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Abstract. The Riemann-Liouville operator has been extensively investigated and has witnessed a remark-
able development in numerous fields of harmonic analysis over a couple of decades. The aim of this
article is to explore two more aspects of the time-frequency analysis associated with the Riemann-Liouville
wavelet transform, including the Shapiro uncertainty principle and the scalogram.

1. Introduction

The spherical mean operators constitute a vital class of operators in harmonic analysis in the sense that all
the harmonic functions are characterized by the fact that they coincide with their spherical mean values.
These operators can also be viewed as the generalized Radon transform that is self dual in the context of
Helgason’s double fibration. In the classical work of John [13], the spherical means have been successfully
applied to diverse problems in the theory of partial differential equations. Subsequently, they paved the
way into the Fourier analysis with the celebrated theorem of Stein on spherical analogue of the Lebesgue
differentiation theorem. A recent addition to the theory of spherical mean operators onR2 appeared with the
work of Trimèche [23], wherein the author generalized the spherical mean operators on R2 by introducing
the permutation operator which commutes with some partial differential operators. Besides, Trimèche also
studied the harmonic analysis associated with this permutation operator, which is being widely employed
in literature under the name Riemann-Liouville operator [3–6, 12, 15–18]. As of now, these operators have
found numerous applications in image processing of synthetic aperture, radar data and acoustics [9, 11].

On the other hand, the wavelet transform is a multi-scale integral transform, which serves as one of
the corner stones of non-stationary signal processing. It can be used in time-frequency analysis wherein
the scale and frequency are inverse to each other. The wavelet transform decomposes a signal into com-
ponents determined by the translations and dilations of a single function known as the mother wavelet.
By applying these local decomposition filters, the wavelet transform has proved to be of substantial im-
portance in capturing the local characteristics of non-stationary signals and has paved its way to a number
of fields including signal and image processing, sampling theory, geophysics, astrophysics, quantum me-
chanics and so on [7, 8, 24]. Recently, Rachdi and Herch [20] introduced the notion of Riemann-Liouville
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wavelet transform by using the generalized scale-translation procedure and the singular partial differential
operators.

As the harmonic analysis associated to the Riemann-Liouville operator has been extensively inves-
tigated and has witnessed a remarkable development, it is natural to study several aspects of the time-
frequency analysis associated with the Riemann-Liouville wavelet transform. The aim of this article is to
explore two subjects of the time-frequency analysis associated with the Riemann-Liouville wavelet trans-
form, viz, the Shapiro uncertainty principle and the scalogram. It is worth mentioning that the scalogram
plays a vital role in the applications of the wavelet transform to different aspects of signal processing. For
example, Addison et al.[2] employed the Morlet wavelet scalograms to detected a previously unknown co-
ordinated contractility behaviour of the atrium during ventricular fibrillation, a phenomenon which is not
captured in a normal electrocardiogram. Besides, Sukiennik and Bialasiewicz [22] applied the scalogram
to biomedical signals to detect their short-lived temporal interactions.

The remainder of this paper is arranged as follows: In §2, we present a gentle exposition regarding
the Riemann-Liouville operator. In §3, we formulate both the quantitative Shapiro’s dispersion uncertainty
principle and umbrella theorem associated with the Riemann-Liouville wavelet transform. In §4, we study
the eigenvalues and eigenfunctions of the time-frequency localization operator. Besides, we also study the
scalogram associated with the Riemann-Liouville wavelet transform.

2. Preliminaries

The aim of this section is to present a healthy overview of the prerequisites circumscribing the Riemann-
Liouville operators, Schatten-von Neumann classes, and the localization operators associated with the
continuous wavelet transform. For a detailed perspective regarding the content of the section, we refer to
[4, 20, 23, 25]. For the sake of distinction, we sub-divide the section into three sub-sections.

2.1. Harmonic analysis associated with the Riemann-Liouville operator

Prior to starting the formal aspects of this sub-section, we fix some notations as under:

• C∗(R2) denotes the space of continuous functions on R2, even with respect to the first variable.

• C∗,c(R2) denotes the subspace of C∗(R2) formed by functions with compact support.

• E∗(R2) is the space of infinitely differentiable functions on R2, even with respect to the first variable.

• S∗(R2) denotes the Schwartz space of rapidly decreasing functions on R2, even with respect to the
first variable.

• S1 is the unit sphere in R2, S1 =
{
(η, ξ) ∈ R2 : η2 + ξ2 = 1

}
.

• R2
+ =

{
(r, x) ∈ R2 : r ≥ 0

}
.

Note that, for all (µ, λ) ∈ C2, the system
∆1u(r, x) = −iλu(r, x),
∆2u(r, x) = −µ2u(r, x)
u(0, 0) = 1, ∂u

∂r (0, x) = 0, ∀ x ∈ R,

admits a unique solution φµ,λ, given by [4, 23]

φµ,λ(r, x) = jα(r
√
µ2 + λ2)e−iλx,
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where ∆1 and ∆2 denote the singular partial differential operators, given by

∆1 =
∂
∂x
,

∆2 =
∂2

∂r2 +
2α + 1

r
∂
∂r
−
∂2

∂x2 , (r, x) ∈ (0,∞) ×R, α ⩾ 0,

and jα is the normalized Bessel function defined as

∀ z ∈ C, jα(z) = Γ(α + 1)
∞∑

k=0

(−1)k

k!Γ(k + 1 + α)
(z/2)2k.

Definition 2.1. For any (r, x) ∈ R2
+, the Riemann-Liouville operator on C∗(R2) is defined by:

Rα f (r, x) =


α
π

∫ 1

−1

∫ 1

−1
f (rs
√

1 − t2, x + rt)(1 − t2)α−
1
2 (1 − s2)α−1dtds if α > 0

1
π

∫ 1

−1
f (r
√

1 − t2, x + rt)(1 − t2)−
1
2 dt if α = 0.

Remark 2.1. (i) The function φµ,λ, (µ, λ) ∈ C2, can be expressed as

∀(r, x) ∈ R2
+, φµ,λ(r, x) = Rα(cos(µ.)e−iλ.)(r, x).

(ii) For all ν ∈N2, (r, x) ∈ R2
+ and z = (µ, λ) ∈ C2, we have

|Dνzφµ,λ(r, x)| ≤ ||(r, x)|||ν| exp(2||(r, x)|| ||Imz||), (1)

where

Dνz =
∂|ν|

∂zν1
1 ∂z

ν2
2

and |ν| = ν1 + ν2.

In particular, for all ν ∈N2, (r, x) ∈ R2
+ and z = (µ, λ) ∈ C2:

|φµ,λ(r, x)| ≤ 1. (2)

Next, consider the set Γ defined as

Γ = R2
∪

{
(it, x) : (t, x) ∈ R2, |t| ≤ |x|

}
.

and let Γ+ denotes the subset:

Γ+ = R
2
+ ∪

{
(it, x) : (t, x) ∈ R2, 0 ≤ t ≤ |x|

}
,

then for all (µ, λ) ∈ Γ,we have

sup
(r,x)∈R2

|φµ,λ(r, x)| = 1.

In the following, we denote by

• dνα (r, x) the measure defined on R2
+ by

dνα (r, x) = kαr2α+1dr ⊗ dx,

with
kα =

1
2αΓ(α + 1)(2π)1/2

.
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• For p ∈ [1,∞], p′ denotes as in all that follows, the conjugate exponent of p.

• Lp(dνα ), 1 ≤ p ≤ ∞, the space of measurable functions on R2
+, satisfying

∥ f ∥Lp(dνα ) =

(∫
R2
+

| f (r, x)|pdνα (r, x)
)1/p

< ∞, 1 ≤ p < ∞,

∥ f ∥L∞(dνα ) = ess sup
(r,x)∈R2

+

| f (r, x)| < ∞, p = ∞.

• BΓ+ the σ-algebra defined on Γ+ by

BΓ+ =
{
θ−1(B) : B ∈ BBor(R2

+)
}
,

where θ defined on the set Γ+ by

θ(µ, λ) = (
√
µ2 + λ2, λ). (3)

• dγα the measure defined on BΓ+ by

∀A ⊂ BΓ+ , γα (A) = να (θ(A)).

• Lp(dγα ), 1 ≤ p ≤ ∞, the space of measurable functions on Γ+, satisfying

∥ f ∥Lp(dγα ) =

(∫
Γ+

| f (µ, λ)|pdγα (µ, λ)
)1/p

< ∞, 1 ≤ p < ∞,

∥ f ∥L∞(dγα ) = ess sup
(µ,λ)∈Γ+

| f (µ, λ)| < ∞, p = ∞.

We have the following properties.

Proposition 2.1. i) For every non-negative measurable function 1 on Γ+, we have∫
Γ+

f (µ, λ)dγα (µ, λ) = kα
[ ∫
R2
+

f (µ, λ)(µ2 + λ2)αµdµαdλ +
∫
R

∫
|λ|

0
f (iµ, λ)(λ2

− µ2)αµdµαdλ
]
.

ii) For every non-negative measurable function f on R2
+ (resp. integrable on R2

+ with respect to the measure dνα ),
f ◦ θ is a measurable non-negative function on Γ+, (resp. integrable on Γ+ with respect to the measure dγα ) and we
have ∫

Γ+

f ◦ θ(µ, λ)dγα (µ, λ) =
∫
R2
+

f (r, x)dνα (r, x). (4)

Remark 2.2. The eigenfunction φµ,λ, satisfies the following product formula

φµ,λ(r, x)φµ,λ(s, y) =
Γ(α + 1)
√
πΓ

(
α + 1

2

) ∫ π

0
φµ,λ

(√
r2 + s2 + 2rs cosθ, x + y

)
sin2α θdθ.

Following is the definition of the translation operator τ(r,x) associated with the Riemann-Liouville operator.

Definition 2.2. Let f be in Lp (
dνα

)
, p ∈ [1,∞], for all (r, x) ∈ R2

+, we define the translation operator τ(r,x) associated
with the Riemann-Liouville operator by

τ(r,x)( f )(s, y) =
Γ(α + 1)
√
πΓ

(
α + 1

2

) ∫ π

0
f
(√

r2 + s2 + 2rs cosθ, x + y
)

sin2α θdθ, (5)

for all (s, y) ∈ R2
+.
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Proposition 2.2. For every f ∈ Lp(dνα ), 1 ⩽ p ⩽ ∞ and (r, x) ∈ R2
+, the function τ(r,x)( f ) belongs to Lp(dνα ) and we

have ∥∥∥τ(r,x)( f )
∥∥∥

Lp(dνα )
⩽

∥∥∥ f
∥∥∥

Lp(dνα )
. (6)

Definition 2.3. The convolution product of f , 1 ∈ L1(dνα ) is defined by

f ∗α 1(r, x) =
∫
R2
+

τ(r,x)( f̌ )(s, y)1(s, y)dνα (s, y), for all (r, x) ∈ R2
+, (7)

with f̌ (s, y) = f (s,−y).

Proposition 2.3. Let 1 ≤ p, q, r ≤ ∞, such that 1
p +

1
q −

1
r = 1. If f is a function in Lp(dνα ) and 1 an element of

Lq(dνα ), then f ∗α 1 belongs to Lr(dνα ) and we have∥∥∥ f ∗α 1
∥∥∥

Lr(dνα )
≤

∥∥∥ f
∥∥∥

Lp(dνα )

∥∥∥1∥∥∥Lq(dνα )
. (8)

Next, we have the notion of generalized Fourier transform Fα associated with the Riemann-Liouville
operator Rα.

Definition 2.4. The Fourier transform associated with the Riemann-Liouville operator is defined on L1(dνα ) by

Fα( f )(µ, λ) =
∫
R2
+

f (r, x)φµ,λ(r, x)dνα (r, x), ∀ (µ, λ) ∈ Γ. (9)

Below, we recall some fundamental properties of the generalized Fourier transform Fα.

(i) For all f ∈ L1(dνα ),

||Fα( f )||L∞(dγα ) ≤ || f ||L1(dνα ). (10)

(ii) For every f ∈ L1(dνα ), we have

Fα( f )(µ, λ) = F̃α( f ) ◦ θ(µ, λ), (µ, λ) ∈ Γ,

where for every (µ, λ) ∈ R2,

F̃α( f )(µ, λ) =
∫
R2
+

f (r, x) jα(rµ)e−iλxdνα (r, x)

and θ is the function defined by the relation (3).

(iii) For f ∈ L1(dνα ) such that Fα( f ) ∈ L1(dγα ), we have the inversion formula for Fα : for almost every
(r, x) ∈ R2

+,

f (r, x) =
∫
Γ+

Fα( f )(µ, λ)φµ,λ(r, x)dγα (µ, λ). (11)

Theorem 2.1. i) (Plancherel’s formula for Fα). For every f in S∗(R2), we have∫
Γ+

|Fα( f )(µ, λ)|2dγα (µ, λ) =
∫
R2
+

| f (r, x)|2dνα (r, x). (12)

In particular, the generalized Fourier transform Fα can be extended to an isometric isomorphism from L2(dνα ) onto
L2(dγα ).

ii) (Parseval’s formula for Fα). For all f , 1 in L2(dνα ) we have∫
Γ+

Fα( f )(µ, λ)Fα(1)(µ, λ)dγα (µ, λ) =
∫
R2
+

f (r, x)1(r, x)dνα (r, x). (13)
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2.2. Basic Riemann-Liouville wavelet theory

In this subsection, we shall recall some fundamental results on the Riemann-Liouville wavelet transforms
due to Rachdi and Herch [20].

For (a, b) ∈ (0,∞) ×R∗, the dilation operator D(a,b) of any measurable function h on R2
+ is defined by

D(a,b)(h)(r, x) := aα+1
|b|

1
2 h(ar, bx), ∀ (r, x) ∈ R2

+. (14)

In the following proposition, we assemble some fundamental properties of the dilation operators.

Proposition 2.4. (i) For all (a, b), (c, d) ∈ (0,∞) ×R∗, we have

D(a,b) ◦D(c,d) = Dac,bd. (15)

(ii) Let (a, b) ∈ (0,∞) ×R∗. For all h ∈ Lp(dνα), p ∈ [1,∞]. The function D(a,b)h belongs to Lp(dνα) and we have

||D(a,b)h||Lp(dνα) = a(2α+2)( 1
2−

1
p )
|b|

p−2
2p ||h||Lp(dνα). (16)

In particular, D(a,b) is an isometric isomorphism from L2(dνα) onto itself whose the inverse operator is D( 1
a ,

1
b ). Moreover

we have

∀ (µ, λ) ∈ R2
+, F̃α(D(a,b)(h))(µ, λ) =

1

aα+1|b|
1
2

F̃α(h)(
µ

a
,
λ
b

). (17)

(iii) Let (a, b) ∈ (0,∞) ×R∗. For all h, 1 in L2(dνα), we have

⟨D(a,b)(h), 1⟩L2(dνα) = ⟨h,D( 1
a ,

1
b )(1)⟩L2(dνα). (18)

(iv) Let (a, b) ∈ (0,∞) ×R∗ and (r, x) ∈ R2
+. We have

D(a,b)τ(r,x) = τ( r
a ,

x
b ) D(a,b). (19)

Definition 2.5. A generalized wavelet onR2
+ is a measurable function h onR2

+ satisfying for almost all (µ, λ) belongs
to (0,∞) ×R∗, the condition

0 < Ch := cα

∫
∞

0

∫
R

∣∣∣∣∣F̃α(h)(
µ

a
,
λ
b

)
∣∣∣∣∣2 da

a
db
|b|
< ∞, (20)

where cα = 1

2αΓ(α+1)(2π)
1
2

.

For (a, b) ∈ (0,∞) × R∗ and h ∈ Lp(dνα), p ∈ [1,∞], consider the family ha,b,r,x, (r, x) ∈ R2
+, of generalized

wavelets on R2
+ in Lp(dνα) defined by

ha,b,r,x(s, y) := τ(r,−x)(D(a,b)h)(s, y), (s, y) ∈ R2
+, (21)

where τ(r,−x), (r, x) ∈ R2
+, are the generalized translation operators given by (5).

Remark 2.3. Let h be in L2(dνα). We have

∀ (a, b) ∈ (0,∞) ×R∗, ∀ (r, x) ∈ R2
+, ||ha,b,r,x||L2(dνα) ≤ ||h||L2(dνα). (22)
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Notation. We denote by
Lp
µα

(R2
+ ×R

2
+), p ∈ [1,∞], the space of measurable functions f on R2

+ ×R
2
+ such that

∥ f ∥Lp
µα

(R2
+×R

2
+) :=

(∫
R2
+×R

2
+

| f (a, b, r, x)|pdµα(a, b, r, x)
)1/p

< ∞, 1 ≤ p < ∞,

∥ f ∥L∞µα (R2
+×R

2
+) := ess sup

(a,b,r,x)∈R2
+×R

2
+

| f (a, b, r, x)| < ∞,

where the measure µα is defined by

dµα (a, b, r, x) = dνα(a, b)dνα(r, x), ∀ (a, b, r, x) ∈ R2
+ ×R

2
+.

Definition 2.6. Let h be a generalized wavelet on R2
+ in L2(dνα). The generalized continuous wavelet transform Φαh

on R2
+ is defined for regular functions f on R2

+ by

Φαh ( f )(a, b, r, x) =
∫
R2
+

f (s, y)ha,b,r,x(s, y)dνα(s, y), ∀ (a, b) ∈ (0,∞) ×R∗, (r, x) ∈ R2
+. (23)

Definition 2.6 can be recast as

Φαh ( f )(a, b, r, x) = f ∗α D(a,b)h(r, x), (24)

where ∗α is the generalized convolution product given by (7).

We note that the adjoint of Φαh is (Φαh )∗ : L2
µα

(R2
+ ×R

2
+)→ L2(dνα) and is defined as

(Φαh )∗(F)(s, y) =
1

Ch

∫
R2
+×R

2
+

F(a, b; r, x)ha,b;r,x(s, y)dµα(a, b; r, x), (s, y) ∈ R2
+. (25)

Theorem 2.2. (Plancherel’s formula for Φαh ). Let h be a generalized wavelet on R2
+ in L2(dνα). For all f in L2(dνα)

we have∫
R2
+

| f (r, x)|2dνα(r, x) =
1

Ch

∫
R2
+×R

2
+

|Φαh ( f )(a, b, r, x)|2dµα (a, b, r, x). (26)

Corollary 2.1. (Parseval’s formula for Φαh ). Let h be a generalized wavelet on R2
+ in L2(dνα) and f1, f2 in L2(dνα).

Then, we have∫
R2
+

f1(r, x) f2(r, x)dνα(r, x) =
1

Ch

∫
R2
+×R

2
+

Φαh ( f1)(a, b, r, x)Φαh ( f2)(a, b, r, x)dµα (a, b, r, x). (27)

Remark 2.4. Let h be a generalized wavelet in L2(dνα). Then from the relations (23) and (22), for all f in L2(dνα) we
have

∥Φαh ( f )∥L∞µα (R2
+×R

2
+) ≤ ∥ f ∥L2(dνα)∥h∥L2(dνα). (28)

2.3. Schatten-von Neumann classes

In this sub-section, we recall the notion of Schatten-von Neumann classes. Prior to that, we set the following
notation:

• lp(N), 1 ≤ p ≤ ∞, the set of all infinite sequences of real (or complex) numbers x := (x j) j∈N, such that

||x||p =
( ∞∑

j=1

|x j|
p
)1/p
< ∞, if 1 ≤ p < ∞,

||x||∞ = sup
j∈N
|x j| < ∞.
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For p = 2, we provide this space l2(N) with the scalar product

⟨x, y⟩2 :=
∞∑
j=1

x jy j.

• B(Lp(dνα )), 1 ≤ p ≤ ∞, the space of bounded operators from Lp(dνα ) into itself.

Definition 2.7. (i) The singular values (sn(A))n∈N of a compact operator A in B(L2(dνα )) are the eigenvalues of the
positive self-adjoint operator |A| =

√
A∗A.

(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators whose singular values lie in lp(N). The
space Sp is equipped with the norm

||A||Sp :=
( ∞∑

n=1

(sn(A))p
) 1

p
. (29)

Remark 2.5. We note that the space S2 is the space of Hilbert-Schmidt operators, and S1 is the space of trace class
operators.

Definition 2.8. The trace of an operator A in S1 is defined by

tr(A) =
∞∑

n=1

⟨Avn, vn⟩L2(dνα ) (30)

where (vn)n is any orthonormal basis of L2(dνα ).

Remark 2.6. If A is positive, then

tr(A) = ||A||S1 . (31)

Moreover, a compact operator A on the Hilbert space L2(dνα ) is Hilbert-Schmidt, if the positive operator A∗A is in the
space of trace class S1. Then

||A||2HS := ||A||2S2
= ||A∗A||S1 = tr(A∗A) =

∞∑
n=1

||Avn||
2
L2(dνα ) (32)

for any orthonormal basis (vn)n of L2(dνα ).

Definition 2.9. We define S∞ := B(L2(dνα )), equipped with the norm,

||A||S∞ := sup
v∈L2(dνα ):||v||L2(dνα )=1

||Av||L2(dνα ). (33)

Remark 2.7. It is obvious that Sp ⊂ Sq, 1 ≤ p ≤ q ≤ ∞.

2.4. Localization operators for the generalized continuous wavelet transform.

In this subsection, we shall recall some fundamental results associated with the Riemann-Liouville wavelet
localization operators [15].
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Definition 2.10. Let h be measurable function on R2
+ and σ be measurable function on the set R2

+ × R
2
+, we define

the localization operator for the generalized continuous wavelet transform, denoted byLh(σ), on Lp(dνα), 1 ≤ p ≤ ∞,
by ∀ (s, y) ∈ R2

+,

Lh(σ)( f )(s, y) =
1

Ch

∫
R2
+×R

2
+

σ(a, b, r, x)Φαh ( f )(a, b, r, x) ha,b,r,x(s, y)dµα (a, b, r, x). (34)

Often it is more convenient to interpret the definition of Lh(σ) in a weak sense, that is, for f in Lp(dνα), 1 ≤ p ≤ ∞,
and 1 in Lp′ (dνα)

⟨Lh(σ)( f ), 1⟩L2(dνα) =
1

Ch

∫
R2
+×R

2
+

σ(a, b, r, x)Φαh ( f )(a, b, r, x)Φαh (1)(a, b, r, x)dµα (a, b, r, x). (35)

For the sake of simplicity, we will call the above defined operator Lh(σ) as the localization operator.

Proposition 2.5. Let p ∈ [1,∞). The adjoint of the localization operator

Lh(σ) : Lp(dνα)→ Lp(dνα)

is Lk,h(σ) : Lp′ (dνα)→ Lp′ (dνα).

Theorem 2.3. Let σ be in Lp
µα

(R2
+ × R

2
+), 1 ≤ p ≤ ∞. Then there exists a unique bounded linear operator

Lh(σ) : L2(dνα)→ L2(dνα), such that

||Lh(σ)||S∞ ⩽ (
1

Ch
)

1
p ∥σ∥Lp

µα
(R2
+×R

2
+). (36)

Proposition 2.6. Let σ be in L1
µα

(R2
+ ×R

2
+), then the localization operator

Lh(σ) : L2(dνα)→ L2(dνα)

is in S2 and we have

∥Lh(σ)∥S2 ⩽
1

Ch
∥σ∥L1

µα
(R2
+×R

2
+).

Proposition 2.7. Let σ be in Lp
µα

(R2
+ ×R

2
+), 1 ⩽ p < ∞. Then, the localization operator Lh(σ) is compact.

Theorem 2.4. Let σ be in L1
µα

(R2
+ ×R

2
+). Then,

1
Ch
∥̃σ∥L1

µα
(R2
+×R

2
+) ⩽ ∥Lh(σ)∥S1 ⩽

1
Ch
∥σ∥L1

µα
(R2
+×R

2
+), (37)

where σ̃ is given by
σ̃(a, b, r, x) = ⟨Lh(σ)( ha,b,r,x), ha,b,r,x⟩L2(dνα), (a, b, r, x) ∈ R2

+ ×R
2
+.

Corollary 2.2. For σ in L1
µα

(R2
+ ×R

2
+), we have the following trace formula

tr(Lh(σ)) =
1

Ch

∫
R2
+×R

2
+

σ(a, b, r, x)||ha,b,r,x||L2(dνα)dµα (a, b, r, x). (38)

Corollary 2.3. Let σ be in Lp
µα

(R2
+ ×R

2
+), 1 ⩽ p ⩽ ∞. Then, the localization operator

Lh(σ) : L2(dνα) −→ L2(dνα)

is in Sp and we have

∥Lh(σ)∥Sp ⩽
( 1

Ch

) 1
p

∥σ∥Lp
µα

(R2
+×R

2
+).
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3. Mean dispersion theorem for the wavelet transform

In this section, we shall present some useful results regarding the concentration of Φαh ( f ) on small sets.

Proposition 3.1. Suppose that U ⊂ R2
+ ×R

2
+ satisfies

µα(U) <
Ch

||h||2L2(dνα)

, (39)

then, for all f in L2(dνα), we have

∥χ
Uc
Φαh ( f )∥L2

µα (R2
+×R

2
+) ≥

√
Ch

√
1 −
||h||2L2(dνα)

Ch
µα(U)∥ f ∥L2(dνα), (40)

where χ
Uc

denotes the characteristic function of the complementary Uc of U.

Proof. From Plancherel’s Theorem 2.2, we have

Ch|| f ||2L2(dνα) = ∥Φ
α
h ( f )∥2L2

µα (R2
+×R

2
+) = ∥Φ

α
h ( f )∥2L2

µα (U) + ∥Φ
α
h ( f )∥2L2

µα (Uc). (41)

On the other hand from the relation (28), we have∫
U
|Φαh ( f )(a, b, r, x)|2dµα(a, b, r, x) ≤ ∥Φαh ( f )∥2L∞µα (R2

+×R
2
+)µα(U)

≤ µα(U)∥ f ∥2L2(dνα)∥h∥
2
L2(dνα). (42)

Thus, the result follows immediately from the relations (41) and (42).

Remark 3.1. Let U be a subset of R2
+ ×R

2
+ satisfying the relation (39). If Φαh ( f ) is supported in U, then f = 0.

Proposition 3.2. Let h be a generalized wavelet such that ∥h∥
L2(dνα )

= 1. Let s > 0. Then the following uncertainty
inequality hold.
There exists a constant C(s) > 0 such that, for all f in L2(dνα), we have∣∣∣∣∣∣∣∣ ||(a, b, r, x)||sΦαh ( f )

∣∣∣∣∣∣∣∣
L2
µα (R2

+×R
2
+)
≥ C(s)∥ f ∥

L2(dνα )
. (43)

Proof. Let δ > 0. We consider the subset Vδ of R2
+ ×R

2
+ defined by

Vδ =
{
(a, b, r, x) ∈ R2

+ ×R
2
+ : ||(a, b, r, x)|| < δ

}
,

and satisfying 0 < µα(Vδ) < Ch. By applying the relation (40) with U = Vδ we obtain

|| f ||2L2(dνα) ≤
1

Ch−µα(Vδ)

∫
Vc
δ

|Φαh ( f )(a, b, r, x)|2dµα(a, b, r, x)

≤
1

δ2s(Ch−µα(Vδ))

∫
||(a,b,r,x)||≥δ

||(a, b, r, x)||2s
|Φαh ( f )(a, b, r, x)|2dµα(a, b, r, x)

≤
1

δ2s(Ch−µα(Vδ))

∣∣∣∣∣∣∣∣ ||(a, b, r, x)||sΦαh ( f )
∣∣∣∣∣∣∣∣2

L2
µα (R2

+×R
2
+)
.

Thus, we obtain the relation (43) with C(s) := δs
√

Ch − µα(Vδ).
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Proposition 3.3. ([19]). Let h be a generalized wavelet onR2
+ in L2(dνα). Then, Φαh (L2(dνα)) is a reproducing kernel

Hilbert space with kernel function

Kh(a′, b′, r′, x′; a, b, r, x) :=
1

Ch

∫
R2
+

ha′,b′,r′,x′ (s, y)ha,b,r,x(s, y)dν(s, y). (44)

The kernel satisfies:

∀ (a′, b′, r′, x′), (a, b, r, x) ∈ R2
+ ×R

2
+, |Kh(a′, r′, x′; a, b, r, x)| ≤

||h||2L2(dνα)

Ch
. (45)

Notation. We shall adopt the following notations:
(i) Ph : L2

µα (R
2
+ ×R

2
+)→ L2

µα (R
2
+ ×R

2
+) denotes the orthogonal projection from L2

µα (R
2
+ ×R

2
+) ontoΦαh (L2(dνα)).

(ii) PU : L2
µα (R

2
+ ×R

2
+) → L2

µα (R
2
+ ×R

2
+) denotes the orthogonal projection from L2

µα (R
2
+ ×R

2
+) onto the

subspace of functions of L2
µα (R

2
+ ×R

2
+) supported in a subset U ⊂ R2

+ ×R
2
+ satisfying

0 < µα(U) :=
∫

U
dµα(a, b, r, x) < ∞. (46)

Next, we recall that

||PUPh||HS :=
( ∫
R2
+×R

2
+×R

2
+×R

2
+

|χU (a, b, r, x)|2|Kh(a′, b′, r′, x′; a, b, r, x)|2dµα(a′, b′, r′, x′)dµα(a, b, r, x)
) 1

2

(47)

≤
||h||L2(dνα)
√

Ch

√
µα(U) < ∞.

That is, PUPh is a Hilbert-Schmidt operator and, therefore it is a compact operator.

Remark 3.2. i) The operator Ph = Φ
α
h (Φαh )∗ can be explicitly expressed as an integral operator

PhF(z) =
∫
R2
+×R

2
+

F(a, b, r, x)Kh(z; a, b, r, x)dµα(a, b, r, x), z = (a′, b′, r′, x′) ∈ R2
+ ×R

2
+,

with integral kernelKh.
ii) AsKh is the integral kernel of an orthogonal projection, it satisfies

Kh(z; z′) = Kh(z′; z), for all z, z′ ∈ R2
+ ×R

2
+, (48)

and

Kh(z; z′) =
∫
R2
+×R

2
+

Kh(z; z′′)Kh(z′′; z′)dµα(z′′), z, z′ ∈ R2
+ ×R

2
+. (49)

iii) If {vn : n ∈N} is an orthonormal basis of Φαh (L2(dνα)),Kh can be expanded as

Kh(z; z′) =
∞∑

n=1

vn(z)vn(z′), z, z′ ∈ R2
+ ×R

2
+. (50)

Definition 3.1. Let 0 < ε < 1 and let f ∈ L2(dνα) be a non-zero function.
We say that Φαh is ε-time-concentrated on U, if∣∣∣∣∣∣∣∣Φαh ( f )

∣∣∣∣∣∣∣∣
L2
µα

(Uc)
≤ ε∥ f ∥L2(dνα)∥h∥L2(dνα).
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Proposition 3.4. Let h be a generalized wavelet and
(
uβ

)
β∈N2

be an orthonormal sequence in L2(dνα) and U be a

measurable subset of R2
+ ×R

2
+. If µα(U) < ∞, then for every non-empty finite subsetK ⊂N2, we have

∑
β∈K

(
1 − ∥χUcΦαh (uβ)∥L2

µα
(R2
+×R

2
+)

)
⩽
∥h∥2L2(dνα)

Ch
µα(U).

Proof. As PUPh is an Hilbert-Schmidt operator then by (32)∑
β∈K

⟨PUΦ
α
h (uβ),Φαh (uβ)⟩L2

µα
(R2
+×R

2
+) =

∑
β∈K

⟨PhPUPhΦ
α
h (uβ),Φαh (uβ)⟩L2

µα
(R2
+×R

2
+)

≤ tr(PhPUPh)

= ∥PUPh∥
2
HS.

Then by (47) we get

∑
β∈K

⟨PUΦ
α
h (uβ),Φαh (uβ)⟩L2

µα
(R2
+×R

2
+) ⩽

∥h∥2L2(dνα)

Ch
µα(U). (51)

Now by the Cauchy-Schwartz inequality we have for every β ∈ K ,

⟨PUΦ
α
h (uβ),Φαh (uβ)⟩L2

µα
(R2
+×R

2
+) = 1 − ⟨PUcΦαh (uβ),Φαh (uβ)⟩L2

µα
(R2
+×R

2
+)

⩾ 1 − ∥χUcΦαh (uβ)∥2L2
µα

(R2
+×R

2
+)

in particular, using relation (51), we obtain∑
β∈K

(
1 − ∥χUcΦαh (uβ)∥L2

µα
(R2
+×R

2
+)

)
⩽

∑
β∈K

⟨PUΦ
α
h (uβ),Φαh (uβ)⟩L2

µα
(R2
+×R

2
+) ⩽

∥h∥2L2(dνα)

Ch
µα(U).

As a consequence of the proposition 3.4, we shall demonstrate that, if the generalized continuous wavelet
transform of an othornormal sequence are ε time-frequency concentrated in a given centred ball ofR2

+×R
2
+,

then such a sequence is necessarily finite.

Proposition 3.5. Let ε and δ be positive real numbers such that 0 < ε < 1, and h be a generalized wavelet. Let
K ⊂ N2 be a non-empty subset and

(
uβ

)
β∈K

be an orthonormal sequence in L2(dνα). If Φαh (uβ) is ε-time-frequency
concentrated in the set

Bδ :=
{
(a, b, r, x) ∈ R2

+ ×R
2
+ : ||(a, b, r, x)|| ≤ δ

}
for every β ∈ K , thenK is finite and

Card(K ) ⩽
δ4α+6

(1 − ε)
M(α, h). (52)

where M(α, h) =
∥h∥2

L2(dνα )

Ch
µα(B1).

Proof. LetM ⊂ K be a non-empty finite subset, then by Proposition 3.4, we deduce that

∑
β∈M

(
1 − ∥χBc

δ
Φαh (uβ)∥L2

µα
(R2
+×R

2
+)

)
⩽
∥h∥2L2(dνα)

Ch
µα(Bδ), (53)
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however for every β ∈ M, ∥χBc
δ
Φαh (uβ)∥L2

µα
(R2
+×R

2
+) ⩽ ε, and

µα(Bδ) = µα(B1)δ4α+6, (54)

hence by combining relations (53) and (54), we deduce that

Card(M) ⩽
µα(B1)∥h∥2L2(dνα)

(1 − ε)Ch
δ4α+6,

which means thatK is finite and satisfies relation (52).

Let p be a positive real number, h be a generalized wavelet and f ∈ L2(dνα), we define the generalized pth

time-frequency dispersion of Φαh ( f ) by

ρp(Φαh ( f )) =
(∫
R2
+×R

2
+

||(a, b, r, x)||p
∣∣∣Φαh ( f )(a, b; r, x)

∣∣∣2 dµα(a, b, r, x)
) 1

p

.

Corollary 3.1. Let A, p be positive real numbers and h ∈ L2(dνα) be a generalized wavelet. Let K ⊂ N2 be a
non-empty subset and

(
uβ

)
β∈K

be an orthonormal sequence in L2(dνα). Assume that for every β ∈ K ,

ρp(Φαh (uβ)) ⩽ A,

thenK is finite and
Card(K ) ⩽ A4α+6M′(α, p, h),

where M′(α, p, h) = 21+ 8α+12
p M(α, h).

Proof. Assume that ρp(Φαh (uβ)) ⩽ A for every β ∈ K , then we have∫
Bc

A2
2
p

|Φαh (uβ)(a, b, r, x)|2dµα(a, b, r, x) ⩽
1(

A2
2
p
)pρ

p
p(Φαh ( f )) ⩽

1
4
. (55)

Relation (55) means that for every β ∈ K , uβ is
1
2

-concentrated in the set B
A2

2
p
, hence according to Proposi-

tion 3.5, we deduce thatK is finite and

Card(K ) ⩽ A4α+6M′(α, p, h).

Lemma 3.1. Let h be a generalized wavelet and p be a positive real number. If
(
uβ

)
β∈N2

is an orthonormal sequence

in L2(dνα), then there exists j0 ∈ Z such that

∀β ∈N2, ρp(Φαh (uβ)) ⩾ 2 j0 .

Proof. The proof is an immediate consequence of Heisenberg-type inequality (43).

Theorem 3.1 (Shapiro’s Dispersion Theorem). Let h be a generalized wavelet and
(
uβ

)
β∈N2

be an orthonormal

sequence in L2(dνα), then for every positive real number p and for every non-empty finite subsetK ⊂N2, we have

∑
β∈K

(
ρp(Φαh (uβ))

)p
≥

1
2

(
3

M′(α, p, h)28α+13

) p
4α+6

(Card(K ))1+ p
4α+6 . (56)
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Proof. For every j ∈ Z, let
P j =

{
β ∈N2 : ρp(Φαh (uβ)) ∈ [2 j−1, 2 j)

}
,

then for every β ∈ P j ∫
R2
+×R

2
+

||(a, b, r, x)||p
∣∣∣Φαh (uβ)(a, b, r, x)

∣∣∣2 dµα(a, b, r, x) ⩽ 2pj,

thus, using the relation (55) yields∫
Bc

2
j+ 2

p

∣∣∣Φαh (uβ)(a, b, r, x)
∣∣∣2 dµα(a, b, r, x) ⩽

1
4
ρp(uβ)p

2 jp ⩽
1
4
. (57)

Therefore, as a consequence of the relation (57), we deduce that every β ∈ P j, uβ is 1
2 -concentrated in the

ball B
2 j+ 2

p
, In other words, the sequence (uβ)β∈P j satisfies the conditions of proposition 3.5, which shows that

P j is finite and

Card(P j) ⩽ 2 j(4α+6)M′(α, p, h). (58)

For m ∈ Z, m ⩾ j0, we denote by Qm =

m⋃
j= j0

P j then according to relation (58), we have

Card (Qm) =
m∑

j= j0

Card(P j) ⩽
M′(α, p, h)

3
2(m+1)(4α+6).

Now, if Card(K ) >
2M′(α, p, h)

3
2( j0+1)(4α+6), then we can choose an integer n > j0 such that

2M′(α, p, h)
3

2n(4α+6) < Card(K ) ⩽
2M′(α, p, h)

3
2(n+1)(4α+6). (59)

Thus, by relation (59) we get

∑
β∈K

(
ρp(Φαh (vβ))

)p
⩾

Card(K )
2

2(n−1)p ⩾
1
2

(Card(K ))1+ p
4α+6

(
3

28α+13M′(α, p, h)

) p
4α+6

.

Finally, if Card(K ) ⩽
2M′(α, p, h)

3
2( j0+1)(4α+6), then

∑
β∈K

(
ρp(Φαh (vβ))

)p
⩾ Card(K )2( j0−1)p ⩾ Card(K )1+ p

4α+6

(
3

M′(α, p, h)28α+13

) p
4α+6

.

Remark 3.3. By taking Card(K ) = 1, relation (56) appears as a general version of Heisenberg-Pauli-Weyl inequality
for the generalized continuous wavelet transform including the pth dispersion with 0 < p < 2.

Corollary 3.2. Let p > 0, h be a generalized wavelet and let
(
uβ

)
β∈N2

be an orthonormal sequence in L2(dνα). Then

for everyK ⊂N2∑
β∈K

(∣∣∣∣∣∣∣∣ ||(a, b)||pΦαh (uβ)(a, b, r, x)
∣∣∣∣∣∣∣∣

L2
µα

(R2
+×R

2
+)
+

∣∣∣∣∣∣∣∣ ||(r, x)||pΦαh (uβ)(a, b, r, x)
∣∣∣∣∣∣∣∣

L2
µα

(R2
+×R

2
+)

)
≥

1
2

(
3

M′(α,p,h)212α+19

) p
4α+6 Card(K )1+ p

4α+6 .
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Proof. The result is an immediate consequence of the previous theorem and the fact that

||(a, b, r, x)||p ≤ 2p(||(a, b)||p + ||(r, x)||p).

As a consequence of the last dispersion inequality, we infer that, there does not exist an infinite sequence(
uβ

)
β∈K

in L2(dνα) such that the two sequences∣∣∣∣∣∣∣∣ ||(a, b)||pΦαh (uβ)(a, b, r, x)
∣∣∣∣∣∣∣∣

L2
µα

(R2
+×R

2
+)

and ∣∣∣∣∣∣∣∣ ||(r, x)||pΦαh (uβ)(a, b, r, x)
∣∣∣∣∣∣∣∣

L2
µα

(R2
+×R

2
+)

are bounded.

Corollary 3.3. Let p > 0, h be a generalized wavelet and let
(
uβ

)
β∈N2

be an orthonormal sequence in L2(dνα). Then

for everyK ⊂N2

supβ∈K
(∣∣∣∣∣∣∣∣ ||(a, b)||pΦαh (uβ)(a, b, r, x)

∣∣∣∣∣∣∣∣
L2
µα

(R2
+×R

2
+)
,
∣∣∣∣∣∣∣∣ ||(r, x)||pΦαh (uβ)(a, b, r, x)

∣∣∣∣∣∣∣∣
L2
µα

(R2
+×R

2
+)

)
≥

1
4

(
3

M′(α,p,h)212α+19

) p
4α+6 Card(K )

p
4α+6 .

In particular

sup
β∈N2

(∣∣∣∣∣∣∣∣ ||(a, b)||pΦαh (uβ)(a, b, r, x)
∣∣∣∣∣∣∣∣

L2
µα

(R2
+×R

2
+)
+

∣∣∣∣∣∣∣∣ ||(r, x)||pΦαh (uβ)(a, b, r, x)
∣∣∣∣∣∣∣∣

L2
µα

(R2
+×R

2
+)

)
= ∞.

Theorem 3.2 (Shapiro’s Umbrella Theorem ). Let h be a generalized wavelet andK ⊂N2 be a non-empty subset
and

(
uβ

)
β∈K

be an orthonormal sequence in L2(dνα), if there is a function 1 ∈ L2
µα

(R2
+ ×R

2
+) such that

|Φαh (uβ)(a, b, r, x)| ⩽ 1(a, b, r, x),

for every β ∈ K and for almost every (a, b, r, x) ∈ R2
+ ×R

2
+, thenK is finite.

Proof. Following the idea of Malinnikova [14], for every positive real number 0 < ε < 1, there is a subset
∆1,ε ⊂ R2

+ ×R
2
+, such that

µα(∆1,ε) = inf
{
µα(U) :

∫ ∫
R2
+×R

2
+\U

∣∣∣1(a, b, r, x)
∣∣∣2 dµα(a, b, r, x) ⩽ ε2

}
,

and ∫ ∫
R2
+×R

2
+\∆1,ε

∣∣∣1(a, b, r, x)
∣∣∣2 dµα(a, b, r, x) = ε2.

Hence, according to the hypothesis, for every α ∈ K , we have∫ ∫
R2
+×R

2
+\∆1,ε

∣∣∣∣Φαh (
uβ

)
(a, b, r, x)

∣∣∣∣2 dµα(a, b, r, x) ⩽ ε2,

and by the Theorem 3.4, we get Card(K )(1 − ε) ⩽ µα(∆1,ε).
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4. Riemann-Liouville wavelet Scalograms

The aim of this section is to study the scalograms associated with the Riemann-Liouville wavelet transform.
The obtained results generalize the results proved by Ghobber in [10], in the context of Riemann-Liouville
wavelet transform.

4.1. Calderón-Toeplitz operator
Definition 4.1. Let h be a generalized wavelet onR2

+ in L2(dνα). We define the Riemann-Liouville wavelet scalogram
of f as

Sαh ( f )(a, b, r, x) = C−1
h |Φ

α
h f (a, b, r, x)|2, (a, b, r, x) ∈ R2

+ ×R
2
+. (60)

Remark 4.1. From the Plancherel formula associated with Φαh , we have∫
R2
+×R

2
+

Sαh ( f )(a, b, r, x)dµα(a, b, r, x) = ∥ f ∥2L2(dνα). (61)

It justifies the interpretation of a scalogram as a time-frequency energy density. Also, note that (35)〈
Lh(σ) f , f

〉
L2(dνα) =

∫
R2
+×R

2
+

σ(a, b, r, x)Sαh ( f )(a, b, r, x)dµα(a, b, r, x). (62)

In this section we shall keep our focus on localization operators Lh(σ) with symbol σ = χU , and h is a
generalized wavelet on R2

+ in L2(dνα), and U is subset of R2
+ × R

2
+ with finite measure µα(U) < ∞. For the

sake of simplicity, such an operator will be denoted as Lh(U).

Definition 4.2. We define the Calderón-Toeplitz operator

Th,U : Φαh (L2(dνα))→ Φαh (L2(dνα))

by

Th,U F = PhPUF. (63)

Proposition 4.1. The operator Th,U : Φαh (L2(dνα))→ Φαh (L2(dνα)) is trace-class and satisfies

0 ≤ Th,U ≤ PU ≤ I, (64)

and

Th,U = Φ
α
hLh(U)(Φαh )∗. (65)

Proof. For all F ∈ Φαh (L2(dνα)),〈
Th,U F,F

〉
L2
µα

(R2
+×R

2
+) = ⟨Ph(PUF),F⟩L2

µα
(R2
+×R

2
+) = ⟨PUF,F⟩L2

µα
(R2
+×R

2
+) =

∫
U
|F(a, b, r, x)|2dµα(a, b, r, x). (66)

Thus we deduce (64), and Th,U is bounded and positive.
Now, we want to prove (65). Indeed, using Φαh and (Φαh )∗, the time-frequency localization operator

Lh(U) : L2(dνα)→ L2(dνα)

can be expressed as
Lh(U)( f ) = (Φαh )∗(PUΦ

α
h f ), f ∈ L2(dνα).

Therefore,

(ΦαhLh(U)(Φαh )∗)F = PhPUF = Th,U F, F ∈ Φαh (L2(dνα)). (67)

Therefore, the time-frequency operator Lh(U) and the Calderón-Toeplitz operator Th,U are related by

Th,U = Φ
α
hLh(U)(Φαh )∗.
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Remark 4.2. From the above proposition, we deduce that Th,U and Lh(U) enjoy the same spectral properties, in
particular, we have the following proposition.

Proposition 4.2. The Calderón-Toeplitz operator Th,U is compact and even trace class with

tr(Th,U ) = tr(Lh(U)) =Mα(h,U), (68)

where

Mα(h,U) :=
1

Ch

∫
U
∥ha,b,r,x∥

2
L2(dνα)dµα(a, b, r, x). (69)

Proof. Note that the operator Th,U : Φαh (L2(dνα))→ Φαh (L2(dνα)) is bounded and positive. Now, let {en}
∞

n=1 be
an arbitrary orthonormal basis for Φαh (L2(dνα)). Then, if we denote by vn =

√
Ch(Φαh )∗(en), then {vn}

∞

n=1 is an
orthonormal basis for L2(dνα).
Thus, by (35) and Fubini’s theorem, we get

∞∑
n=1

〈
Th,U(en), en

〉
L2
µα

(R2
+×R

2
+) =

∞∑
n=1

〈
Lh(U)(Φαh )∗(en), (Φαh )∗(en)

〉
L2(dνα)

=
1

Ch

∞∑
n=1

∫
U
|Φαh (vn)(a, b, r, x)|2dµα(a, b, r, x)

=
1

Ch

∫
U

∞∑
n=1

|Φαh (vn)(a, b, r, x)|2dµα(a, b, r, x)

=
1

Ch

∫
U

∞∑
n=1

|
〈
vn, ha,b,r,x

〉
L2(dνα) |

2dµα(a, b, r, x)

=
1

Ch

∫
U
∥ha,b,r,x∥

2
L2(dνα)dµα(a, b, r, x)

= Mα(h,U).

Therefore, by Definition 2.8 and Remark 2.6, the operator Th,U is trace class with

∥Th,U ∥S1 = tr(Th,U ) =Mα(h,U).

Let Vh,U : L2
µα

(R2
+ × R

2
+) → L2

µα
(R2
+ × R

2
+) the operator defined by Vh,U = PhPUPh. The advantage of Vh,U

compared to Th,U is that it is defined on L2
µα

(R2
+ ×R

2
+) and consequently its spectral properties can be easily

related to its integral kernel. Since Th,U is positive and trace-class, then using the decomposition

L2
µα

(R2
+ ×R

2
+) = Φαh (L2(dνα)) ⊕

(
Φαh (L2(dνα))

)⊥
,

we deduce that Vh,U is also positive and trace-class with

tr(Vh,U) = tr(Th
U) =Mα(h,U). (70)

In addition, we have the following result.

Proposition 4.3. The trace of T2
h,U is given by

tr(T2
h,U) =

∫
U

∫
U
|Kh(a, b, r, x; a′, b′, r′, x′)|2dµα(a, b, r, x)dµα(a′, b′, r′, x′). (71)
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Proof. Since, Vh,U is positive, then

tr(T2
h,U) = tr(V2

h,U). (72)

On the other hand using the fact that the spaceΦαh (L2(dνα)) is a reproducing kernel Hilbert space with kernel
Kh, we get that for F ∈ L2(dνα)

Vh,UF(a, b, r, x) =

∫
R2
+×R

2
+

F(a′, b′, r′, x′)
∫
R2
+×R

2
+

χU (c, d, t, y)Kh(a, b, r, x; c, d, t, y) ×

Kh(c, d, t, y; a′, b′, r′, x′)dµα(c, d, t, y)dµα(a′, b′, r′, x′). (73)

That is, Vh,U has integral kernel

Nh,U(a, b, r, x; a′, b′, r′, x′) =
∫
R2
+×R

2
+

χU (c, d, t, y)Kh(a, b, r, x; c, d, t, y)Kh(c, d, t, y; a′, b′, r′, x′)dµα(c, d, t, y). (74)

Therefore,

tr(V2
h,U) =

∫
R2
+×R

2
+

∫
R2
+×R

2
+

|Nh,U(a, b, r, x; a′, b′, r′, x′)|2dµα(a, b, r, x)dµα(a′, b′, r′, x′)

=

∫
R2
+×R

2
+

∫
R2
+×R

2
+

χU (z1)χU (z2)Kh(z1; z2)dµα(z1)dµα(z2)

where by using the properties of the kernel of the reproducing kernel Hilbert space

Kh(z1; z2) =

∫
R2
+×R

2
+

∫
R2
+×R

2
+

Kh(z2; a, b, r, x)Kh(a, b, r, x; z1)Kh(z1; a′, b′, r′, x′)×

Kh(a′, b′, r′, x′; z2)dµα(a, b, r, x)dµα(a′, b′, r′, x′)
= Kh(z2; z1)Kh(z1; z2).

Using (48), we get

Kh(z1; z2) = |Kh(z1; z2)|2. (75)

This follows us to conclude.

4.2. Eigenvalues and eigenfunctions
Since the localization operator Lh(U) = (Φαh )∗χUΦ

α
h that we consider is a compact and self-adjoint operator,

the spectral theorem gives the following spectral representation

Lh(U)( f ) =
∞∑

n=1

sn(U)
〈

f , vU
n

〉
L2(dνα)

vU
n , f ∈ L2(dνα), (76)

where {sn(U)}∞n=1 are the positive eigenvalues arranged in a non increasing manner and {vU
n }
∞

n=1 is the
corresponding orthonormal set of eigenfunctions. Note that sn(U)↘ 0 and by (36), we have for all n ≥ 1,

sn(U) ≤ s1(U) ≤ 1. (77)

This, together with (65), we can deduce that the Calderón-Toeplitz operator

Th,U : Φαh (L2(dνα))→ Φαh (L2(dνα))

can be diagonalized as

Th,U F =
∞∑

n=1

sn(U)
〈
F, eU

n

〉
L2
µα

(R2
+×R

2
+)

eU
n , F ∈ Φαh (L2(dνα)), (78)

where eU
n = Φ

α
h (vU

n ).
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Lemma 4.1. For all z = (a, b, r, x) ∈ R2
+ ×R

2
+, we have

Θ(z) :=
∫
R2
+×R

2
+

χU(ω)|Kh(ω; z)|2dµα(ω) =
∞∑

n=1

sn(U)Sαh (vU
n )(z). (79)

Proof. From (44), we have for all z = (a, b, r, x) ∈ R2
+ × R

2
+, the function Kh(.; z) is in Φαh (L2(dνα)). Therefore

using the properties of the kernel of the reproducing kernel Hilbert space, we get〈
Th,UKh(.; z),Kh(.; z)

〉
L2
µα

(R2
+×R

2
+) = ⟨PUKh(.; z),Kh(.; z)⟩L2

µα
(R2
+×R

2
+)

=

∫
R2
+×R

2
+

χU(ω)Kh(ω; z)Kh(ω; z)dµα(ω)

=

∫
R2
+×R

2
+

χU(ω)|Kh(ω; z)|2dµα(ω).

Let {wU
n }
∞

n=1 ⊂ Φ
α
h (L2(dνα)) be an orthonormal basis of Ker(Th,U ) ( eventually empty).

Hence, {eU
n }
∞

n=1∪{w
U
n }
∞

n=1 is an orthonormal basis ofΦαh (L2(dνα)) and therefore the reproducing kernelKh can
be written as

Kh(a, b, r, x; a′, b′, r′, x′) = Kh(a′, b′, r′, x′; z) =
∞∑

n=1

eU
n (z)eU

n (a′, b′, r′, x′) +
∞∑

n=1

wU
n (z)wU

n (a′, b′, r′, x′). (80)

Using this, we compute again

〈
Th,UKh(.; z),Kh(.; z)

〉
L2
µα

(R2
+×R

2
+) =

〈
Th,U

∞∑
n=1

eU
n (z)eU

n ,
∞∑

k=1

ϕU
α (z)ϕU

α

〉
L2
µα

(R2
+×R

2
+)

=
∑
n,k

eU
n (z)ϕU

α (z)
〈
Th,U eU

n , ϕ
U
α

〉
L2
µα

(R2
+×R

2
+)

=

∞∑
n=1

sn(U)|eU
n (z)|2,

and the conclusion follows.

Let ε ∈ (0, 1) and define the quantity

n(ε,U) := card
{
n : sn(U) ≥ 1 − ε

}
.

Then an easy adaptation of the proof of Lemma 3.3 in [1], we obtain the following estimate for the eigenvalue
distribution.

Proposition 4.4. Let ε ∈ (0, 1).We have

|n(ε,U) −Mα(h,U)| ≤ max{ 1ε ,
1

1−ε }×∣∣∣∣ 1
Ch

∫
U

∫
U
|Kh(a′, b′, r′, x′; a, b, r, x)|2dµα(a, b, r, x)dµα(a′, b′, r′, x′) −Mα(h,U)

∣∣∣∣.
4.3. Scalogram of a subspace
Given an N−dimentional subspace V of L2(dνα), PV the orthogonal projection onto V with projection kernel
kV, is defined as

PV f (.) =
∫
R2
+

kV(.; t, s) f (t, s)dνα(t, s). (81)
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Recall that if {vn}
N

n=1 is an orthonormal basis of V, then

kV(r, x; , t, s) =
N∑

n=1

vn(r, x)vn(t, s). (82)

The kernel kV is independent of the choice of orthonormal basis for V.

Definition 4.3. The scalogram of the space V with generalized wavelet h is defined

SCALαh V(a, b, r, x) :=
∫
R2
+

∫
R2
+

kV(t, s; b, y)ha,b,r,x(t, s)ha,b,r,x(b, y)dνα(t, s)dνα(b, y). (83)

Then, we have the following result.

Lemma 4.2. The scalogram SCALαh V is given by

SCALαh V = Ch

N∑
n=1

Sαh (vn). (84)

Proof. We have

SCALαh V(a, b, r, x) =

∫
R2
+

∫
R2
+

N∑
n=1

vn(t, s)vn(b, y)ha,b,r,x(t, s)ha,b,r,x(b, y)dνα(t, s)dνα(b, y)

=

N∑
n=1

〈
vn, ha,b,r,x

〉
L2(dνα)

〈
vn, ha,b,r,x

〉
L2(dνα)

=

N∑
n=1

Φαh (vn)(a, b, r, x)Φαh (vn)(a, b, r, x)

=

N∑
n=1

|Φαh (vn)(a, b, r, x)|2.

This completes the proof.

Definition 4.4. We define the time-frequency concentration of a subspace V in U as:

ξU,h(V) :=
1
N

∫
U

SCALαh V(a, b, r, x)dµα(a, b, r, x). (85)

Then, using Lemma 4.2, we get the desired result:

ξU,h(V) :=
Ch

N

N∑
n=1

∫
U

Sαh (vn)(a, b, r, x)dµα(a, b, r, x). (86)

Theorem 4.1. The N−dimentional signal space VN = span{vU
n }

N
n=1 consisting of the first N eigenfunctions ofLh(U)

corresponding to the N largest eigenvalues {sn(U)}Nn=1 maximize the regional concentration ξU,h(V) and

ξU,h(VN) :=
Ch

N

N∑
n=1

sn(U). (87)
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Proof. We have

ξU,h(VN) :=
Ch

N

N∑
n=1

∫
U

Sαh (vU
n )(a, b, r, x)dµα(a, b, r, x). (88)

Moreover, the min-max lemma for self-adjoint operators states that (see e. g. Sec.95 in [21])

sn(U) =
∫

U
Sαh (vU

n )(a, b, r, x)dµα(a, b, r, x) = max
{ 〈
Lh(U)( f ), f

〉
L2(dνα) : ∥ f ∥L2(dνα) = 1, f ⊥ vU

1 , ..., v
U
n−1

}
.

So, the eigenvalues of Lh(U) determine the number of orthogonal functions that have a well-concentrated
scalogram in U. Thus,

ξU,h(VN) =
Ch

N

N∑
n=1

sn(U). (89)

The min-max characterization of the eigenvalues of compact operators implies that the first N eigenfunctions
of the time-frequency operator Lh(U) have optimal cumulative time-frequency concentration inside U, in
the sense,

N∑
n=1

〈
Lh(U)(vU

n ), vU
n

〉
L2(dνα)

= max
{ N∑

n=1

⟨Lh(U)vn, vn⟩L2(dνα) : {vn}
N
n=1 orthonormal

}
. (90)

Therefore any N−dimensional subset V of L2(dνα) cannot to be better concentrated in U than VN, i.e

ξU,h(V) ≤ ξU,h(VN). (91)

The proof is complete.

Remark 4.3. The time-frequency concentration of a subspace VN in U satisfies,

sN(U) ≤
1

Ch
ξU,h(VN) ≤ s1(U) ≤ 1. (92)

4.4. Accumulated scalogram
Let ρ(h,U) := SCALαh VNα(h,U), the ρ(h,U) is called the accumulated scalogram, provided that Nα(h,U) = [Mα(h,U)]
is the smallest integer greater than or equal to Mα(h,U) and

VNα(h,U) = span{vU
n }

Nα(h,U)
n=1 .

Observe that,

ρ(h,U) (a, b, r, x) =
Nα(h,U)∑

n=1

|Φαh (vU
n )(a, b, r, x)|2 =

Nα(h,U)∑
n=1

|eU
n (a, b, r, x)|2. (93)

Also,
∥ρ(h,U)∥L1

µα
(R2
+×R

2
+) = ChNα(h,U) = ChMα(h,U) +O(1).

Moreover, since
Nα(h,U)∑

n=1

sn(U) ≤ tr(Lh(U)) =Mα(h,U)
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then we can define the quantity

E(h,U) := 1 −

Nα(h,U)∑
n=1

sn(U)

Mα(h,U)
. (94)

which satisfies,

0 ≤ E(h,U) ≤ 1. (95)

More precisely, we have the following result.

Lemma 4.3. Let ε ∈ (0, 1). We have

0 ≤ E(h,U) ≤ 1 − (1 − ε) min(1,
n(ε,U)

Mα(h,U)
). (96)

Proof. Let ε ∈ (0, 1) and define lα(ε,U) = min(Nα(h,U),n(ε,U)). It follows that

sn(U) ≥ 1 − ε, 1 ≤ n ≤ lα(ε,U). (97)

As Nα(h,U) ≥ lα(h,U), we get

Nα(h,U)∑
n=1

sn(U) ≥
lα(ε,U)∑

n=1

sn(U) ≥ (1 − ε)lα(ε,U). (98)

Therefore

0 ≤ E(h,U) ≤ 1 − (1 − ε)
lα(ε,U)

Mα(h,U)
. (99)

As Nα(ε,U) ≥Mα(h,U),we obtain the desired result.

Consequently when the eigenvalues {sn(U)}n(ε,U)
n=0 are close to 1, then E(h,U) → 0. Moreover, we have the

following result bounding the error between ρ(h,U) and Θ.

Proposition 4.5. We have

1
Mα(h,U)

∥ρ(h,U) − ChΘ||L1
µα

(R2
+×R

2
+) ≤

Ch

Mα(h,U)
+ 2ChE(h,U). (100)

Proof. From Lemma 4.1, we have, for all z = (a, b, r, x) ∈ U

ρ(h,U) (z) − ChΘ(z) =
∞∑

n=1

(tn − sn(U))|eU
n (z)|2,, (101)

where tn = 1 if n ≤ Nα(h,U) and 0 otherwise. Now since

∥|eU
n |

2
||L1
µα

(R2
+×R

2
+) = Ch

and
∞∑

n=1

sn(U) =Mα(h,U),
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we obtain

∥ρ(h,U) − ChΘ||L1
µα

(R2
+×R

2
+) ≤ Ch

∞∑
n=1

|tn − sn(U)|

= Ch

Nα(h,U)∑
n=1

(1 − sn(U)) + Ch

∑
n>Nα(h,U)

sn(U)

= ChNα(h,U) + Ch

∞∑
n=1

sn(U) − 2Ch

Nα(h,U)∑
n=1

sn(U)

= ChNα(h,U) + ChMα(h,U) − 2Ch

Nα(h,U)∑
n=1

sn(U)

= Ch

(
Nα(h,U) −Mα(h,U)

)
+ 2Ch

(
Mα(h,U) −

Nα(h,U)∑
n=1

sn(U)
)

≤ Ch + 2Ch

(
Mα(h,U) −

Nα(h,U)∑
n=1

sn(U)
)
,

and the estimate (100) follows.
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[18] H. Mejjaoli, K. Trimèche, Spectral theorems associated with the Riemann-Liouville-Wigner localization operators, Rocky Mountain J.

Math. 49(1) (2019) 247-281.
[19] N. Msehli, L.T. Rachdi, Uncertainty principle for the Riemann-Liouville operator, Cubo, 13(3) (2011) 119-126.
[20] L.T. Rachdi, H. Herch, Uncertainty principles for continuous wavelet transforms related to the Riemann-Liouville operator, Ricerche mat.

DOI 10.1007/s11587-017-0320-5.



H. Mejjaoli, F. A. Shah / Filomat 37:1 (2023), 43–66 66

[21] F. Riesz, B. Sz.-Nagy, Functional Analysis, Frederick Ungar Publishing Co., New York, 1995.
[22] P. Sukiennik, J.T. Bialasiewicz, Cross-correlation of bio-signals using continuous wavelet transform and genetic algorithm, J. Neurosci.

Meth 247 (2015) 13-22.
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