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Abstract. We consider the dissipative singular q-Sturm–Liouville operators acting in the Hilbert space
L2

w,q(R+), that the extensions of a minimal symmetric operator with deficiency indices (2, 2) (in limit-circle
case). We construct a self-adjoint dilation of the dissipative operator and its incoming and outgoing spectral
representations, which make it possible to determine the scattering matrix of the dilation in terms of the
Weyl–Titchmarsh function of a self-adjoint q-Sturm-Liouville operator. We also construct a functional model
of the dissipative operator and determine its characteristic function in terms of the scattering matrix of the
dilation (or of the Weyl–Titchmarsh function). Theorems on the completeness of the system of or root
functions of the dissipative and accumulative q-Sturm–Liouville operators are proved.

1. Introduction and Notations

In this section, we describe some of the necessary q-notations and results (see [4-7, 9, 12-15]). Throughout
the paper, q denotes a positive number such that 0 < q < 1. For µ ∈ R := (−∞,∞), a set A ⊆ R is called a
µ-geometric set if µt ∈ A for all t ∈ A. If A ⊆ R is a µ-geometric set, then it includes all geometric sequences
{µnt} (n = 0, 1, 2, ...), t ∈ A. Let f be a real or complex valued function defined on a q-geometric set A. The
q-difference operator is defined by

Dq f (t) :=
f (t) − f (qt)

t − qt
, t ∈ A\{0}. (1.1)

If 0 ∈ A, the q-derivative at zero is defined to be

Dq f (0) := lim
n→∞

f (qnt) − f (0)
qnt

if the limit exists and does not depend on t. Since the formulation of the boundary-value problems requires
the definition of Dq−1 in a same manner to be

Dq−1 f (t) :=

 f (t)− f (q−1t)
t−q−1t , t ∈ A\{0},
Dq f (0), t = 0,
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provided that Dq f (0) exists. As a converse of the q-difference operator, Jackson’s q-integration [14], is given
by ∫ x

0
f (t)dqt := x(1 − q)

∞∑
n=0

qn f (qnx), x ∈ A,

provided that the series is convergent, and∫ b

a
f (t)dqt :=

∫ b

0
f (t)dqt −

∫ a

0
f (t)dqt, a, b ∈ A.

When it is required, q will be replaced by q−1. The following facts, which will be frequently used, can be
verified directly from the definition:

Dq−1 f (t) = (Dq f )(q−1t), (D2
q f )(q−1t) = qDq[Dq f (q−1t)] = Dq−1 Dq f (t).

Related to this operator there exists a non-symmetric formula for the q-differentation of a product

Dq[ f (t)1(t)] = 1(t)Dq f (t) + f (qt)Dq1(t).

From now on, we shall consider only the functions q-regular at zero, that is, functions satisfying
limn→∞ f (qnt) = f (0). The class of the functions being q-regular at zero includes the continuous functions.
If f and 1 are q-regular at zero, then we have a rule of q-integration by parts given below∫ a

0
1(t)Dq f (t)dqt = ( f1)(a) −

∫ a

0
Dq1(t) f (qt)dqt.

In [12], Hahn defined the q-integration for a function f over [0,∞) by∫
∞

0
f (t)dqt := (1 − q)

∞∑
n=−∞

qn f (qn).

The q-difference calculus or quantum calculus was introduced at the beginning of the 19th century. Since
then the subject of q-differential equations has developed and become a multidisciplinary subject ([4, 9,
12, 15]). There exist numerous physical models including q-derivatives, q-integrals q-exponential function,
q-trigonometric function, q-Taylor formula, q-Beta and q-Gamma functions, Euler–Maclaurin formula and
their related problems (see [9, 12]).

Annaby and Mansour [4, 7] investigated a q-Sturm–Liouville eigenvalue problem and formulated a
self-adjoint q-Sturm–Liouville operator in a Hilbert space. They discussed the properties of the eigenvalues
and the eigenfunctions as well. Annaby et al. [5, 6] constructed the q-Titchmarsh–Weyl theory for singular
q-Sturm–Liouville problems and defined q-limit-point and q-limit-circle singularities.

An important class of non-self-adjoint operators is the class of dissipative operators. The spectral
analysis of non-self-adjoint (dissipative) operators is based on ideas of the functional model and dilation
theory rather than on traditional resolvent analysis and Riesz integrals. The functional model of non-
self-adjoint dissipative operators plays an important role within both the abstract operator theory and its
more specialized applications in other disciplines. The construction of functional models for dissipative
operators, natural analogues of spectral decompositions for self-adjoint operators is based on Sz. Nagy-
Foiaş dilation theory [20] and Lax–Phillips scattering theory [16]. The characteristic function occupies a
central place in this theory; it carries complete information regarding the spectral properties of a dissipative
operator. For example, the question of completeness of a system of eigenvectors and associated vectors
(or root vectors) is answered in terms of factorization of the characteristic function. The adequacy of
this approach to dissipative Sturm–Liouville and q-Sturm–Liouville operators has been demonstrated, for
example, in [1-3, 10, 11].
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In this paper we consider the dissipative singular q-Sturm–Liouville operator acting in the space
L

2
w,q(R+), that the extension of a minimal symmetric operator in Weyl’s limit-circle case at singular end

point ∞. We construct a self-adjoint dilation of the dissipative operator and its incoming and outgoing
spectral representations, which makes it possible to determine the scattering matrix of dilation (in terms of
the Weyl–Titchmarsh function of a self-adjoint q-Sturm–Liouville operator) according to the scheme of Lax
and Phillips [16]. With the help of the incoming spectral representation, we construct a functional model of
the dissipative operator and specify its characteristic function in terms of the Weyl–Titchmarsh function of
a self-adjoint q-Sturm–Liouville operator (or in terms of the scattering matrix of the self-adjoint dilation).
Finally, on the basis of the results obtained regarding the theory of the characteristic function, we prove
theorems on completeness of the system of eigenfuncions and associated functions (or root functions) of
dissipative and accumulative q-Sturm–Liouville operators. The results of the present paper are new even
in the case w = r = 1.

2. The dissipative operator and self-adjoint dilation of the dissipative operator

We consider the following singular q-Sturm–Liouville expression

(τy)(t) =
1

w(t)
[−

1
q

Dq−1 (r(t)Dqy(t)) + u(t)y(t)], t ∈ R+ := [0,∞), (2.1)

where r,w and u are real-valued functions defined on R+ and are continuous at zero such that r(t) , 0,
w(t) > 0 for all t ∈ R+, and Dq is the q-difference operator given by (2.1).

We pass from the expression (2.1) to operators by introducing the Hilbert spaceL2
w,q(R+) which consists

of all complex-valued functions y satisfying∫
∞

0
w(t)
∣∣∣y(t)
∣∣∣2 dqt < +∞

and with the inner product

(y, z) =
∫
∞

0
w(t)y(t)z(t)dqt.

Let Dmax denote the linear set of all functions y ∈ L2
w,q(R+) such that y and Dqy are are continuous at

zero and τy ∈ L2
w,q (R+). The maximal operator Tmax on Dmax is defined by the equality Tmaxy = τy.

For each x, y ∈ Dmax we define the q-Wronski determinant (or q-Wronskian) as follows:

Wq(x, y)(t) = x(t)(rDqy)(t) − (rDq)x(t)y(t), t ∈ R+.

Given any functions y, z ∈ Dmax, we get the following q-Green’s formula (or Lagrange’s identity) ([4, 6,
7]) ∫ t

0
(τy)(ξ))z(ξ)dqξ −

∫ t

0
y(ξ)(τz)(ξ)dqξ =

[
y, z
]

(t) −
[
y, z
]

(0), t ∈ R+, (2.2)

where [y, z](t) is the Lagrange bracket defined by[
y, z
]

(t) = r(q−1t)[y(t)(Dq−1 z)(t) − (Dq−1 y)(t)z(t)], t ∈ R+.

It follows directly from (2.2) that limit
[
y, z
]

(∞) := limt→∞
[
y, z
]

(t) exists and it is finite for all y, z ∈ Dmax. For
an arbitrary function y ∈ Dmax, y (0) and (rDq−1 y) (0) can be defined as y(0) := limt→0+ y(t) and (rDq−1 y) (0) :=
limt→0+ (rDq−1 y)(t). These limits exist and they are finite (since y and rDq−1 y are continuous at zero). Let us
consider, in L2

w,q (R+), the linear dense set Dmin consisting of precisely the vectors y ∈ Dmax with

y (0) = (rDq−1 )y (0) = 0,
[
y, z
]

(∞) = 0, ∀z ∈ Dmax. (2.3)
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Let the restriction of the operator Tmax to Dmin be represented by Tmin. It can be concluded from (2.3) that
Tmin is symmetric. The minimal operator Tmin is a closed symmetric operator with deficiency indices (2, 2) or
(1, 1), and Tmax = T∗min (see [1, 4-6, 8, 17]).

We suppose that Weyl’s limit-circle case is valid for the expression τ, i.e. the symmetric operator Tmin
has deficiency indices (2, 2) ([1, 4-6, 8, 17]).

We mean by φ(t) and ψ(t) the solutions (real-valued) of the equation

τy = 0, t ∈ R+ (2.4)

with the following initial conditions

φ(0) = 1, (rDq−1φ)(0) = 0, ψ(0) = 0, (rDq−1ψ)(0) = 1. (2.5)

The Wronskian of the two solutions of (2.4) is independent of t, and the two solutions of this equation
are linearly independent if and only if their Wronskian is non-zero. It can be derived from the conditions
(2.5) and the constancy of the Wronskian that ([4, 6, 7])Wq[φ,ψ](t) =Wq[φ,ψ](0) = 1 (t ∈ R+) . As a result,
φ and ψ construct a fundamental system of solutions of (2.4). Since Tmin has deficiency indices (2, 2), φ and
ψ belong to L2

w,q (R+) , and furthermore φ, ψ ∈ Dmax.
Lemma 2.1. For arbitrary functions y, z ∈ Dmax, we have the equality (the Plücker identity)[

y, z
]

(t) =
[
y, φ
]

(t)
[
z, ψ
]

(t) −
[
y, ψ
]

(t)
[
z, φ
]

(t), t ∈ R+∪{∞}. (2.6)

Proof. Since the functions φ and ψ are real-valued and since
[
φ,ψ
]

(t) = 1 (t ∈ R+∪{∞}) , one obtains[
y, φ
]

(t)
[
z, ψ
]

(t) −
[
y, ψ
]

(t)
[
z, φ
]

(t)

= r(q−1t)(yDq−1φ −Dq−1 yφ)(t)r(q−1t)(zDq−1ψ −Dq−1 zψ)(t)

−r(q−1t)(yDq−1ψ −Dq−1 yψ)(t)r(t)(zDq−1φ −Dq−1 zφ)(t)

= (r(q−1t))2(yDq−1φzDq−1ψ − yDq−1φDq−1 zψ −Dq−1 yφzDq−1ψ

+Dq−1 yφDq−1 zψ − yDq−1ψzDq−1φ + yDq−1ψDq−1 zφ

+Dq−1 yψzDq−1φ −Dq−1 yψDq−1 zφ)(t)

= r(q−1t)(−yDq−1 z +Dq−1 yz)(t)r(q−1t)(Dq−1φψ − φDq−1ψ)(t) =
[
y, z
]

(t).

The Lemma 2.1 is proved. □
Let us consider the operator Tβγ with domain D(Tβγ) consisting of vectors y ∈ Dmax which satisfy the

boundary conditions

(rDq−1 )y (0) − βy (0) = 0, β ∈ C (2.7)

[y, φ](∞) − γ[y, ψ](∞) = 0, ℑγ = 0 or γ = ∞. (2.8)

Here for γ = ∞, condition (2.8) should be replaced by [y, ψ](∞) = 0.
We shall remind that the linear operator T (with dense domain D(T)) acting on some Hilbert space H is

called dissipative (accumulative) if ℑ(T f , f ) ≥ 0 (ℑ(T f , f ) ≤ 0) for all f ∈ D(T).
Theorem 2.2. If ℑβ ≥ 0,ℑγ = 0 or γ = ∞, then the operator Tβγ is dissipative in the space L2

w,q(R+).
Proof. Let y ∈ D(Tβγ). Then we have

(Tβγy, y) − (y,Tβγy) = [y, y](∞) − [y, y](0). (2.9)

Using Lemma 2.1 and condition (2.8) we obtain that

[y, y](∞) = 0. (2.10)
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Further, we obtain from the condition (2.7) that

[y, y](0) = −2iℑβ
∣∣∣y(0)
∣∣∣2 . (2.11)

Substituting (2.10), (2.11) in (2.9) one gets

ℑ(Tβγy, y) = ℑβ
∣∣∣y (0)

∣∣∣2 ≥ 0 for ℑβ ≥ 0, (2.12)

and this completes the proof. □
It follows from (2.12) that all the eigenvalues of dissipative operator Tβγ lie in the closed upper half

plane ℑλ ≥ 0.
Theorem 2.3. If ℑβ > 0,ℑγ = 0 or γ = ∞, then the dissipative operator Tβγ has not any real eigenvalue.
Proof. Suppose that the operator Tβγ has a real eigenvalue λ0. Let y0(t) := y(t, λ0) be the corresponding

eigenfunction. Since (Tβγy0, y0) = λ0

∥∥∥y0

∥∥∥2 ,we get from (2.12) thatℑβ
∣∣∣y0 (0)

∣∣∣2 = ℑλ0

∥∥∥y0

∥∥∥2 = 0 and y0 (0) = 0.
By the boundary condition (2.7), we have (rDq−1 )y0 (0) = 0, and then by the uniqueness theorem of the
Cauchy problem for the equation τy = λy, t ∈ R+, we have y0(t) ≡ 0. The theorem is proved. □

According to equality (2.12) if ℑβ ≤ 0,ℑγ = 0 or γ = ∞, (ℑβ = 0 or β = ∞,ℑγ = 0 or γ = ∞) then Tβγ is
an accumulative (self-adjoint) operator in L2

w,q(R+). Here for β = ∞, condition (2.7) should be replaced by
y (0) = 0. The proof of the next result is analogous to that of Theorem 2.3.
Corollary 2.4. If ℑβ < 0,ℑγ = 0 or γ = ∞, then the accumulative operator Tβγ has not any real eigenvalue.

In the sequel we shall study the dissipative operators Tβγ (ℑβ > 0,ℑγ = 0 or γ = ∞) generated by the
expression (2.1) and the boundary conditions (2.7) and (2.8).

We deal with the Hilbert spaces L2(R−), (R− := (−∞, 0]) and L2(R+) consisting of all functions σ− and
σ+, respectively, such that∫ 0

−∞

|σ−(t)|2 dt < ∞,
∫
∞

0
|σ+(t)|2 dt < ∞

with the inner product

(σ−, ρ−)L2(R−) =

∫ 0

−∞

σ−(t)ρ−(t)dt, (σ+, ρ+)L2(R+) =

∫
∞

0
σ+(t)ρ+(t)dt,

Adding the spaces L2(R−) and L2(R+) to the Hilbert space H := L2
w,q(R+), we obtain an orthogonal sum

Hilbert space asH = L2(R−)⊕H⊕L2(R+), and we call it as the main Hilbert space of the dilation. In the space
H , we consider the operator Sβγ generated by the expression

S⟨σ−, y, σ+⟩ = ⟨i
dσ−
dξ

, τy, i
dσ+
dς
⟩ (2.13)

on the set D
(
Sβγ

)
of vectors ⟨σ−, y, σ+⟩ satisfying the conditions σ∓ ∈ W1

2 (R∓) , y ∈ Dmax and

(rDq−1 y)(0) − βy (0) = βσ− (0) , (rDq−1 y)(0) − βy (0) = βσ+ (0) , (2.14)

[y, φ](∞) − γ[y, ψ](∞) = 0, (2.15)

where α2 := 2ℑβ, α > 0, andW1
2 (R∓) is the Sobolev space consisting of all functions f ∈ L2(R

∓
) such that f

are locally absolutely continuous functions on R± and f ′ ∈ L2(R±). Then we have
Theorem 2.5. The operator Sβγ is self-adjoint inH and it is a self-adjoint dilation of the dissipative operator Tβγ.
Proof. Suppose that f , 1 ∈ D

(
Sβγ

)
, f = ⟨σ−, y, σ+⟩ and 1 = ⟨ρ−, z, ρ+⟩. Then, integrating by parts and using

(2.2), we get that

(
Sβγ f , 1

)
H
=

0∫
−∞

iσ′−ρ−dξ +
(
τy, z
)

H +

∞∫
0

iσ′+ρ+dς = iσ− (0)ρ
−

(0)
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−iσ+ (0)ρ+ (0) +
[
y, z
]

(∞) −
[
y, z
]

(0) +
(

f ,Sβγ1
)
H
. (2.16)

Next, using the boundary conditions (2.14), (2.15) for the components of the vectors f and 1 and Lemma
2.1 a straightforward calculation shows that iσ− (0)ρ− (0) − iσ+ (0)ρ+ (0) +

[
y, z
]

(∞) −
[
y, z
]

(0) = 0. Thus,
Sβγ is symmetric. Therefore, to prove that Sβγ is self-adjoint, it suffices for us to show that S∗βγ ⊆ Sβγ. Take
1 = ⟨ρ−, z, ρ+⟩ ∈ D(S∗βγ). Let S∗βγ1 = 1

∗, 1∗ = ⟨ρ∗−, z∗, ρ∗+⟩ ∈ H , so that(
Sβγ f , 1

)
H
=
(

f , 1∗
)
H
, ∀ f ∈ D

(
Sβγ

)
. (2.17)

By choosing the components for f ∈
(
Sβγ

)
suitably in (2.17), it is not difficult to show that ρ∓ ∈ W1

2(R∓),
z ∈ Dmax and 1∗ = S1, where the operator S is defined by (2.13). Consequently, (2.17) takes the form(
S f , 1

)
H
=
(

f ,S1
)
H
, ∀ f ∈ D

(
Sβγ

)
. Therefore, the sum of the integral terms in the bilinear form

(
S f , 1

)
H

must be equal to zero:

iσ− (0)ρ− (0) − iσ+ (0)ρ+ (0) +
[
y, z
]

(∞) −
[
y, z
]

(0) = 0 (2.18)

for all f = ⟨σ−, y, σ+⟩ ∈ D
(
Sβγ

)
. Further, solving the boundary conditions (2.14) for y (0) and (rDq−1 y)(0),we

find that

y (0) = −
i
α

(σ+ (0) − σ− (0) , (rDq−1 y)(0) = ασ− (0) −
iβ
α

(σ+ (0) − σ− (0)).

Therefore, using (2.14), (2.15) we find that (2.18) is equivalent to the equality

iσ− (0)ρ− (0) − iσ+ (0)ρ+ (0) =
[
y, z
]

(0) −
[
y, z
]

(∞)

= −
i
α

(σ+(0) − σ−(0))(pz′)(0) − α[σ−(0) −
iβ
α2 (σ+(0) − σ−(0)]z(0)

−[y, φ](∞)[z, φ](∞) + [y, ψ](∞)[z, ψ](∞) = −
i
α

(σ+(0) − σ−(0))(pz′)(0)

−α[σ−(0) −
iβ
α2 (σ+(0) − σ−(0))]z(0) − ([z, φ](∞) − γ[z, ψ](∞))[y, ψ](∞).

Since the values σ±(0) can be arbitrary complex numbers, a comparison of the coefficient of σ±(0) on the
left and right of the last equality gives us that the vector 1 =

〈
ρ−, z, ρ+

〉
satisfies the boundary conditions

(rDq−1 )z (0) − βz(0) = αρ−(0), (rDq−1 )z (0) − βz(0) = αρ+(0), [z, φ](∞) − γ[z, ψ](∞) = 0. Consequently, the
inclusion S∗βγ ⊆ Sβγ is established, and hence Sβγ = S∗βγ.

The self-adjoint operator Sβγ generates in H a unitary group X(s) = exp[iSβγs] (s ∈ R). Denote by
P : H →H and P1 : H → H the mappings acting according to the formulas P :

〈
σ−, y, σ+

〉
→ y and

P1 : y →
〈
0, y, 0

〉
, respectively. Let Z(s) = PX(s)P1 (s ≥ 0). The family {Z(s)} (s ≥ 0) of operators is

a strongly continuous semigroup of non-unitary contraction on H. Denote by Bβγ the generator of this
semigroup, Bβγy = lims→+0(is)−1(Z(s)y − y). The domain of Bβγ consists of all the vectors for which the
limit exists. The operator Bβγ is a dissipative. The operator Sβγ is called the self-adjoint dilation of Bβγ ([17,
19]). We show that Bβγ = Tβγ, and hence, Sβγ is a self-adjoint dilation of Tβγ. To do this, we first verify the
equality

P(Sβγ − λI)−1
P1y = (Tβγ − λI)−1y, y ∈ H, ℑλ < 0. (2.19)

With this goal, we set (Sβγ − λI)−1
P1y = 1 =

〈
ρ−, z, ρ+

〉
. Then (Sβγ − λI)1 = P1y, and hence, τz − λz = y,

ρ−(ξ) = ρ−(0)e−iλξ, and ρ+(ς) = ρ+(0)e−iλς. Since 1 ∈ D(Sβγ), and hence ρ− ∈ L2(R−); it follows that ρ−(0) = 0,
and consequently, z satisfies the boundary conditions (rDq−1 y)(0)−βy(0) = 0,

[
y, φ
]
∞
−
[
y, ψ
]

0 = 0. Therefore,
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z ∈ D(Tβγ), and since a point λwithℑλ < 0 cannot be an eigenvalue of a dissipative operator, it follows that
z = (Tβγ − λI)−1y. We remark that ρ+(0) is found from the formula ρ+(0) = α−1((rDq−1 )z (0) − βz(0)). Thus,

(Sβγ − λI)−1
P1y = ⟨0, (Tβγ − λI)−1y, α−1((rDq−1 )z (0) − βz1(0))e−iλς

⟩,

for y ∈ H and ℑλ < 0. By applying P, one obtains (2.19).
It is now easy to show that Bβγ = Tβγ. Indeed, by (2.19),

(Tβγ − λI)−1 = P(Sβγ − λI)−1
P1 = −iP

∞∫
0

X(s)e−iλsdsP1 =

= −i

∞∫
0

Z(s)e−iλsds = (Bβγ − λI)−1 (ℑλ < 0),

and therefore Tβγ = Bβγ. Theorem 2.5 is proved. □

3. Scattering theory of the dilation, functional model of the dissipative operator and completeness
theorems of the dissipative and accumulative operators

The unitary group {X(s)} (s ∈ R) has an important property which makes it possible to apply to it the
Lax–Phillips scheme [16]. Namely, it has ‘incoming’ and ‘outgoing’ subspaces D− :=

〈
L

2(R−), 0, 0
〉

and

D
+ :=
〈
0, 0,L2(R+)

〉
possessing the following properties:

(i) X(s)D− ⊂ D−, s ≤ 0, and X(s)D+ ⊂ D+, s ≥ 0;
(ii)
⋂
s≤0
X(s)D− =

⋂
s≥0
X(s)D+ = {0} ;

(iii)
⋃
s≥0
X(s)D+ =

⋃
s≤0
X(s)D+ = H ;

(iv) D−⊥D+.
Property (iv) is obvious. To prove property (i) forD+ (the proof forD− is similar), we setRλ = (Sβγ−λI)−1,

for all λ with ℑλ < 0. Then, for any f = ⟨0, 0, σ+⟩ ∈ D+, we have

Rλ f = ⟨0, 0,−ie−iλξ

ξ∫
0

eiλsσ+(s)ds⟩.

So we have Rλ f ∈ D+. Therefore, if 1⊥D+, then

0 = (Rλ f , 1)H = −i

∞∫
0

e−iλs(X(s) f , 1)Hds,ℑλ < 0.

From this it follows that (X(s) f , 1)H = 0 for all s ≥ 0. Hence, X(s)D+ ⊂ D+ for s ≥ 0, and property (i) has
thus been proved.

To prove property (ii), we denote by P+ : H → L2 (R+) and P+1 : L2(R+) → D+ the mappings acting
according to the formulae P+ : ⟨σ−,u, σ+⟩ → σ+ and P+1 : σ → ⟨0, 0, σ⟩ , respectively. We note that the
semigroup of isometries X+(s) = P+X(s)P+1 , s ≥ 0, is a one-sided shift in L2 (R+). Indeed, the generator
of the semigroup of the one-sided shift Y(s) in L2 (R+) is the differential operator i d

dξ with the boundary
condition σ (0) = 0. On the other hand, the generator S of the semigroup of isometries X+(s), s ≥ 0, is the
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operator Sσ = P+SβγP+1 σ = P
+
Sβγ ⟨0, 0, σ⟩ = P+⟨0, 0, i dσ

dξ ⟩ = i dσ
dξ , where σ ∈ W1

2 (R+) and σ (0) = 0. Since a
semigroup is determined by its generator, it follows that X+(s) = Y(s), and hence,⋂

s≥0

X(s)D+ = ⟨0, 0,
⋂
s≥0

Y(s)L2 (R+) = {0},

i.e., property (ii) is proved.
In this scheme of the Lax–Phillips scattering theory, the scattering matrix is defined in terms of the theory

of spectral representations. We proceed to their construction. Along the way, we also prove property (iii)
of the incoming and outgoing subspaces.

We recall that the linear operator A (with domainD(A)) acting in the Hilbert space H is called completely
non-self-adjoint (or simple) if there is no invariant subspace M ⊆ D(A) (M , {0}) of the operator A on which
the restriction of A to M is self-adjoint.

We first prove the following lemma.
Lemma 3.1. The dissipative operator Tβγis completely non-self-adjoint (simple).
Proof. Let H′ ⊂ H be a non-trivial subspace in which Tβγ induces a self-adjoint operator T′βγ with domain

D(T′βγ) = H′ ∩ D(Tβγ). If f ∈ D(T′βγ), then f ∈ D(T′∗βγ), and (rDq−1 y)(0) − βy (0) = 0, (rDq−1 y)(0) − βy (0) = 0,
[y, φ](∞) − γ[y, ψ](∞) = 0. From this for the eigenfunctions y(t, λ) of the operator Tβγ that lie in H′ and are
eigenvectors of T′βγ we have y(0, λ) = 0, (rDq−1 y)(0, λ) = 0, and then by the uniqueness theorem of the Cauchy
problem for the equation τy = λy, t ∈ R+,we have y(t, λ) ≡ 0. Since all solutions of τy = λy (t ∈ R+) belong
toL2

w,q(R+), it can be concluded that the resolvent Rλ(Tβγ) of the operator Tβγ is a Hilbert-Schmidt operator,
and hence the spectrum of Tβγ is purely discrete. Hence by the theorem on expansion in eigenvectors of the
self-adjoint operator T′βγ, we have H′ = {0} , i.e., the operator Tβγ is simple. The lemma is proved. □

We set

H
− =
⋃
s≥0

X(s)D−, H+ =
⋃
s≤0

X(s)D+.

Lemma 3.2. The equalityH− +H+ = H holds.
Proof. Considering property (i) of the subspaceD+, it is easy to show that the subspaceH ′ = H ⊖ (H+H+)
is invariant relative to group {X(s)} and has the formH ′ = ⟨0,H′, 0⟩ ,where H′ is a subspace in H. Therefore,
if the subspace H ′ (and hence, also H′) were non-trivial, then the unitary group {X′(s)}, restricted to this
subspace, would be a unitary part of the group {X(s)}, and hence the restriction T′βγ of Tβγ to H′ would be
a self-adjoint operator in H′. From the simplicity of the operator Tβγ, it follows that H′ = {0} , i.e. H ′ = {0}.
The lemma is proved. □

Let denote by T∞γ the self-adjoint operator generated by the expression τ and the boundary conditions
y(0) = 0, [y, φ](∞) − γ[y, ψ](∞) = 0 (y ∈ Dmax).

Let ϕ(t, λ) and ω(t, λ) be the solution of the equation τ(y) = λy (t ∈ R+) satisfying the conditions
ϕ(0, λ) = 0, (pDq−1ϕ)(0, λ) = 1, ω(0, λ) = 1, (pDq−1ω)(0, λ) = 0. The Weyl–Titchmarch function m∞γ(λ) of the
self-adjoint operator T∞γ is determined by the condition [ω +m∞γϕ,φ](∞) − γ[ω +m∞γϕ,ψ](∞) = 0. From
this we have

m∞γ(λ) = −
[ω,φ](∞) − γ[ω,ψ](∞)
[ϕ,φ](∞) − γ[ϕ,ψ](∞)

. (3.1)

From (3.1), it follows that m∞γ(λ) is a meromorphic function on the complex plane C with a countable
number of poles on the real axis and these poles coincide with the eigenvalues of the operator T∞γ ([5, 6]).
Further, it is possible to show that the function m∞γ possesses the following properties: ℑλℑm∞γ(λ) > 0 for
ℑλ , 0 and m∞γ(λ) = m∞γ(λ̄) for λ ∈ C, except the reel poles of m∞γ(λ).

Let us adopt the following notations: θ(t, λ) := ω(t, λ) +m∞γ(λ)ϕ(t, λ),

Θβγ(λ) :=
m∞γ(λ) − β

m∞γ(λ) − β
. (3.2)
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Let

Υ−λ(t, ξ, ς) = ⟨e−iλξ, (m∞γ(λ) − β)−1αθ(t, λ),×βγ(λ)e−iλς
⟩.

Note that the vectors Υ−λ(t, ξ, ς) for real λ do not belong to the space H . However, Υ−λ(t, ξ, ς) satisfies the
equation LΥ = λΥ and the corresponding boundary conditions for the operator Sβγ. Using Υ−λ(t, ξ, ς), we
define the transformation Φ− : f → f̃−(λ) by (Φ− f )(λ) := f̃−(λ) := 1

√
2π

( f ,Υ−λ)H on the vector f = ⟨σ−, y, σ+⟩
in which σ−, σ+, and y are smooth, compactly supported functions.
Lemma 3.3. The transformation Φ− isometrically maps H− onto L2(R). For all vectors f , 1 ∈ H−, the Parseval
equality and the inversion formula hold:

( f , 1)H = ( f̃−, 1̃−)L2 =

∞∫
−∞

f̃−(λ)1̃−(λ)dλ, f =
1
√

2π

∞∫
−∞

f̃−(λ)Υ−λdλ,

where f̃−(λ) = (Φ− f )(λ) and 1̃−(λ) = (Φ−1)(λ).
Proof. For f , 1 ∈ D−, f = ⟨σ−, 0, 0⟩, 1 = ⟨ρ−, 0, 0⟩, we have that

f̃−(λ) :=
1
√

2π
( f ,Υ−λ)H =

1
√

2π

0∫
−∞

σ−(ξ)eiλξdξ ∈ H2
−,

and, in view of the usual Parseval equality for Fourier integrals,

( f , 1)H =

0∫
−∞

σ−(ξ)ρ−(ξ)dξ =

∞∫
−∞

f̃−(λ)1̃−(λ)dλ = (Φ− f ,Φ−1)L2 .

Here and below,H2
±

denote the Hardy classes in L2(R) consisting of the functions analytically extendable
to the upper and lower half-planes, respectively.

We now extend the Parseval equality to the whole ofH−. For this purpose, we consider inH− the dense
set H ′− of vectors obtained from the smooth, compactly supported functions in D− : f ∈ H ′− if f = X(l) f0,
f0 = ⟨σ−, 0, 0⟩, σ− ∈ C∞0 (R−), where l = l f is a non-negative number (depending on f ). In this case, if
f , 1 ∈ H−, then for l > l f and l > l1 we have that X(−l) f ,X(−l)1 ∈ D− and moreover, the first components
of these vectors belong to C∞0 (R−). Therefore, since the operators X(s) (s ∈ R) are unitary, the equality
Φ−X(−l) f = (X(−l) f ,U−λ )H = e−iλl( f ,U−λ )H = e−iλlΦ− f , implies that

( f , 1)H = (X(−l) f ,X(−l)1)H = (Φ−X(−l) f ,Φ−X(−l)1)L2

= (e−iλlΦ− f , e−iλlΦ−1)L2 = (Φ− f ,Φ−1)L2 . (3.3)

By taking the closure in (3.3), we obtain the Parseval equality for the whole spaceH−. The inversion formula
follows from the Parseval equality if all integrals in it are understood as limits in the mean of integrals over
finite intervals. Finally,

Φ−H
− =
⋃
s≥0

Φ−X(s)D− =
⋃
s≥0

e−iλsH2
−
= L2(R),

i.e. Φ− mapsH− onto the whole of L2(R). The lemma is proved. □
We set

Υ+λ(t, ξ, ς) = ⟨Θβγ(λ)e−iλξ, (m∞γ(λ) − β)−1αθ(t, λ), e−iλς
⟩.

Note that the vectors Υ+λ(t, ξ, ς) for real λ do not belong to the space H . However, Υ+λ(t, ξ, ς) satisfies the
equation SΥ = λΥ (λ ∈ R) and the boundary conditions (2.14) and (2.15). Using Υ+λ(t, ξ, ς), we define the
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transformation Φ+ : f → f̃+(λ) on vectors f = ⟨σ−, y, σ+⟩, in which σ−, σ+, and y are smooth, compactly
supported functions by setting (Φ+ f )(λ) := f̃+(λ) := 1

√
2π

( f ,Υ+λ)H .
The proof of the next result is analogous to that of Lemma 3.3.

Lemma 3.4. The transformation Φ+ isometrically maps H+ onto L2(R). For all vectors f , 1 ∈ H+, the Parseval
equality and the inversion formula hold:

( f , 1)H = ( f̃+, 1̃+)L2 =

∫
∞

−∞

f̃+(λ)1̃+(λ)dλ, f =
1
√

2π

∫
∞

−∞

f̃+(λ)U+λdλ,

where f̃+(λ) = (Φ+ f )(λ) and 1̃+(λ) = (Φ+1)(λ).
According to (3.2), the function Θβγ(λ) satisfies

∣∣∣Θβγ(λ)
∣∣∣ = 1 for λ ∈ R; therefore, it follows from the

explicit formula for the vectors Υ+λ and Υ−λ that

Υ−λ = Θβγ(λ)Υ+λ (λ ∈ R). (3.4)

Therefore, it follows from Lemmas 3.3 and 3.4 that H− = H+. Together with Lemma 3.2, this shows that
H = H− = H+, and property (iii) above has been established for the incoming and outgoing subspaces.

Thus, the transformationΦ− isometrically maps ontoL2(R) with the subspaceD− mapped ontoH2
−

and
the operators X(s) are transformed into the operators of multiplication by eiλs. In order words, Φ− is the
incoming spectral representation for the group {X(s)}. Similarly, Φ+ is the outgoing spectral representation
for {X(s)}. It follows from (3.4) that the passage from the Φ+-representation of a vector f ∈ H to its
Φ−-representation is realized by multiplication of the function Θβγ(λ) : f̃−(λ) = Θβγ(λ) f̃+(λ). According
to [16], the scattering function (matrix) of the group {X(s)} with respect to the subspaces D− and D+, is
the coefficient by which the Φ−-representation of a vector f ∈ H must be multiplied in order to get the
corresponding Φ+-representation: f̃+(λ) = Θβγ(λ) f̃−(λ). According to, we have now proved the following
theorem.
Theorem 3.5. The function Θβγ(λ) is the scattering matrix of the group {X(s)} (of the self-adjoint operator Sβγ).

Let Θ(λ) be an arbitrary non-constant inner function on the upper half-plane (we recall that a function
×(λ) analytic in the upper half-plane C+ is called inner function on C+ if |Θ(λ)| ≤ 1 for λ ∈ C+, and |Θ(λ)| = 1
for almost all λ ∈ R). Define K = H2

+ ⊖ ΘH
2
+. Then K , {0} is a subspace of the Hilbert space H2

+. We
consider the semigroup of the operatorsZ(s) (s ≥ 0) acting inK according to the formulaZ(s)φ = P

[
eiλsφ

]
,

φ := φ(λ) ∈ K , where P is the orthogonal projection from H2
+ onto K . The generator of the semigroup

{Z(s)} (s ≥ 0) is denoted by T : Tφ = lims→+0(is)−1(Z(s)φ − φ), which is a dissipative operator acting in K
and with the domain D(T) consisting of all functions φ ∈ K , such that the limit exists. The operator T is
called a model dissipative operator (we remark that this model dissipative operator, which is associated with
the names of Lax and Phillips [16], is a special case of a more general model dissipative operator constructed
by Sz.-Nagy and Foiaş [20]). The basic assertion is that Θ(λ) is the characteristic function of the operator T.

Let K = ⟨0,H, 0⟩, so thatH = D− ⊕K ⊕D+. From the explicit form of the unitary transformation Φ− it
follows that

H → L
2(R), f → f̃−(λ) = (Φ− f )(λ), D− →H2

−, D
+
→ ΘβγH

2
+, (3.5)

K→H2
+ ⊖ΘβγH

2
+, X(s) f → (Φ−X(s)Φ−1

− f̃−)(λ) = eiλs f̃−(λ). (3.6)

The formulae (3.5) and (3.6) show that our operator Tβγ is a unitary equivalent to the model dissipative
operator with the characteristic function Θβγ(λ). Since the characteristic functions of unitary equivalent
dissipative operators coincide (see [18-20]), we have proved
Theorem 3.6. The characteristic function of the dissipative operator Tβγ coincides with the function Θβγ(λ) defined
in (3.2).

Characteristic function is very useful to answer the question that whether all eigenfunctions and asso-
ciated functions of a dissipative operator Tβγ span the whole space or not. We can perform this analysis by
ensuring that the singular factor s(λ) in the factorization Θβγ(λ) = s(λ)B(λ) (B(λ) is a Blaschke product) is
absent ([1-3, 18-20]).
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Theorem 3.7. For all values of β with ℑβ > 0, except possibly for a single value γ = γ0, and for fixed γwith ℑγ = 0
or γ = 0, the characteristic function Θβγ of the dissipative operator Tβγ is a Blaschke product. The spectrum of Tβγ
is purely discrete and lies in the open upper half-plane. The operator Tβγ (β , β0) has a countable number of isolated
eigenvalues with finite multiplicity and limit points at infinity. The system of all eigenfunctions and associated
functions (or root functions) of the dissipative operator Tβγ (β , β0) is complete in the space H.
Proof. Using (3.2), it is easy to see thatΘβγ is an inner function in the upper half-plane and it is meromorphic
in the whole λ-plane. We have the factorization

Θβγ(λ) = eiλbBβγ(λ), (3.7)

where Bβγ(λ) is the Blaschke product and b = b(β) ≥ 0. Therefore we obtain from (3.7) that∣∣∣Θβγ(λ)
∣∣∣ = ∣∣∣eiλb

∣∣∣ ∣∣∣Bβγ(λ)
∣∣∣ ≤ e−b(β)ℑλ,ℑλ ≥ 0. (3.8)

On the other hand, if we express m∞γ(λ) in terms of Θβγ(λ) we get from (3.2) that

m∞γ(λ) =
βΘβγ(λ) − β
Θβγ(λ) − 1

. (3.9)

If b(β) > 0 for a given value β (ℑβ > 0), then (3.8) gives us that lims→+∞Θβγ(is) = 0, and then (3.9) leads
to lims→+∞m∞γ(is) = −β. Since m∞γ(λ) is independent of β, b(β) can be non-zero at not more than a
single point β = β0 and, further b(β) can be non-zero at not more then a single point β = β0 (and, further,
β0 = − lims→+∞m∞γ(is)). Therefore the proof is completed. □

Since a linear operator T acting in the Hilbert space H is accumulative if and only if −T is dissipative, all
results concerning dissipative operators can be immediately stated for accumulative operators. Then the
Theorem 3.7 yields the following result.
Corollary 3.8. For all values of βwithℑβ < 0, except possibly for a single value β = β1, and for fixed γwithℑγ = 0
or γ = 0, the characteristic function Θβγ of the accumulative operator Tβγ is a Blaschke product. The spectrum of
Tβγ is purely discrete and lies in the open lower half-plane. The operator Tβγ (β , β1) has a countable number of
isolated eigenvalues with finite multiplicity and limit points at infinity. The system of all eigenvectors and associated
functions (or root functions) of the accumulative operator Tβγ (β , β1) is complete in the space H.
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