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Abstract. In this article, we introduce the idea of nonlinear Suzuki (F,R,)-contractions, which is patterned
after the contrctive conditions due to Suzuki [Nonlinear Anal. 71 (2009) 5313-5317] and Wardowski [Fixed
Point Theory Appl. (2012) 94:6]. Utilizing our newly introduced contraction, we establish some relation-
theoretic fixed point theorems. Furthermore, we adopt an example to highlight the genuineness of our
newly proved results. Finally, we use our main results to establish the existence and uniqueness of solution
for a nonlinear matrix equation.

1. Introduction

Banach fixed point theorem is very effective and applicable result of metric fixed point theory, which has
been generalized and extended in various directions. Two relatively recent and novel contraction conditions
are due to Suzuki [1] and Wardowski [2], which assert that a self-mappingT defined on a metric space (M, d)
is said to be a Suzuki contraction if for all u, v ∈ Mwith u , v and 1

2 d(u,Tu) < d(u, v)⇒ d(Tu,T v) < d(u, v)
while, a mapping T : M → M is said to be F-contraction if there exist τ > 0 and F ∈ F such that
τ + F(d(Tu,T v) ≤ F(d(u, v)) with d(Tu,T v) > 0 for all u, v ∈ M, (where F is described in Definition 2.1
later) besides enlarging the class of underlying spaces along with the refinements of involved metrical
terms on the lines (c f . [4–6, 13]). Recently, Piri and Kumam [7] improved Wardowski types results for
F-Suzuki-contraction, wherein the condition (F3) of F is replaced by the continuity of auxiliary map F.

Ran and Reurings [8], and Nieto and Rodrı́guez-Loṕez [9] extended the Banach fixed point theorem to
ordered metric spaces. Proceeding on the lines of [8, 9] and Durmaz et al. [10] extended this result employing
F-contraction. On the other hand, Alam and Imdad [11] generalized the classical Banach contraction prin-
ciple under an amorphous (arbitrary) binary relation. Very recently, Sawangsup et al. [12] using the notion
of F-contraction improved the classical result on the complete metric space endowed with an amorphous
binary relation.

Our aim in this article is to introduce the notion of “nonlinear Suzuki (F,R,)-contraction” (nonlinear
class of maps Φwill be defined later) and utilized the same to prove some fixed point results for nonlinear
Suzuki (F,R,)-contractions employing amorphous binary relation besides furnishing an example which
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demonstrate the worth of our newly proved results. Our newly proved result (combine) remains an
improved version of novel results due to Suzuki [1] and Wardowski [2] under amorphous binary relation.
Finally, we use our main results to establish the existence and uniqueness of solution for nonlinear matrix
equation.

2. Preliminaries

Given a setM , ∅, with a binary relationR onMwhich is subset ofM2 and defined as (u, v) ∈ R instead
of uRv. For ∅ ,W ⊆ X, and a self mapping T onM, the restriction of R to W, denoted by R|W , which is de-
fined asR|W = R∩W2 andR, := {(u, v) : Tu , Tv} andRs := R∪R−1, (whereR−1 := {(y, x) ∈ M2 : (x, y) ∈ R}).
Throughout, R stands for a nonempty binary relation instead of ‘binary relation’. Also, N stands for the
set of natural numbers, whileN0 (i.e., N0 := N ∪ {0}), R and R+ stand for the set of whole, set of real and
set of positive real numbers, respectively.

The following notion of F -class and term of F-contraction were introduced by Wardowski, where F lies
in F .

Definition 2.1. [2] Let F be the set of all mappings F : R+ → R enjoying the following the properties:

(F1) F is strictly increasing i.e., for all ξ, η ∈ R+ such that ξ < η implies that F(ξ) < F(η),

(F2) for any sequence {ξn} ⊆ R+ with lim
n→∞

ξn = 0 if and only if lim
n→∞

F(ξn) = −∞,

(F3) there exists k ∈ (0, 1) such that lim
ξ→0+

ξkF(ξ) = 0.

Definition 2.2. [2] A self-mapping T on a metric space (M, d) is said to be F-contraction if there exist τ > 0 and
F ∈ F such that

d(Tu,T v) > 0 =⇒ τ + F(d(Tu,T v) ≤ F(d(u, v)) ∀ u, v ∈ M.

The following well known functions are the examples of F -class:

• F1(ξ) = lnξ for all ξ > 0,

• F2(ξ) = ξ + lnξ for all ξ > 0,

• F3(ξ) = − 1
√
ξ

for all ξ > 0,

• F4(ξ) = ln(ξ + ξ2) for all ξ > 0.

For the sake of completeness, we recall some noted results. The following recent core result due to
Wardowski genuinely enriches the work of Edelstien on contractive mapping:

Theorem 2.3. [2] Every F-contractive self-mapping T defined on a complete metric space (M, d) has a unique fixed
point inM. Moreover, for each u0 ∈ M, iterative sequense (Picard sequence) {T nu0} converges to the fixed point of
T .

Suzuki [1] proved generalized versions of Edelstein’s result on the compact metric space as follows:

Theorem 2.4. [1] Let (M, d) be a compact metric space and T : M → M. Assume that if for all u, v ∈ M with
u , v and 1

2 d(u,Tu) < d(u, v)⇒ d(Tu,T v) < d(u, v). Then T has a unique fixed point.
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3. Relevant Notions and Auxiliary Results

In sequel, we recall some relevant definitions and basic results for the use of our subsequent discussion:

Definition 3.1. [11] LetM be a nonempty set, R a binary relation onM and T a self-mapping onM. We say that
“R is T-closed” if for any u, v ∈ M,

(Tu,Tv) ∈ R, whenever (u, v) ∈ R.

Proposition 3.2. [11] For a binary relation R defined onM,

(u, v) ∈ Rs
⇐⇒ [u, v] ∈ R.

Definition 3.3. [11] LetM be a nonempty set and R a binary relation defined onM. A sequence {un} ⊂ M is said
to be an “R-preserving” if

(un,un+1) ∈ R ∀ n ∈N0,

Proposition 3.4. [14] LetM be a nonempty set, R a binary relation defined onM and T a self-mapping onM, if
“R is T-closed”, then so is Tn (for all n ∈N0,) where Tn denotes nth iterate of T.

Proposition 3.5. [13] LetM be a nonempty set endowed with a binary relation R and T a self-mapping onM such
that R is T-closed, then Rs is also T-closed.

Definition 3.6. [13] Let (M, d) be a metric space, and R a binary relation defined on M. We say that M is
“R-complete” if every R-preserving Cauchy sequence inM converges to a point inM.

Notice that notion of “R-completeness” coincides with the usual “completeness” via universal relation.

Definition 3.7. [13] Let (M, d) be a metric space equipped with a binary relation R and T a self-mapping on M.

Then T is said to be “R-continuous” at u ∈ X if for any R-preserving sequence {un} such that un
d
−→ u, we have

T(un) d
−→ T(u). T is called R-continuous if it is R-continuous at each point ofM.

The following notion of d-self-closedness due to Alam and Imdad [11] remains weaker over partial order
relation (⪯) contained in Turinici [15, 16]:

Definition 3.8. [11] Let (M, d) be a metric space equipped with a binary relation R. Then R is called “d-self-closed”

if for any R-preserving sequence {un} such that un
d
−→ u, there exists a subsequence {unk } of {un} with [unk ,u] ∈

R ∀ k ∈N0.

Definition 3.9. [17] LetM be a nonempty set and R a binary relation defined onM. Then a subset W ofM is said
to be “R-directed” if for each u, v ∈W, there exists w ∈ M such that (u,w) ∈ R and (v,w) ∈ R.

Definition 3.10. [18] LetM be a non-empty set endowed with a binary realtion R. Then R is called complete if for
all u, v inM, either (u, v) ∈ R or (u, v) ∈ R which is denoted by [u, v] ∈ R.

Definition 3.11. [18] LetM be a nonempty set and R a binary relation defined onM. For any u, v ∈ M, there is a
finite sequence {ξ0, ξ1, ξ2, ..., ξl} ⊂ M such that:

(i) ξ0 = u and ξl = v,
(ii) (ξi, ξi+1) ∈ R for each i (0 ≤ i ≤ l − 1).

Then this sequence is called a “path of length l” (where l is a natural number) from u to v in R. Here a path of length
l involves l + 1 elements ofM also, they need not be distinct.

Definition 3.12. [13] Let M nonempty set and R a binary relation defined on M. A subset W of M is called
“R-connected” if for each pair u, v ∈W, there exists a path in R from u to v.
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Firstly, we define the nonlinear class as follows:

Φ = {ϕ : (0,∞)→ (0,∞) : lim inf
r→t+

ϕ(r) > 0 for each t ≥ 0}.

Suppose T be a self-mapping on a metric space (M, d) and R a binary relation defined on M. Then T is
said to be “nonlinear Suzuki (F,R,)-contraction”, if there exist ϕ ∈ Φ and F ∈ F such that u, v ∈ M with
(u, v) ∈ R,,

1
2

d(u,Tu) < d(u, v) =⇒ ϕ(d(u, v)) + F(d(Tu,Tv)) ≤ F(d(u, v)).

In view of symmetry of d, we can deduce the following results.

Proposition 3.13. Let (M, d) be a metric space,R a binary relation onM, T a self-mapping onM, ϕ ∈ Φ and F ∈ F
then the following contractivity conditions are equivalent:

(I) 1
2 d(u,Tu) < d(u, v) =⇒ ϕ(d(u, v)) + F(d(Tu,Tv)) ≤ F(d(u, v)) ∀ u, v ∈ X with (u, v) ∈ R,,

(II) 1
2 d(u,Tu) < d(u, v) =⇒ ϕ(d(u, v)) + F(d(Tu,Tv)) ≤ F(d(u, v)) ∀ u, v ∈ X with [u, v] ∈ R,.

A proof of above proposition can be completed on the lines of the proof of Proposition 2.22 in [21].

For the subsequent discussion, we denote the following notations:[Given a self-mapping T on a
nonempty setM together with a binary relation R, we denote the following notations]:

• F(T): the class of all fixed points of T;

• M(T,R): the class of all points ofM such that (u,Tu) ∈ R.

4. Main Results

We establish a result on the existence of fixed points for nonlinear Suzuki (F,R,)-contraction (via the class
Φ) employing arbitrary binary relation, which runs as follows:

Theorem 4.1. Suppose T be a self-mapping on a metric space (M, d) and R a binary relation defined onM. Assume
that the following conditions hold:

(a) (M, d) is R-complete;
(b) M(T,R) is non-empty;
(c) R is T-closed;
(d) T is R-continuous or R is d-self-closed;
(e) there exist ϕ ∈ Φ and F ∈ F such that T is nonlinear Suzuki (F,R,)-contraction.

Then T has a fixed point.

Proof. Since M(T,R) is non-empty, we can choose u0 ∈ M(T,R) such that u1 = Tu0, continuing in such a
way we can construct a sequence {un} inM such that

un = Tn(u0). (1)

As R is T-closed and Proposition 3.4, we get

(Tnu0,Tn+1u0) ∈ R

so that

(un,un+1) ∈ R ∀ n ∈N0. (2)

So the sequence {un} is R-preserving. Now, if d(un0+1,un0 ) = 0 for some n0 ∈N0, then in view of (1), we have
T(un0 ) = un0 so that un0 is a fixed point of T and hence the proof is over.
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Otherwise, if d(un+1,un) > 0 ∀ n ∈ N0, so the inequality holds 1
2 d(un,un+1) < d(un,un+1) ∀ n ∈ N0, then

utilizing (1) and the contractivity condition (e) to (2), we deduce, for all n ∈N0 that

ϕ(d(un,un+1)) + F(d(Tun,Tun+1)) ≤ F(d(un,un+1))
ϕ(d(un,un+1)) + F(d(un+1,un+2)) ≤ F(d(un,un+1))

or,

F(d(un+1,un+2)) ≤ F(d(un,un+1)) − ϕ(d(un,un+1)) (3)

Denote δn := d(un,un+1) for all n ∈ N0. Due to (3) and the property (F1) of F , {δn} is decreasing sequence of
numbers. Therefore, there exists ρ ≥ 0 such that limn→∞ δn = ρ. We claim that

lim
n→∞

δn = 0. (4)

Let if possible ρ > 0. Using (3), the following holds:

F(d(un+1,un+2)) ≤ F(d(u0,u1)) − ϕ(d(un,un+1)) − ϕ(d(un−1,un)) − · · · − ϕ(d(u0,u1))
= F(d(u0,u1)) − ϕ(δn) − ϕ(δn−1) − · · · − ϕ(δ0). (5)

Set ϕ(δpn ) := min{ϕ(δn), ϕ(δn−1), · · · , ϕ(δ0)} for all n ∈N0. Therefore inequality (5), reduces to

F(d(un+1,un+2) ≤ F(d(u0,u1)) − nϕ(δpn ). (6)

In the similar fashion from (6), we can obtain

F(d(un,un+1)) ≤ F(d(u0,u1)) − nϕ(δpn ). (7)

Consider the sequence {ϕ(δpn )}, then there are two cases arise. Case (i): For each n ∈N, there is m ∈Nwith
m > n, such that ϕ(δpn ) > ϕ(δpm ). Thus, we can obtain subsequence {δpnk

} of {δpn } with ϕ(δpnk
) > ϕ(δpnk+1 ) for

all k ∈N. As δpnk
→ ρ+, when k→∞. Applying the definition of Φ, we get

lim inf
k→∞

ϕ(δpnk
) > 0.

Therefore (7), yields that F(δnk ) ≤ F(δ0)−nkϕ(δpnk
) for all k ∈N, hence by (F2), limk→∞ F(δnk ) = −∞ and again

by (F2), we obtain limk→∞ δpnk
= 0, which contradicts that δpnk

→ ρ+. Thus ρ = 0.
Case (ii): There is n0 ∈ N such that ϕ(δpn0

) = ϕ(δpm ) for all m > n0. Then F(δm) ≤ F(δ0) − mϕ(δpm )) for all
m > n0. Hence, in view of (F2) limk→∞ δpm = 0, which contradicts that ρ > 0. Thus in all ρ = 0. In view of
(F3) there exists k ∈ (0, 1) such that

lim
n→∞

δk
nF(δn) = 0. (8)

In view of (7), the following holds for all n ∈N,

δk
nF(δn) − δk

nF(δ0) ≤ −nδk
nϕ(δn)) ≤ 0. (9)

Making n→∞ in (9) and using (8) along with limn→∞ δk
n = 0, give rise

lim
n→∞

nδk
n = 0. (10)

In view of (10), there exists n0 ∈N such that nδk
n < 1 for all n ≥ nn0 , therefore

δn <
1

n
1
k

. (11)



M. Arif, M. Imdad / Filomat 36:9 (2022), 3155–3165 3160

We require to show that {un} is a Cauchy sequence. To substantiate this, in view of triangle inequality of d
and (11), (for all m,n ∈N0 with m > n), we have

d(un,um) ≤ d(un,un+1) + d(un+1,un+2) + · · · + d(um−1,um)

=

m−1∑
j=n

d(u j,u j+1)

≤

∑
j≥n

d(u j,u j+1)

≤

∑
j≥n

1

j
1
k

→ 0 as n→∞.

Hence {un} is “R-preserving Cauchy sequence” inM. As (M, d) is R-complete so that there exists u ∈ M,

such that un
d
−→ u as n→∞.Next, we assert that u = T(u). In order to prove the assertion, suppose that T is

R-continuous. As {un} is R-preserving with un
d
−→ u, R-continuity of T implies that un+1 = T(un) d

−→ T(u).
In view of uniqueness of limit, we obtain T(u) = u.

Alternately, assume thatR is d-self-closed. Since {un} isR-preserving such that un
d
−→ u, the d-self-closedness

of R implies that the existence of a subsequence {unk } of {un}with [unk ,u] ∈ R (∀ k ∈N0). We claim that

d(unk+1,Tu) ≤ d(unk ,u) ∀ k ∈N. (12)

There are two cases arise, let us consider a partition ofN i.e.,N0
∪N+ =N andN0

∩N+ = ∅ verifying that

(i) d(unk ,u) = 0 ∀ k ∈N0,
(ii) d(unk ,u) > 0 ∀ k ∈N+.

In case (i), we have d(Tunk ,Tu) = 0 ≤ d(unk ,u) ∀ k ∈N0. In case (ii), 1
2 d(u,unk ) < d(u,unk ) for all k ∈N+,which

on employing assumption (e), Proposition 3.13 and [unk ,u] ∈ R, we get

F(d(unk+1,Tu)) ≤ F(d(unk ,u)) − ϕ(d(unk ,u))
F(d(unk+1,Tu)) < F(d(unk ,u)) (13)

In view of (F1), we deduce that d(unk+1,Tu) < d(unk ,u) for all k ∈ N+. Thus in all (12) is proved. Letting

n→ ∞ in (12) and using the fact that unk

d
−→ u as k→ ∞, yields that unk+1

d
−→ T(u). Now, utilizing the fact

of uniqueness of a limit, we have T(u) = u so that u is a fixed point of T. Thus the proof is completed.

Now, we prove a uniqueness theorem corresponding to Theorem 4.1.

Theorem 4.2. Suppose all the hypotheses of Theorem 4.1 together with the following condition holds:

(v) : T(M) is Rs-connected.

Then T has a unique fixed point.

Proof. By Theorem 4.1, F(T) , ∅. Choose u, v ∈ F(T), then for all n ∈N0, we get

Tn(u) = u and Tn(v) = v. (14)

In lieu of assumption (v), there exists a path (say {ξ0, ξ1, ξ2, ..., ξl}) of some finite length l in Rs from u to v so
that

ξ0 = u, ξl = v and [ξi, ξi+1] ∈ R for each i (0 ≤ i ≤ l − 1). (15)
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Since R is T-closed, utilizing Propositions 3.4-3.5 and (15), we obtain

[Tnξi,Tnξi+1] ∈ R for each i (0 ≤ i ≤ l − 1) and for each n ∈N0. (16)

Now, for each n ∈N0 and for each i (0 ≤ i ≤ l − 1), write δi
n := d(Tnξi,Tnξi+1).

We assert that

lim
n→∞

δi
n = 0 for each i (0 ≤ i ≤ l − 1). (17)

For fix i, we distinguish two cases. Firstly, consider that δi
n0
= d(Tn0ξi,Tn0ξi+1) = 0 for some n0 ∈

N0, i.e., Tn0 (ξi) = Tn0 (ξi+1), which implies that Tn0+1(ξi) = Tn0+1(ξi+1). Consequently, we get δi
n0+1 =

d(Tn0+1ξi,Tn0+1ξi+1) = 0. Thus by induction on n, we obtain δi
n = 0 ∀ n ≥ n0, so that lim

n→∞
δi

n = 0. Sec-

ondly, suppose that δi
n > 0 ∀ n ∈ N0, 1

2 d(Tnξi,Tnξi+1) < d(Tnξi,Tnξi+1) then applying (14), the contractivity
condition (e), and Proposition 3.13, we deduce, (for all n ∈N+)

ϕ(d(Tnξi,Tnξi+1)) + F(d(Tn+1ξi,Tn+1ξi+1)) ≤ F(d(Tnξi,Tnξi+1)) or,
F(d(Tn+1ξi,Tn+1ξi+1)) ≤ F(d(Tnξi,Tnξi+1)) − ϕ(d(Tnξi,Tnξi+1)) (18)

Due to (18) and property (F1), {δi
n} (for each i, 0 ≤ i ≤ l − 1) is decreasing sequence. Therefore, there exists

δi
≥ 0 such that limn→∞ δi

n = δ
i (for each i, 0 ≤ i ≤ l − 1). Let if possible δi > 0. Utilizing the (3) (on the

similar pattern), the following holds:

F(d(Tn+1ξi,Tn+1ξi+1)) ≤ F(d(ξi, ξi+1)) − ϕ(d(Tnξi,Tnξi+1)) − ϕ(d(Tn−1ξi,Tn−1ξi+1)) − · · · − ϕ(d(ξi, ξi+1))
= F(d(ξi, ξi+1)) − ϕ(δi

n) − ϕ(δi
n−1) − · · · − ϕ(δi

0) (19)

On setting ϕ(δi
pn

) := min{ϕ(δi
n), ϕ(δi

n−1), · · · , ϕ(δi
0)} for all n ∈N0. Therefore inequality (19), reduces to

F(d(Tn+1ξi,Tn+1ξi+1)) ≤ F(d(ξi, ξi+1)) − nϕ(δi
pn

). (20)

Now, on the lines similar to proof of (4), we can deduce that lim
n→∞

δi
n = 0 for each i (0 ≤ i ≤ l − 1). Making

use of (14), (16), (17) and the triangular inequality, we have

d(u, v) = d(Tnξ0,Tnξl) ≤ δ0
n + δ

1
n + · · · + δ

l−1
n → 0 as n→∞

so that u = v. Hence T has a unique fixed point.

Corollary 4.3. Conclusions of Theorem 4.1 remains true if the condition (v) is replaced by one of the following
conditions (besides retaining rest of the hypotheses):

(u′) R|T(M) is complete,
(u′′) T(M) is Rs-directed.

A sketch of the proof of above corollary can be attempted on the lines of the proof of Corollary 3.4 contained in [14].

The following example is given to show the worth of Theorems 4.1 and 4.2 over corresponding earlier
known results.

Example 4.4. LetM = [0, 4] equipped with usual metric “d” and a self-map T onM defined by

T(u) =


4, u = 0,
1, u ∈ (0, 2],
2, otherwise.

LetR := {(0, 1), (1, 3), (4, 1), (1, 2), (4, 2), (2, 2), (1, 1), (3, 3)} be a binary relation onM, thenR, = {(0, 1), (1, 3), (4, 1), (4, 2)}
(owing to use of self-mapping T). Notice that,M is R-complete and R is T-closed. Consider the functions ϕ and F
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defined by ϕ(t) = 1
3t+1 and F(t) = − 1

√
t
∀ t ∈ (0,∞). Clearly, ϕ ∈ Φ and F ∈ F andM(T,R) , ∅ (as (1,T1) ∈ R).

Now, for all (u, v) ∈ R, such that 1
2 d(u,Tu) < d(u, v) holds only for (u, v) ∈ {(1, 3) , (4, 1), (4, 2)}, we have

ϕ(d(1, 3)) + F(d(T1,T3)) ≤ F(d(1, 3))⇒
1
7
− 1 ≤ −

1
√

2

ϕ(d(4, 1)) + F(d(T4,T1)) ≤ F(d(4, 1))⇒
1
9
− 1 ≤ −

1
√

3
and

ϕ(d(4, 2)) + F(d(T4,T2)) ≤ F(d(4, 2))⇒
1
7
− 1 ≤ −

1
√

2
,

which shows that T is nonlinear Suzuki (F,R,)-contraction. We may choose R-preserving sequence {un} such that

un
d
−→ u. Since (un,un+1) ∈ R, for all n ∈N, there exists N ∈N such that un = u ∈ {1, 2, 3}, for all n ≥ N. Hence,

we are able to find a subsequence {unk } of a sequence {un} such that unk = u, for all k ∈ N, which amounts to say
that [unk ,u] ∈ R, for all k ∈ N. Thus, R is d-self-closed. Further, remaining hypotheses of Theorem 4.2 can be easily
verified. Thus, we observe that T has a unique fixed point (namely: u = 1). As (0, 1) ∈ R, but

τ + F(d(T0,T1)) > F(d(0, 1)) f or all τ ∈ R+and F ∈ F ,

which shows that T is not FR-contraction. Furthermore, since 0, 1 ∈ M and 1
2 d(1,T1) < d(1, 0) does not imply

3 = d(T0,T1) ≤ d(0, 1) = 1,

which means that T is not Suzuki contraction. Hence Theorems 2.3 (due to Wardowski [2]) and 2.4 (due to Suzuki
[1]) are not applicable. Thus this example demonstrate the worth of our newly proved results.

5. Application

Finally, in last section, we establish the guaranty of existence of solution of a noted matrix equation with
the help of our main results.

Firstly, we recall the some notations: LetM(n) be the set of all complex matrices of oder n (i.e., order
n means n × n matricx), H(n) ⊆ M(n), P(n) ⊆ H(n), and H+(n) ⊆ H(n), respectively stand the classes
of Hermitian matrices, positive definite matrices and positive semidefinite matrices all of order n. For
U ∈ H+(n) we denote U ⪰ O and similarly U ∈ P(n) means U ≻ O. Now, we relate some notations for
U − V ⪰ O and U − V ≻ O respectively implies that U ⪰ V and U ≻ V. Now, for any A,B ∈ H(n), there is
a greatest lower bound and least upper bound (see [20]). Here notation ∥.∥ stands the spectral norm of a
matrix A i.e., ∥A∥ =

√
λ+(A∗A) such that λ+(A∗A) the largest eigenvalue of A∗A, where A∗ is the conjugate

transpose of A. We utilize the metric induced by the trace norm ∥.∥tr defined by ∥A∥tr =
∑n

i=1 Si(A), Si(A),
i = 1, 2, · · · ,n are the singular values of A ∈ M(n). Since H(n) equipped with this norm is complete matic
space ( see [8, 19, 20]). Further, it is to see that is partially ordered set with partial order ⪰, defined as
U ⪯ V ⇐⇒ V ⪰ U. Now, we discuss on the nonlinear matrix equation:

U = Q +
n∑

i=1

A∗iL(U)Ai, (21)

where Ai are arbitrary matrices of order n, Q is a Hermitian positive definite matrix and L is continous
order preserving map fromH(n) to P(n) with L(0) = 0.

For the use of our subsequent discussion, we require following lemmas:
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Lemma 5.1. [8] Let A ⪰ O and B ⪰ O be the matrices of oder n, then 0 ≤ tr(AB) ≤ ||A||tr(B).

Lemma 5.2. [22] Given A ∈ H(n) satisfies A ≺ In, then ||A|| < 1.

Theorem 5.3. Consider the equation described in (21), suppose that there exist a positive constant k and ϕ ∈ Φ such
that:

(a) For any U,V ∈ H(n) with U ⪯ V such that
n∑

i=1
A∗iL(U)Ai ,

n∑
i=1

A∗iL(V)Ai and 1
2 |tr(U −Q−

n∑
i=1

A∗iL(U)Ai)| <

|tr(U − V)| implies that

|tr(LV) − tr(LU)| ≤
|tr(V −U)|

k
(
1 + 1

1+|tr(V−U)|

√
tr(V −U)

)2

(b)
l∑

i=1
(AiA∗i ) ⪯ kIn and

l∑
i=1

A∗iL(U)Ai ≺ O.

Then the system (21) has a unique solution. Furthermore, the iteration

Un = Q +

n∑
i=1

A∗iL(Un−1)Ai (22)

where U0 ∈ H(n) comparable with U0 ⪯ Q +
n∑

i=1
A∗iL(U)Ai and converges with respect to trace norm ||.||tr to the

solution of matrix equation (21).

Proof. OnH(n), a self-mapping T define by

T (U) = Q +
l∑

i=1

A∗iL(U)Ai f or all U ∈ H(n). (23)

Let the mappings ϕ : (0,∞)→ (0,∞) and F : R+ → R be defined by

ϕ(t) =
1

1 + t
and F(a) = −

1
√

a
for all a ∈ R+

respectively. Clearly, ϕ ∈ Φ and F ∈ F . Now, we define a binary relation R := {(U,V) : (U,V) ∈ H(n) ×
H(n),U ⪯ V}. Let U,V ∈ R, = {(U,V) ∈ R : T (U) , T (V)}. This means L(U) ≺ L(V). Notice that L
is an order preserving mapping, which gives rise, U ≺ V. Clearly, T is well defined, (H(n), || · ||tr) is R-

complete, R onH(n) is T -closed and T is R-continuous. As
n∑

i=1
A∗iL(Q)Ai ≻ 0, for some Q ∈ H(n), we have
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Q ∈ H(n)(T ,R). HenceH(n)(T ,R) , ∅. Now, any (U,V) ∈ R, such that 1
2 ||U − T (U)||tr < ||U − V||tr, then

||T (V) − T (U)||tr = tr(T (V) − T (U))

= tr
( l∑

i=1

A∗i (L(V) − L(U))Ai

)

=

l∑
i=1

tr(A∗i (L(V) − L(U))Ai)

=

l∑
i=1

tr(AiA∗i (L(V) − L(U))

= tr
(( l∑

i=1

AiA∗i

)
(L(V) − L(U)

)

≤ ||

l∑
i=1

AiA∗i || · ||(L(V) − L(U)||

≤

||

l∑
i=1

AiA∗i ||

k

(
||V −U||(

1 + 1
1+|tr(V−U)|

√
||V −U||tr

)2

)

<
||V −U||tr

(1 + ϕ(|tr(V −U)|)(
√
||V −U||tr))2

so that (
1 + ϕ(|tr(V −U)|)(

√
||V −U||tr)

)2

||V −U||tr
≤

1
||T (V) − T (Q)||tr

.

This implies that(
1 + ϕ(|tr(V −U))|(

√
||V −U||tr)

)2

||V −U||tr
≤

1
||T (V) − T (Q)||tr

.(
ϕ(|tr(V −U))|) +

1
√
||V −U||tr

)2

≤
1

||T (V) − T (U)||tr

ϕ(|tr(V −U))|) +
1

√
||V −U||tr

≤
1√

||T (V) − T (U)||tr

so that
ϕ(|tr(V −U))|) −

1√
||T (V) − T (U)||tr

≤ −
1

√
||V −U||tr

which yields that
ϕ(||V −U||tr) + F(||T (V) − T (U)||tr) ≤ F(||V −U||tr).

Hence T is nonlinear Suzuki (F,R,)-contraction. Thus all the conditions of Theorem 4.2 are verified. Due
to Theorem 4.2, there is X̂ ∈ H(n) such that T (X̂) = X̂. Furthermore, due to availability of least upper
bound and greatest lower bound for each U,V ∈ H(n), we have T (H(n)) is Rs-connected. Hence system
(21) admits a unique solution inH(n) (due to Theorem 4.1) (or, Theorem 4.2), this ends the proof.
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