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Abstract. Let K be a compact set of R" and ¢ > 0. In this paper, we discuss the relation between the
t-dimensional Hewitt-Stromberg premeasure and measure denoted by H and H respectively. We prove
:if ﬁt(K) < +oo then ﬁt(K) = HY(K) and if ﬁ'(K) = 400, there exists a compact subset F of K such that
H (F) = H'(F) and H!(F) is close as we like to H(K).

1. Introduction

Hewitt-Stromberg measures were introduced in [13, Exercise (10.51)]. Since then, they have been
investigated by several authors, highlighting their importance in the study of local properties of fractals
and products of fractals. One can cite, for example [2, 3, 9-12]. In particular, Edgar’s textbook [6, pp. 32-36]
provides an excellent and systematic introduction to these measures. Such measures also appears explicitly,
for example, in Pesin’s monograph [18, 5.3] and implicitly in Mattila’s text [16]. The reader can be referred

to [15]for a class of generalization of these measures).
—t
Fort > 0, let H, H' denote the t-dimensional Hewitt-Stromberg premeasure and measure, respectively

—t
(see Section 2 for the definitions). In this paper, we discuss the relation between H and H'. We prove, for
n > 1 and any compact subset K of IR", that

H (K) = H(K)

provided that ﬁt(K) < 400 (Theorem 3.3). As a consequence, we prove, for E C R", that if ﬁt(E) € (0, 0)
then _
H'(E) € (0, ).

Moreover, if E is compact then, for t > dimpp(E), we have either ﬁt(E) =0or ﬁt(E) = 400 (Corollary 3.4),
where dimyp denote the Hewitt-Stomberg dimension (see definition in Section 2). We prove also, as an
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application, some semifiniteness property of H'. A measure u is said to be semifinite if every set of infinite
measure has a subset of finite positive measure. This property was be studied in [4, 5] for Hausdorff measure
and in [14] for packing measure, but this does not hold for the Hewitt-Stromberg premeasure (Corollary

—t
3.5). More precisely, there exists a compact set K and t > 0 with H (K) = +co such that K contains no subset
with positive finite Hewitt-Stromberg premeasure. In addition, we study in Theorem 4.1 the compact sets

=t
of infnite Hewitt-Stromberg premeasure. We prove that if H (K) = +co, there exists a compact subset F of K
such that

H () = H(F)
and H!(F) is close as we like to H!(K).

2. Preliminary

First we recall briefly the definitions of Hausdorff dimension, packing dimension and Hewitt-Stromberg
dimension and the relationship linking these three notions. Let # be the class of dimension functions, i.e.,
the functions /1 : R}, — R’ which are right continuous, monotone increasing with lim,_, 2(0) = 0.

Suppose that, for n > 1, R" is endowed with the Euclidean distance. For E C R", h € ¥ and ¢ > 0, we

write
H(E) = inf {Z WIED) Ec| JE, IEd< g},

1

where |A| is the diameter of the set A defined as |A| = sup {Ix -yl, x,y € A}. This allows to define the
Hausdorff measure, with respect to h, of E by

H"(E) = sup H!(E).

>0

The reader can be referred to Rogers’ classical text [20] for a systematic discussion of H' h
We define, for ¢ > 0,

P.(E) = sup {Z h<2r,-)} ,

1

where the supremum is taken over all disjoint closed balls (B(xi, 7’1‘)), such that r; < ¢ and x; € E. The
1

h-dimensional packing premeasure, with respect to h, of E is now defined by

E’h(E) = sup ?Z(E).

>0

This makes us able to define the packing measure, with respect to , of E as

PI(E) = inf{z P'(E) 1 Ecl Ei}.

While Hausdorff and packing measures are defined using coverings and packings by families of sets
with diameters less than a given positive number ¢, the Hewitt-Stromberg measures are defined using
covering of balls with the same diameter . Now, we define

ﬁg(E) = limsup ﬁI: where ﬁf(E) = N,(E) h(2r)

r—0
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and the covering number N,(E) of E is defined by
N,(E) = inf {#{1} ' (B(xi, 1) is a family of closed balls

i€

with x; € Eand E C U B(x;, r)}.

—h
Since H is not increasing and not countably subadditive, one needs a standard modification to get an outer
measure. Hence, we modify the definition as follows, first we define the Hewitt-Stromberg premeasure

H'(E) = sup Ho(F)
FCE

and, by applying now the standard construction ([17, 20, 21]), we obtain the Hewitt-Stromberg measure,
with respect to /i, defined by

H"(E) = inf {Z ﬁh(Ei) ' EcC U E; and E; is Closed}.

In the following, we illustrate the basic inequalities satisfied by the Hewitt-Stromberg, the Hausdorff and
the packing measures (the proof is straightforward and mimics that in [15, Proposition 2.1]

—h —h
H(E) < P(E)
VI VI
HME) < HHYE) < PHE).

Let t > 0 and h; is the dimension function defined by
ht(r) = I’t.

—h —

In this case we will denote simply H" by H', also P will be denoted by #*, H will be denoted by H and H"
will be denoted by H'. Now we define the Hausdorff dimension, packing dimension and Hewitt-Stromberg
dimension of a set E C IR"” respectively by

dimy E = sup {t > 0, H'(E) = +oo} =inf{t >0, H'(E) =0},

dimp E = sup {t > 0, P'(E) = +o0,} = inf{t >0, P'(E) =0

and
dimy; E = sup {t > 0, H'(E) = +oo} = inf{t >0, H'(E)=0}.

It follows that
dlmH(E) < dll‘l’lMB(E) < dlmp(E)

Lemma 2.1. Let ECR" and t > 0. Then t t
H (E) < 2'H (E),
where E is the closure of E.
Proof. Letr > 0and {B,- = B(x;, r)}A be a covering of E and let A C E. Now, we consider
1={i : B,-mA;t(Z)}.
For each i € I, let y; € B; N A. Therefore, B; C B(y;, 2r) and then {B(yi, 21’)}} is a covering of A. It follows that
Ny, (A)(@4r)' < 2'N,(E)(2r)".

Thus, ﬁg (A) < ZtES(E) < Zﬂt(E). Since A is arbitrarily, we get the desired result. [J
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We finish this section by a lemma which will be useful in the following.

Lemma 2.2. Let {E,} be a decreasing sequence of compact subsets of R" and F = (, E,. Then, fort > 0and y > 1,
there exist ng such that

HE)<yHE,  Vuzn
Proof. Let 6 > 0 and {Bi = B(x;, 6)}, be any covering of F. We claim that there exists 1y such that E, c U =

\U; B(xi, v0), for all n > ny. Indeed, otherwise, {En\ll} is a decreasing sequence of non-empty compact sets,

which, by an elementary consequence of compactness, has a non-empty limit set (lim E,)\U. Then, for ¢ > 0
and n > ny,

Foo(En) = Nyo(E)@y0) < VNo(F)(20) = ' Fly(P).

It follows, for all n > ng, that
Ho(Ex) < y'Ho(F) < y'H (B). @.1)

Now, let A C E,;, we only have to prove that ﬁg(A) < ytﬁt(F). We may suppose that F € A C E,,. Indeed,
otherwise,

Ho(A) < H (F) < y'H (F).
Thus, without loss of generality we may suppose that, A = E,,, for some m > n. Therefore, using (2.1), we
have Hy(A) < y'H (F). O

3. Main results

—t

We can see, from the definition, that estimating H is much easier than estimating the Hewitt-Sttromberg
measure H'. It is therefore natural to look for relationships between these two quantities. The reader can
also see [1, 8, 14, 22] for a similar result for Hausdorff and packing measures.

Lemma 3.1. Let K be compact set in R" and t > 0. Suppose that for every € > 0 and closed subset E of K one can
find an open set U such that E C U and ﬁt(u NK) < ﬁt(E) + €, then

H!(K) = H (K).

Proof. Let e > 0 and let {E;} be a sequence of closed sets such that K C [ J; E;. Take, for each i, an open set U;
such that E; ¢ U; and

H (U nK) <H(E)+27 e

Since K is compact, the cover {U;} of K has a finite subcover. So we may use the fact that, for all F;, F, ¢ R”,

H(F, UFR) <HF) +H(E)

to infer that

HEIo<Y Huink <Y HE)+27e < Y HE) +e
This is true for all € > 0 and {E;} such that K C | J; E;. Thus

H{(K) > H (K).

The opposite inequality is obvious. [
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Theorem 3.2. Let K € R" be a compact set and t > 0 such that ﬁt(K) < +00. Then, for any closed subset E of K and
any € > 0, there exists an open set U such that E C U and

HUNK <HE) +e.
Proof. For n > 1, define the n-parallel body E, of E by
E, = {x eR", |x—yl<1/n, forsomeye E}.

It is clear that E, is an open set and E C E,, for all n. Denote by E, the closure of E, and let y > 1. Using
Lemma 2.2 and Lemma 2.1, there exists n such that

H(E,nK) <y'H ()
For € > 0, we can choose y such that ytﬁt(E) < ﬁt(E) + €. Finally, we get

HENK<HENK <HE) +e.
O

As a direct consequence, we get the following result.

Theorem 3.3. Let K C R" be a compact set and t > 0. Assume that ﬁt(K) < +o0 then
H (K) = H(K).

From Theorem 3.3, we immediately obtain the following corollary.

Corollary 3.4. Let ECR" andt >0

1. Assume that 0 < ﬁt(E) < +00. Then 0 < H{(E) < co. In particular,
dim;zE = dimysE = ¢,

where dim—E = sup{t >0, H(E) = +oo} - inf{t >0, H(E) = o}.

2. Assume that E is compact and t > dimpp E. Then either ﬁt(E) =0or ﬁt(E) = +o0.

The following corollary shows that the theorems of Besicovitch [4] and Davies [5] for Hausdorff measures
and the theorem of Joyce and Preiss [14] for packing measures does not hold for the Hewitt-Stromberg
premeasure.

—t
Corollary 3.5. There exists a compact set K and t > 0 with H (K) = +oo such that K contains no subset with positive
finite Hewitt-Stromberg premeasure.

Proof. Consider for n > 1, the set A, = {0} U{1/k, k <n}and
K= Ja={o} [ {1/n, neN].

Now, we will prove that dimyzK = 1/2. Forn > 1 and 6, = 1

—-3, remark that

Ns, (Ay) = n +1.
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It follows that .
—1/2 —1/2 n+
Hs, (K) = Hy " (A)) = V2 .
° b Vn + n?

Thereby, H / (K) > 0 which implies that dimg;K > 1/2. In the other hand, if dim,(K) denote the box-
counting dimension of K, i.e.,

dim, (K) = sup{t; P (K) = +o0} = inf{t; P (K) = 0}
then di_mp(K) = % (see Corollary 2.5 in [8]) and thus
dim;K < dim,(K) = 1/2.
As a consequence, we have dimyzK = 1/2. Take t = 1/3, it is cleat that H/(K) = 0. Moreover, ﬁt(K) = +oo0.

It follows, for any subset F of K, that ﬁt(F) = 0 or +oo. Otherwise, assume that 0 < ﬁt(F) < +co. Then

0< ﬁt(l_-") < +o0 and thus, by using Theorem 3.3, 0 < H!(F) < +oo, which is impossible since F is a subset of
K. O

4. Compact sets of infnite Hewitt-Stromberg premeasure

Now, we discuss the compact sets of infnite Hewitt-Stromberg premeasure.

Theorem 4.1. Let K be a compact subset of R"; t > 0 and ﬁt(K) = +o00. Then, for any € > O; there exists a compact

subset F of K such that ﬁt(F) = HY(F) and
H{(F) > HI(K) — e.

Proof. The case H'(K) = + is trivial, then we assume that H/(K) < +oco. Take a closed sets {F;} such that
K =J;F;and

Y H@E) <H@E®) + g 4.1)
Since we have }; ﬁt(F{) > H!(K), there exists m € N such that
Z H (F) = H'(K) - 5. 4.2)
i=1
Therefore, from (4.1) and (4.2), we obtain

Z.O ﬁt(F,') <e. 4.3)

i=m+1

We condiser the set F = U F;. Then, by the finite subadditivity of H and (4.1), we have
i=1

H () < iﬁt(a) < +oo.

i=1

Finally, using Theorem 3.3 we have ﬁt(F) = H!(F) and, by (4.3), we get

HY(K) — HY(F) < HY( Ej F)) < i HF) <e.
i=m+1 i=m+1
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Remark 4.2. One can check that the proof of Theorem 3.3 and Theorem 4.1 works for every dimension function h and

—h
the corresponding Hewitt-Stromberg measure and premeasure H' and H' repectively, provided that for every € > 0
there are & > 0 and ry > 0 such that

h((@ + o))
T <l+e Vr < 10.
Especially, if h(r) = x'L(r) where L is slowly varying in the sense of Karamata, that is,
L(ar)
i T =1
for every a > 0 ([19]). Then, for every compact set K,
H'(K) < +00 = HI(K) = ' (K) (4.4)

and if ﬁh(K) = +oo then there exists a compact set F C K such that
o _ uh h hegny
H (F) = H'(F) and H"(F) > H*(K) —e. 4.5)

Open problems :

1. We ask if (4.4) and (4.5) remain true for any dimension function & or even for & satisfies the doubling
condition, that is, forall r > 0

h(2r) < kh(r),

for some positive constant k.
2. We ask if Theorem 3.3 remains true if the Hewitt-Stromberg measure of a set E is defined with

M, (E) =sup {ﬂ{l I (B(xi, r)) is a family of disjoint closed

i€l

balls with x; € E}.

instead of N,(E).
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