, still denoted (xn)n, such that

Kxn −→ x ∈ X. (2)

Hence,

(S0 − T)xn −→ x ∈ X.

Then,

(S0 − T)xn ⇀ x ∈ X.

Taking into account the fact that T is S0-weakly demicompact, we deduce that (xn)n has a subsequence
(xφ(n))n such that

xφ(n) ⇀ a ∈ X. (3)

Since S0 − T is weakly closed, we get

a ∈ D(T) and (S0 − T)a = x. (4)

Furthermore, we have

∥a∥ ≤ lim inf ∥xφ(n)∥ = 1. (5)

Keeping in mind equations (2) and (3) and using the fact that K is compact we get

Ka = x. (6)

Thus, by using equations (4), (5) and (6) we deduce that

a ∈ BX ∩N(S0 − T − K).

By using equation (1), we obtain for every n ∈N,

P(I − S0 + T + K)xn = xn.

Indeed, let P =
N∑

k=0

akXk, thus

P(I − S0 + T + K)xn =

N∑
k=0

ak(I − S0 + T + K)kxn

=

N∑
k=0

akxn

= P(1)xn

= xn.

Similarly, since
(S0 − T − K)a = 0

we deduce that
P(I − S0 + T + K)a = a.

Combinig equation (3) and the fact that P(I − S0 + T + K) is DP, we infer that

xφ(n) −→ a.
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Accordingly, BX∩N(S0−T−K) is a compact set. This achieves the proof. Now, we suppose that S0−T ∈ Φ+(X).
There are two cases.

First case: If ind(S0 − T) > 0, then S0 − T ∈ Φ(X). By using Theorem 7.2 in [28], there exists A ∈ L(X) and
K ∈ K (X) such that

A(S0 − T) = I + K.

Let (xn)n be a bounded sequence of D(T) such that:

(S0 − T)xn ⇀ x ∈ X.

Then,
A(S0 − T)xn ⇀ Ax.

Hence, (xn + Kxn)n converges weakly to Ax. Since K is compact, then (Kxn)n has a convergent, and then a
weakly convergent, subsequence. It follows that (xn)n admits a weakly convergent subsequence.

Second case: If ind(S0 − T) ≤ 0, then, in view of Lemma 3.9, there exists a bounded below operator A0 and
K ∈ K (X) such that

S0 − T = A0 + K.

Let (xn)n be a bounded sequence in D(T) such that:

(S0 − T)xn ⇀ x ∈ X.

Then, ((A0 + K)xn)n converges weakly on X. Since K is compact, then (Kxn)n has a convergent subsequence
(Kxφ(n))n. Consequently, (A0xφ(n))n is a weakly convergent sequence. Since A0 is bounded below, then there
exist a positive constant C such that

∥x∥ ≤ C∥A0x∥,

for all x ∈ D(T).
Let D = {xn; n ∈N}, then by using Proposition 2.7 we get

w(D) ≤ Cw(A0(D)).

Thus, w(D) = 0 and therefore, (xφ(n))n has a weakly convergent subsequence. This achieves the proof. □
If we consider bounded operators, we have the following result.

Proposition 3.11. Let X be a Banach space and T ∈ L(X). Assume that there exists an entire function
f : C −→ C such that f (T) is a DP operator and f (1) = 1. Then,

T is weakly-demicompact, if and only if, I − T ∈ Φ+(X).

Proof. If I − T ∈ Φ+(X), then we prove that T is weakly demicompact identically to the proof of Theorem
3.10 with S0 = I .
Now, suppose that T is weakly S0-demicompact. According to Theorem 1 in [30], it suffices to prove that
α(S0 − T − K) < ∞ for any compact operator K ∈ K (X). For that purpose, let K ∈ K (X) and take a sequence
(xn)n ⊆ BX ∩N(I − T − K). Then, for every n ∈N, we have

(I − T − K)xn = 0.

Since K is compact, there exists a subsequence of (xn)n, still denoted (xn)n, such that

Kxn −→ x ∈ X.

Hence,
(I − T)xn −→ x ∈ X.
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Therefore,
(I − T)xn ⇀ x ∈ X.

Taking into account the fact that T is weakly demicompact, we deduce that (xn)n has a subsequence (xφ(n))n
such that

xφ(n) ⇀ a ∈ X.

It comes that
(I − T)a = x.

Furthermore, we have ∥a∥ ≤ lim inf ∥xφ(n)∥ = 1. Using the fact that K is compact, we get Ka = x. We deduce
that

a ∈ BX ∩N(I − T − K).

Since (T + K)xn = xn for every n ∈N and f (1) = 1, we readily get

f (T + K)a = a and f (T + K)xn = xn, ∀n ∈N. (7)

Now, let f (z) =
+∞∑
n=0

anzn, z ∈ C. Then,

f (T + K) − f (T) =
+∞∑
n=1

an

[
(T + K)n

− Tn
]
. (8)

SinceK (X) is an ideal, then (T + K)n
− Tn

∈ K (X) for all n ∈N\{0}. Taking into account thatK (X) is closed,
we deduce from equation 8 that f (T + K) − f (T) ∈ K (X). This implies that f (T + K) is a DP operator. Recall
that xφ(n) ⇀ a, then

f (T + K)xn −→ f (T + K)a.

By using equation 7, we infer that
xn −→ a.

We conclude that BX ∩N(S0 − T − K) is a compact set. This achieves the proof. □

Now, we give a characterization of relative weakly demicompact operators by means of the De Blasi measure
of weak noncompactness.

Theorem 3.12. Let X be a Banach space, T and S0 be two operators acting on X such that D(T) ⊂ D(S0).
Assume that:
(i) T(D(T)) ⊆ D(T) and S0(D(T)) ⊆ D(T).
(ii) S0 − T is weakly closed.
(iii) There exists a complex polynomial P satisfying P(1) = 1 such that P(I−S0+T+K) is DP for all K ∈ K (X).
Then, T is weakly S0-demicompact, if and only if, there exists a positive constant C such that for all bounded
sets D ⊆ D(T),

w(D) ≤ Cw((S0 − T)(D)).

Proof. (i) =⇒ (ii) Suppose first that T is weakly S0-demicompact. Then, by using Theorem 3.10, S0 − T ∈
Φ+(X). Now, if ind(S0 − T) > 0, then by using Theorem 7.2 in [28], there exists a bounded operator A and a
compact operator K such that:

A(S0 − T) = I + K.

Let D be a bounded set of X. Then,

w(D) ≤ w((A(S0 − T)(D))
≤ ∥A∥w((S0 − T)(D)).
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In the case where ind(S0 − T) ≤ 0, then, by using Lemma 3.9, there exists a compact operator K and a
bounded below operator A0 such that:

S0 − T = K + A0.

Since A0 is bounded below, there exists a positive constant C such that:

∥x∥ ≤ C∥A0x∥,

for all x ∈ D(T).
Hence, by applying Proposition 2.7, we get

w(D) ≤ Cw((S0 − T)(D)),

for any bounded set D ⊂ D(T). Now, choose C′ = max(∥A∥,C), then for any bounded subset D of D(T) we
have

w(D) ≤ C′(w(S0 − T)(D)).

(ii) =⇒ (i) Suppose that there exists a positive constant C such that for every bounded set D of X,

w(D) ≤ Cw((S0 − T)(D)).

Let (xn)n be a bounded sequence of D(T) such that

(S0 − T)xn ⇀ x ∈ X.

Choose D = {xn; n ∈ N}. It is clear that D is a bounded set of D(T) such that w((S0 − T)(D)) = 0. Hence,
w(D) = 0 so that (xn)n has a weakly convergent subsequence. We conclude that T is weakly S0-demicompact.
□

Corollary 3.13. Let X be a Banach space and T ∈ L(X). Assume that there exists an entire function
f : C −→ C such that f (T) is a DP operator and f (1) = 1.
Then, T is weakly demicompact, if and only if, there exists a positive constant C such that for all bounded
sets D ⊆ X,

w(D) ≤ Cw((I − T)(D)).

Proof. Suppose that T is weakly demicompact. By Proposition 3.11, I − T ∈ Φb
+(X). By considering both

cases ind(I − T) > 0 and ind(I − T) ≤ 0 and using a similar proof to the one of Theorem 3.12 with S0 = I, we
show the requested inequality. Now, let C > 0 such that w(D) ≤ Cw((I − T)(D)) for all D ∈ MX. A similar
proof to the one of Theorem 3.12 with S0 = I proves that T is weakly demicompact. □

Now, we derive a characterization of upper semi-Fredholm operators by means of De Blasi measure of
weak noncompactness.

Proposition 3.14. Let X be a Banach space and T ∈ L(X). Assume that there exists an entire function
f : C −→ C such that f (T) is a DP operator and f (1) = 1. Then,

T ∈ Φb
+(X)⇐⇒ ∀D ∈ MX, w(T(D)) = 0 =⇒ w(D) = 0.

.

Proof. Let S0 = I and suppose that T ∈ Φb
+(X). Then, Proposition 3.11 shows that I − T is weakly

demicompact. Corollary 3.13 ensures the existence of a positive constant C such that for all bounded sets
D ⊆ D(T), we have w(D) ≤ Cw(T(D)). Hence, if w(T(D)) = 0 then w(D) = 0 for all D ∈ MX. Conversely,
assume that w(T(D)) = 0 =⇒ w(D) = 0 whenever D ∈ MX. According to Proposition 3.11, to prove that
T ∈ Φ+(X), it suffices to prove that I − T is weakly demicompact. For this purpose, let (xn)n ⊆ X be a
bounded sequence such that Txn ⇀ x, for some x ∈ X. Put D = {xn,n ∈ N}. Hence, w(T(D)) = 0 and so
w(D) = 0. Accordingly, I − T is weakly demicompact. This ends the proof. □

Now, we give a characterization of weakly demicompact bounded projections. First, let us recall the
following lemma.
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Lemma 3.15. [20, 28] Let X be a Banach space and K ∈ K (X). Then, I ± K ∈ Φb(X) and ind(I ± K) = 0.

Proposition 3.16. Let X be a Banach space and P be a bounded projection on X. Assume that P is a DP operator.
Then, the following assertions are equivalents

(i) P ∈ WDCb(X).
(ii) P ∈ K (X).
(iii) I ± P ∈ Φb(X) and ind(I ± P) = 0.
(iv) ±P is demicompact.

Proof. (i) ⇒ (ii) Let P be a bounded DP projection on X. If P is weakly demicompact then, By using
Theorem 3.10, we deduce that I − P ∈ Φb

+(X). Consequently, R(P) = N(I − P) is finite dimensional. This
proves that P is a finite rank operator which implies that P ∈ K (X).
(i)⇒ (ii) Suppose that P ∈ K (X), then ±P ∈ K (X). By using Lemma 3.15, we get the desired result.
(iii) ⇒ (iv) Since I ± P is a bounded Fredholm operator the, according to Theorem 3.1 in [14], ±P is
demicompact.
(iv)⇒ (iii) According to Theorem 2.1 in [14], we have I ± P ∈ Φb

+(X). By Proposition 1.2, we get

ind(I − P) = ind(I − P2)
= ind(I − P) + ind(I + P).

Consequently, ind(I + P) = 0. Therefore, I + P ∈ Φb(X). Now, using the fact that (I − P)2 = I − P, we get
ind(I − P) = 0 and thus I − P ∈ Φb(X).
(iii)⇒ (i) Since I−P ∈ Φb(X), thenR(I−P) = N(I−P) is finite dimensional. Hence, P is a finite rank operator.
this proves that P is a DP operator. In view of Theorem 3.10, we deduce that P is weakly demicompact. □

Proposition 3.17. Let X be a Banach space,D be the unit disk of the complex plane and T ∈ L(X). Assume
that Θw(Tm) < 1 for some positive integer m. Then, the following assertions holds,

1. λT ∈ WDCb(X) for all λ ∈ D.
2. If, moreover, Tk is a DP operator for some k ∈N\{0}, then

(a) I ± T ∈ Φb(X) and ind(I ± T) = 0.
(b) For all p ∈N\{0}, I + Tp

∈ Φb(X) and ind(I + Tp) = 0.

Proof. For the proof of assertion (1), let λ ∈ D and (xn)n be a bounded sequence such that

xn − λTxn ⇀ x ∈ X.

Obviously, there exists a bounded operator S ∈ L(X) such that

I − λmTm = S(I − λT).

Hence,
xn − λ

mTmxn ⇀ S(x).

Using the properties of the De Blasi measure of weak noncompactness, we get

w{xn} ≤ w{λmTmxn} + w{xn − λ
mTmxn}

≤ |λ|mΘw(Tm)w{xn}

≤ Θw(Tm)w{xn}.

Thus, w{xn} = 0. This shows that λT is weakly demicompact.
Now we prove the second assertion. Let us choose arbitrarily λ ∈ D. Obviously, we have Θw((λT)m)) < 1.
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Since (λT)k is DP, then by applying Theorem 3.10, we deduce that I − λT ∈ Φb
+(X). Taking into account

Proposition 1.2, we obtain

ind(I − T) = ind(I − λT)
= ind(I + T)
= ind(I)
= 0.

Hence , I ± T ∈ Φb(X). This proves 2-a.
To prove 2-b, let p ∈N\{0}. We have

I + Tp =

p−1∏
k=0

(
I − λkT

)
where

λk = exp
(
− i

2k + 1
p
π
)
, ∀k ∈ [|0, p − 1|].

Combining the result in the previous assertion and Theorem 3.10, we see that I − λkT ∈ Φb
+(X). By using

Proposition 1.2, we get
ind(I − λkT) = ind(I − λT)

for all λ ∈ D and k ∈ [|0, p − 1|]. In particular,

ind(I − λkT) = ind(I) = 0

for all k ∈ [|0, p − 1|]. Applying Proposition 1.2 again, we get

ind(I + Tp) =

p−1∑
k=0

ind(I − λkT)

= 0.

This implies that I + Tp
∈ Φb(X) and completes the proof. □

Now, we give another characterization of weakly demicompact operators by means of weak essential norm.

Definition 3.18. [29] Let X and Y be two Banach spaces. For S ∈ L(X,Y), we call

∥S∥w = inf
{
∥S −W∥ : W ∈ W(X,Y)

}
,

the weak essential norm of S.

Remark 3.19. Let X and Y be two Banach spaces and S ∈ L(X,Y). Then, ∥S∥w is also called the quotient norm of
the operator S in the Banach space L(X,Y)/W(X,Y).

Let us recall some properties of the weak essential norm through the following proposition.

Proposition 3.20. [29] Let X and Y be two Banach spaces and S ∈ L(X,Y). Then,

(i) ∥S∥w = d
(
S,W(X,Y)

)
, where d

(
S,W(X,Y)

)
is the distance between S andW(X,Y)).

(ii) ∥S∥w = 0, if and only if, S ∈ W(X,Y).
(iii) ∥ ∥w is a semi-norm on L(X,Y).
(iv) ∥S∗∥w ≤ ∥S∥w, where S∗ is the adjoint of S.

Proposition 3.21. Let T be a bounded operator acting on a Banach space X. Suppose that ∥Tn
∥w < 1 for some integer

n ≥ 1. Then, T is weakly demicompact.
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Proof. Suppose ∥Tn
∥w < 1 or some integer n ≥ 1. Hence, there exists W ∈ W(X) such that ∥Tn

−W∥ < 1. It
follows that T ∈ WQP(X). By using Proposition 3.4, we see that T ∈ WDCb(X). □

Theorem 3.22. Let X be a Banach space and T ∈ L(X). Suppose that ∥T∥w < 1. Then, we have the following
assertions
(i) T ∈ WDCb(X).
(ii) T∗ ∈ WDCb(X∗).
(iii) If T is DP, then for every ε ∈ {−1, 1}, I − εT ∈ Φb(X) and ind(I − εT) = 0.

Proof. For the proof of (i), take a bounded sequence (xn)n of X such that

yn := xn − Txn ⇀ x ∈ X.

Since ∥T∥w < 1, there exists W0 ∈ W(X) such that

∥T∥w ≤ ∥T −W0∥

= 1.

Obviously,
{xn} ⊆ {yn} + {W0xn} + {(T −W0)xn}.

Hence,

w({xn}) ≤ w({yn}) + w({W0xn}) + w({(T −W0)xn})
≤ w({(T −W0)xn})
≤ ∥T −W0∥w({xn}).

Thus, (
1 − ∥T −W0∥

)
w({xn}) ≤ 0.

Then, w({xn}) = 0. This shows that (xn) has a weakly convergent subsequence and consequently T ∈
WDC

b(X). In view of Proposition 3.20, we infer that ∥T∗∥w < 1. Now, applying the result of the assertion
(i) we complete the proof of (ii).
To prove (iii), let λ be an arbitrarily scalar in [−1, 1]. Since ∥T∗∥w < 1, then ∥λT∗∥w < 1. Notice that λT is also
a DP operator. Then, by using Theorem 3.10, we get

I − λT ∈ Φb
+(X), ∀λ ∈ [−1, 1].

On the other hand, from Proposition 1.2, the index is constant on any component of Φb
+(X). It follows that,

for λ ∈ [−1, 1],

ind(I − T) = ind(I − λT)
= ind(I + T)
= ind(I)
= 0.

Thus, I − εT ∈ Φb(X) for ε ∈ {−1, 1}. □
Now, we introduce a natural quantity measuring the deviation of an operator from weak compactness.
Then, we will establish some results related to weakly demicompact operators.

Definition 3.23. [11] Let X,Y be two Banach spaces and T ∈ L(X,Y). Set

βw(T) = inf
{
ε > 0

∣∣∣ ∃Z,∃U ∈ W(X,Z) : ∥Tx∥ ≤ ∥Ux∥ + ε∥x∥ for all x ∈ X
}
,

where Z is a Banach space.
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Some basic properties of the quantity βw will be provided in the following proposition.

Proposition 3.24. [3, 29] Let X,Y be two Banach spaces and T ∈ L(X,Y). Then,
(i) βw is a seminorm on ∈ L(X,Y).
(ii) βw(T) = 0 if, and only if, T ∈ W(X,Y).
(iii) βw(ST) ≤ βw(S)βw(T) for all bounded operator S such that ST is defined.
(iv) βw(T) ≤ ∥T∥w.

Now, we state the following result.

Theorem 3.25. Let X be a Banach space and T ∈ L(X). Assume that βw(T) < 1. Then, for every k ∈ N\{0}
and for every ϵ ∈ {−1, 1}, we have
(i) ϵTk is weakly demicompact.
(ii) If T is also a DP operator, then I − Tk

∈ Φb(X) and ind(I − Tk) = 0.

Proof. First, let us prove (i) in the case k = 1. Take a bounded sequence (xn)n on X such that

xn − Txn ⇀ x ∈ X.

Since the operator T satisfies the condition βw(T) < 1, then there exists ε ∈]0, 1[, a Banach space Z and a
weakly compact operator U ∈ W(X,Z) such that

∥Tx∥ ≤ ∥Ux∥ + ε∥x∥,

for all x ∈ X. Now, we have

∥x∥ ≤ ∥Tx∥ + ∥x − Tx∥
≤ ∥Ux∥ + ∥x − Tx∥ + ε∥x∥,

for all x ∈ X. Hence, we obtain for all x ∈ X,

∥x∥ ≤
1

1 − ε

(
∥Ux∥ + ∥x − Tx∥

)
.

This yields

w(D) ≤
1

1 − ε

(
w
(
U(D)

)
∥ + w

(
(I − T)(D)

))
≤

1
1 − ε

w
(
(I − T)(D)

)
,

for all D ∈ MX. Now, choose D = {xn : n ∈N}. Then, we get w(D) = 0. Hence, (xn)n has a weakly convergent
subsequence. Consequently, T is a weakly demicompact operator. Taking into account Proposition 3.24
(iii), we prove by a simple induction that for every or every k ∈N\{0} and for every ϵ ∈ {−1, 1},

βw(ϵTk) = βw(Tk)

≤

(
βw(T)

)k
< 1.

Hence, ϵTk is weakly demicompact.
To prove (ii), let k be a positive integer and take arbitrarily λ ∈ [−1, 1]. Then,

βw

(
λT)k
)
= |λ|kβw(Tk)

≤

(
βw(T)

)k
< 1.



A. Jeribi et al. / Filomat 36:9 (2022), 3051–3073 3067

It follows that (λT)k is weakly demicompact for all λ ∈ [−1, 1]. Since (λT)k is also a DP operator for all
λ ∈ [−1, 1], then by using Theorem 3.10, we deduce that I − (λT)k

∈ Φb
+(X). Taking into account the fact that

[−1, 1] is connected, we conclude by using Proposition 1.2 that

ind(I − Tk) = ind
(
I − (λT)k

)
= ind(I)
= 0.

Hence, I − Tk
∈ Φb(X). □

Now, we give some consequences of Theorem 3.25.

Corollary 3.26. Let X be a Banach space and T ∈ L(X). Assume that lim
n→+∞

(
β(Tn)

) 1
n
= 0. Then,

(i) T is weakly demicompact.
(ii) If T is also a DP operator, then for every ϵ ∈ {−1, 1}, I − ϵT ∈ Φb(X) and we have ind(I − ϵT) = 0.

Proof. Since lim
n→+∞

(
β(Tn)

) 1
n
= 0, there exists a positive integer n0 such that

(
β(Tn0 )

) 1
n0 < 1. Thus, β(Tn0 ) < 1.

By applying Theorem 3.25, we deduce that Tn0 is weakly demicompact and then T is weakly demicompact.
For the proof of (ii), take λ ∈ [−1, 1]. then, λT is a DP operator. Moreover,

lim
n→+∞

[
β
(
(λT)n

)] 1
n

= |λ| lim
n→+∞

(
β(Tn)

) 1
n

= 0.

Hence, by using assertion (i), we deduce that λT is weakly demicompact for all λ ∈ [−1, 1]. Now, by
applying Theorem 3.10, we infer that I−λT ∈ Φb

+(X). The rest of the proof is similar to that of Theorem 3.25
(ii). □

Corollary 3.27. Let X be a Banach space and (S,T) ∈ L(X) × L(X). Assume that βw(S) < 1 and βw(T) < 1. The,
the set

H(S,T) =
{
Sk1 Tk2 ...Skn | n ∈N\{0}, (k1, ..., kn) ∈Nn

\{(0, ..., 0}
}

has the following properties

(i)H(S,T) ⊆WDCb(X).
(ii) If S and T are DP, then every H ∈ H(S,T) satisfy ind(I −H) = 0.

Proof. First, it is easy to show, by a simple induction, that βw(Tk) ≤
(
β(T)
)k

for every k ∈ N\{0}. Now, let
us take an element H ∈ H(S,T). Then, there exists n ∈N\{0} and (k1, ..., kn) ∈Nn

\{(0, ..., 0} such that

H = Sk1 Tk2 ...Skn .

Hence,

βw(H) = βw

(
Sk1 Tk2 ...Skn

)
≤ βw(Sk1 )βw(Tk2 )...βw(Sn)

≤

(
βw(S)

)k1
(
βw(T)

)k2
...
(
βw(S)

)kn

< 1.

By using Theorem 3.25, we infer that H ∈ WDCb(X). For the proof of (ii), we suppose that S and T are DP
operators. Then, it is clear that every element ofH(S,T) is a DP operator. In view of Theorem 3.25, we see
that every element ofH(S,T) has a null index. □
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Corollary 3.28. Let X be a complex Banach space, and S ∈ L(X) be a DP operator, P(X) =
n∑

k=1

akXk be a complex

polynomial satisfying P(0) = 0 and let |P(X)| =
n∑

k=1

|ak|Xk. Let Q(X) =
P(X)
|P|(1)

. Assume that βw(S) < 1, then

(i) Q(S) is weakly demicompact.
(ii) I −Q(S) ∈ Φb(X) and ind

(
I −Q(S)

)
= 0.

Proof. First, it is obvious that Q(S) is a DP operator. In view of Proposition 3.24, we can show by a simple

induction that βw(Sk) ≤
(
β(S)
)k

for every k ∈N\{0}. Hence,

βw

(
Q(S)

)
=

1
|P|(1)

βw

(
P(S)
)

≤
1

n∑
k=1

|ak|

n∑
k=1

|ak|βw(Sk)

≤
1

n∑
k=1

|ak|

n∑
k=1

|ak|
(
βw(S)

)k

<
1

n∑
k=1

|ak|

n∑
k=1

|ak|

= 1.

Finally, invoking Theorem 3.25, we achieve the proof. □

4. characterization and invariance of the essential spectrum

In this section, we give some characterizations of the Schechter essential spectrum of an operator acting
on a Banach space. In what follows, we consider a Banach space X and an operator T ∈ C(X). Let J be a
linear operator. If D(T) ⊂ D(J) ⊂, then J will be called T-defined. The restriction of J to D(T) will be denoted
by Ĵ. Moreover, if J ∈ L(XT,X), we say that J is T-bounded (see [15] for more details). Furthermore, we
have the obvious relations 

α(T̂) = α(T), β(T̂) = β(T),R(T̂) = R(T),
α(T̂ + Ĵ) = α(T + J), β(T̂ + Ĵ) = β(T + J),
R(T̂ + Ĵ) = R(T + J).

(3.9)

Hence, T ∈ Φ(X) (resp. Φ+(X)), if and only if, T̂ ∈ Φ(XT,X) (resp. Φ+(XT,X)).

Note that, if T ∈ C(X), S is a nonzero bounded operator defined on X, K is a T-bounded operator and
λ ∈ ρS(T + K), then by using Lemma 2.1 in [26], K(λS − T − K)−1 is a closed operator defined on X and
therefore is bounded by the closed graph theorem.

We consider the following sets

A
w
S,T(X) :=

{
K ∈ L(XT,X) : ∀λ ∈ ρS(T + K), Υr(λ) is a DP operator and ∥Υr(λ)∥w < 1},
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Z
w
S,T(X) :=

{
K ∈ L(XT,X) : ∀λ ∈ ρS(T + K),Υr(λ) ∈ Γw(X)

}
,

Q
w
S,T(X) := {K ∈ L(XT,X) : ∀λ ∈ ρS(T + K),Υl(λ) ∈ Γw(X)},

where
Υr(λ) = K(λS − T − K)−1, Υl(λ) = (λS − T − K)−1K,

and
Γw(X) := {T ∈ L(X) : T is a DP operator and βw(T) < 1}.

Now, we are in position to state the following result.

Theorem 4.1. Let X be a Banach space and S be a nonzero bounded operator on X. For each T ∈ C(X), we
have
(i) σe,S(T) =

⋂
K∈Aw

S,T(X)
σS(T + K).

(ii) σe,S(T) =
⋂

K∈Zw
S,T(X)
σS(T + K).

(iii) σe,S(T) =
⋂

K∈Qw
S,T(X)
σS(T + K).

Proof. For the proof of (i), it is obvious thatK (X) ⊆ Aw
S,T(X). Hence,⋂

K∈Aw
S,T(X)

σS(T + K) ⊆ σe,S(T).

Now, take λ such that λ <
⋂

K∈Aw
S,T(X)
σS(T + K), then there exists K ∈ Aw

S,T(X) such that λ ∈ ρS(T + K). Thus,

λS − T − K has a bounded inverse, Υr(λ) is a DP operator and ∥Υr(λ)∥w < 1. By using Theorem 3.22, we get

I + Υr(λ) ∈ Φb(X) and ind[I + Υr(λ)] = 0.

Furthermore, we have
λS − T = [I + Υr(λ)][λS − T − K].

Then, applying Atkinson’s theorem (see [20], Theorem 12, p.159), we obtain

λS − T ∈ Φb(X) and ind(λS − T) = 0.

Taking into account Theorem 7.27 in [28], we infer that λ < σe,S(T). Hence, we deduce that σe,S(T) ⊆⋂
K∈Aw

S,T(X)
σS(T + K). This achieves the proof of (i).

Now, we prove the assertion (ii). Obviously, we haveK (X) ⊆ Zw
S,T(X). Then,⋂

K∈Zw
S,T(X)

σS(T + K) ⊆ σe,S(T).

Now, take λ such that λ <
⋂

K∈Zw
S,T(X)
σS(T+K). Then, there exists K ∈ Zw

S,T(X) such that λ ∈ ρS(T+K). It follows

that λS − T − K has a bounded inverse, Υr(λ) is a DP operator and βw(Υr(λ)) < 1. Hence, Υr(λ) ∈ L(X). In
view of Theorem 3.25, we infer that

I + Υr(λ) ∈ Φb(X) and ind[I + Υr(λ)] = 0.

Moreover, we have
λS − T = [I + Υr(λ)][λS − T − K].
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We deduce, as in the proof of (i), that λ < σe,S(T). Accordingly,

σe,S(T) ⊆
⋂

K∈Zw
S,T(X)

σS(T + K).

Consequently, ⋂
K∈Zw

S,T(X)

σS(T + K) = σe,S(T).

The proof of the assertion (iii) is similar to (ii). □

Corollary 4.2. Let X be a Banach space, T ∈ C(X) and let S be a nonzero bounded operator defined on X.
LetVw

S,T(X) be any one of the setsHw
S,T(X),Zw

S,T(X) and Qw
S,T(X). Then, the following statements hold

(i) σe,S(T) =
⋂

K∈Uw
S,T(X)
σS(T + K), whereUw

S,T(X) is a subset ofVw
S,T(X) satisfying

K (X) ⊂ Uw
S,T(X) ⊂ Vw

S,T(X).

(ii) Let Ωw
S,T(X) be a subset of C(X) included in Vw

S,T(X) and containing the subspace K (X). If for all
K,K′ ∈ Ωw

S,T(X), we have K ± K′ ∈ Ωw
S,T(X), then the equality

σe,S(T) = σe,S(T + K),

holds for every K ∈ ΩS,T(X).

Proof. (i) SinceK (X) ⊂ Uw
S,T(X) ⊂ Vw

S,T(X), it follows that⋂
K∈Vw

S,T(X)

σS(T + K) ⊆
⋂

K∈Uw
S,T(X)

σS(T + K) ⊆
⋂

K∈K (X)

σS(T + K).

According to Theorem 4.1, we infer that σe,S(T) =
⋂

K∈Vw
S,T(X)
σS(T+K). This completes the proof of the assertion

(i). Now, we prove (ii). By assumption, we haveK (X) ⊂ ΩS,T(X) ⊂ Vw
S,T(X). By Applying (i), we get

σe,S(T) =
⋂

K∈Ωw
S,T(X)

σS(T + K).

Now, fix arbitrarily K ∈ Ωw
S,T(X). Taking into account the fact that for all K,K′ ∈ Ωw

S,T(X), we have K ± K′ ∈
ΩS,T(X). We can readily prove that the application Ψ : K′ 7−→ K + K′ is a bijection from Ωw

S,T(X) to itself.
Hence,

σe,S(T + K) =
⋂

K′∈Ωw
S,T(X)

σS(T + K′ + K)

=
⋂

K′∈Ωw
S,T(X)

σS(T + K′)

= σe,S(T).

□
Now, we give some characterizations of the approximate essential spectrum of an operator.
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Theorem 4.3. Let X be a Banach space, T ∈ C(X) and S be a nonzero bounded operator defined on X. Let
V

w
S,T(X) be any one of the setsAw

S,T(X),Zw
S,T(X) and Qw

S,T(X). Then, the following statements hold

(i) σeap,S(T) =
⋂

K∈Vw
S,T(X)
σap,S(T + K).

(ii) σeap,S(T) =
⋂

K∈Uw
S,T(X)
σap,S(T + K), whereUw

S,T(X) is a subset ofVw
S,T(X) satisfying

K (X) ⊂ Uw
S,T(X) ⊂ Vw

S,T(X).

(iii) Let Ωw
S,T(X) be a subset of C(X) included in Vw

S,T(X) and containing the subspace K (X). If for all
K,K′ ∈ Ωw

S,T(X), we have K ± K′ ∈ Ωw
S,T(X), then the equality

σeap,S(T) = σeap,S(T + K),

holds for every K ∈ Ωw
S,T(X).

Proof. (i) Suppose for example thatVw
S,T(X) = Aw

S,T(X). SinceK (X) ⊆ Aw
S,T(X), then⋂

K∈Aw
S,T(X)

σap,S(T + K) ⊆ σeap,S(T).

Now, take λ such that λ <
⋂

K∈Aw
S,T(X)
σap,S(T + K). Then, there exists K ∈ Aw

S,T(X) such that

inf
∥x∥=1,x∈D(T)

∥(λS − T − K)x∥ > 0.

Hence, α(λS − T − K) = 0 so that ind(λS − T − K) ≤ 0. By using Theorem IV.1.6 in [10], we infer that
λS − T − K ∈ Φ+(X). Since λS − T − K is closed, then λS − T̂ − K ∈ L(XT,X). Now, we have

λS − T̂ = [I + K(λS − T − K)−1][λS − T̂ − K].

Combining Theorem 3.22 and Atkinson’s theorem, we infer that

λS − T̂ ∈ Φ+(XT,X) and ind(λS − T̂) ≤ 0.

Taking into account (3.9), we get

λS − T ∈ Φ+(X) and ind(λS − T) ≤ 0.

Then we easily shows that λ < σeap,S(T), this proves the assertion (i). The cases Vw
S,T(X) = Zw

S,T(X) and
V

w
S,T(X) = Qw

S,T(X) can be treated similarily. For the proof of (ii), assume that K (X) ⊂ Uw
S,T(X) ⊂ Vw

S,T(X).
Then, ⋂

K∈Vw
S,T(X)

σap,S(T + K) ⊂
⋂

K∈Uw
S,T(X)

σap,S(T + K) ⊂
⋂

K∈(X)

σap,S(T + K).

In view of assertion (i), we infer that

σeap,S(T) =
⋂

K∈Vw
S,T(X)

σap,S(T + K).

The proof of (iii) is similar to the one of of Corollary 4.2. □

The next proposition will provide a characterization of the essential defect spectrum of an operator.
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Proposition 4.4. Let X be a Banach space, T ∈ C(X) and let S be a nonzero bounded operator defined on X.
LetVw

S,T(X) be any one of the setsAw
S,T(X),Zw

S,T(X) and Qw
S,T(X). Then, the following statements hold

(i) σeδ,S(T) =
⋂

K∈Vw
S,T(X)
σδ,S(T + K).

(ii) σeδ,S(T) =
⋂

K∈Uw
S,T(X)
σδ,S(T + K), whereUw

S,T(X) is a subset ofVw
S,T(X) satisfying

K (X) ⊂ Uw
S,T(X) ⊂ Vw

S,T(X).

(iii) Let Ωw
S,T(X) be a subset of C(X) included in Vw

S,T(X) and containing the subspace K (X). If for all
K,K′ ∈ Ωw

S,T(X), we have K ± K′ ∈ Ωw
S,T(X), then the equality

σeδ,S(T) = σeδ,S(T + K),

holds for every K ∈ ΩS,T(X).

Proof. (i) Assume thatVw
S,T(X) = Aw

S,T(X). SinceK (X) ⊆ Aw
S,T(X), then⋂

K∈Aw
S,T(X)

σδ,S(T + K) ⊆ σeδ,S(T).

Now, take λ such that λ <
⋂

K∈Aw
S,T(X)
σδ,S(T + K). Then, there exists K ∈ Aw

S,T(X) such that λS − T − K is onto.

Thus, λS−T−K ∈ Φ−(X) and ind(λS−T−K) = α(λS−T−K) ≥ 0. Reasoning as in the proof of Theorem 4.3,
we get λS − T ∈ Φ−(X) and ind(λS − T) ≥ 0. Hence we obtain λ < σeδ,S(T). This completes the proof of (i).
We prove in the same way the casesVw

S,T(X) = Zw
S,T(X) andVw

S,T(X) = Qw
S,T(X). The same reasoning used in

the proof of Theorem 4.3 can be applied to achieve the proof of assertions (ii) and (iii). □
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