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Available at: http://www.pmf.ni.ac.rs/filomat

A system of matrix equations over the commutative quaternion ring

Lv-Ming Xiea, Qing-Wen Wanga

aDepartment of Mathematics, Shanghai University, Shanghai 200444, P. R. China

Abstract. In this paper, we propose a necessary and sufficient condition for the solvability to a system of
matrix equations over the commutative quaternion ring, and establish an expression of its general solution
when it is solvable. We also present an algorithm for finding an approximate solution to the system when
it is inconsistent. Finally, we give an example to illustrate the main results of this paper.

1. Introduction

As well known that the Hamilton quaternion discovered in 1843 [1] was not only applied in mathemat-
ics, but also penetrated into mechanics, quantum physics, signal and color image processing, etc (e.g. [3–7]).
However, the multiplication of Hamilton quaternions is not commutative which causes many difficulties in
studying problems. In 1892, Segre [15] proposed another kind of quaternions satisfying the commutative
property of multiplication. The set of all commutative quaternions is a ring which contains zero-divisor
and isotropic elements. The collection of all commutative quaternions is a four-dimensional space over the
real number field. The commutative quaternions have been widely used in signal and image processing
(e.g. [8, 10]). In [2], Kosal et al. gave the complex matrix representations of a commutative quaternion and
a commutative quaternion matrix, respectively. After this, Kosal et al.[12] presented a universal similarity
factorization equality to give the real matrix representations of a commutative quaternion and a commuta-
tive quaternion matrix, respectively. On this basis, they gave an expression of the general solution to the
commutative quaternion matrix equation AX = B when it was solvable. Moreover, Kosal et al.[16] also
investigated the so called the Kalman-Yakubovich-conjugate matrix equations by the real representations
of commutative quaternion matrices.

We know that Sylvester-type matrix equations are widely used in system science and control theory.
Wang et al. [17, 18] considered some systems of one-sided coupled Sylvester-type quaternion matrix
equations. In 2019, Wang et al.[9] also found the solvable conditions and an expression of the general
solution to the following two-sided coupled Sylvester-type matrix equations over the quaternion algebra,

A1X = C1,A2Y = C2,A3Z = C3,
XB1 = D1,YB2 = D2,ZB3 = D3,

A4XB4 + C4YD4 = P,A5ZB5 + C5YD5 = Q,
(1)
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where X,Y,Z are unknown matrices and the other matrices are given with appropriate orders. To our best
knowledge, so far there has been little information on the exact solution and the approximate solution to
the system (1) over the commutative quaternion ring. Motivated by this mentioned above, we in this paper
consider the solvability conditions, the general solution, and the approximate solution of the system (1)
over the commutative quaternion ring.

This paper is organized as follows. In Section 2, we discuss the structure of the operator vec(RYU)
over the commutative quaternion ring. In Section 3, using the different method from one in [9], we present
a necessary and sufficient condition for the solvability to (1) and an expression of the general solution to
(1) when it is solvable. We also present an algorithm for finding an approximate solution to the system (1)
when it is inconsistent. In Section 4, we provide an algorithm and a numerical example to illustrate the
main results of this paper. Finally, we conclude this paper by giving some remarks in Section 5.

Throughout this paper, we denote the real number field, the complex number field, the commutative
quaternion ring by R,C,Qc, respectively. We denote the set of all m × n matrices over Qc (C or R) by
Qm×n

c (Cm×n or Rm×n). For A ∈ Cm×n,Re(A) and Im(A) denote the real part and the imaginary part of A,
respectively. We denote the addition of the main diagonal elements of a square matrix A by tr(A). We
denote AT

∈ Qn×m
c as the transpose of A. Let A ⊗ B = (ai jB) be the Kronecker product of A and B. The

Moore-Penrose inverse of A ∈ Rm×n, denoted by A†, is a unique matrix X satisfying the Penrose equations

AXA = A, XAX = X, (AX)T = AX, (XA)T = XA.

2. Preliminary

In this section, we first recall the complex representation of the commutative quaternions, some prop-
erties associated with the commutative quaternions, and the structure of the operator vec(RYU) over Qc.
The following notation used in this paper is as in [11].

The set of all commutative quaternions is denoted by

Qc = {a = a0 + a1i + a2 j + a3k : a0, a1, a2, a3 ∈ R and i, j, k < R}, (2)

where i, j, k satisfy

i2 = k2 = −1, j2 = 1, i jk = −1, i j = ji = k, jk = kj = i, ki = ik = − j.

Let a = a0 + a1i + a2 j + a3k, b = b0 + b1i + b2 j + b3k ∈ Qc, µ ∈ R. Then we easily have that

ab = ba =(a0b0 − a1b1 + a2b2 − a3b3) + (a1b0 + a0b1 + a3b2 + a2b3)i
+ (a0b2 + a2b0 − a1b3 − a3b1) j + (a3b0 + a0b3 + a1b2 + a2b1)k,

a + b = (a0 + b0) + (a1 + b1)i + (a2 + b2) j + (a3 + b3)k,
µa = µ(a0 + a1i + a2 j + a3k) = µa0 + µa1i + µa2 j + µa3k.

Clearly, the commutative law holds inQc. For any given a ∈ Qc, there are three different types of conjugates
with

a(1) = a0 − a1i + a2 j − a3k,

a(2) = a0 + a1i − a2 j − a3k,

a(3) = a0 − a1i − a2 j + a3k.

Definition 2.1. [2] If a = a0 + a1i + a2 j + a3k ∈ Qc, then the induced norm over a ∈ Qc is defined as

∥a∥4 = aa(1)a(2)a(3)

=
[
(a0 + a2)2 + (a1 + a3)2

] [
(a0 − a2)2 + (a1 − a3)2

]
≥ 0.

(3)
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2.1. The complex representation over Qc

Theorem 2.2. [2] Every commutative quaternion can be represented by a 2 × 2 complex matrix.

From Theorem 2.2, we know that

1 : Qc −→M :=
{(

b1 b2
b2 b1

)
: b1, b2 ∈ C

}
a = b1 + b2 j 7−→ 1(a) =

(
b1 b2
b2 b1

)
is isomorphism. We call 1(a) is a complex representation matrix for commutative quaternion a. It is easy to
verify that the following statements are true.

Proposition 2.3. Let a, b ∈ Qc, and λ ∈ R. Then

1. a = b⇔ 1(a) = 1(b),
2. 1(a + b) = 1(a) + 1(b),
3. 1(ab) = 1(a)1(b),
4. 1(λa) = λ1(a),
5. 1(a)T = 1(a) and tr(1(a)) = a + a(2).

If A ∈ Qm×n
c , then three different types of conjugates of A are given by

A(1) =
(
a(1)

i j

)
,A(2) =

(
a(2)

i j

)
and A(3) =

(
a(3)

i j

)
.

According to the ith(i = 1, 2, 3) conjugate of A, A∗i = (A(i))T
∈ Qn×m

c is said to be the ith(i = 1, 2, 3) conjugate
transpose of A. For any a ∈ Qc and b1, b2 ∈ C, it is easy to know that a can be written as a = b1+b2 j. Similarly,
if A ∈ Qm×n

c ,A1,A2 ∈ Cm×n, then A can be written as A = A1 + A2 j ∈ Qm×n
c .

Definition 2.4. [2] Let A1,A2 ∈ Cm×n and A = A1 +A2 j ∈ Qm×n
c be given. We define the complex representation of

A as the following

G(A) :=
(

A1 A2
A2 A1

)
.

Theorem 2.5. [2] Let C,D ∈ Qn×n
c . Then

1. G(In) = I2n,
2. G(C +D) = G(C) + G(D),
3. G(CD) = G(C)G(D),
4. G(C−1) = (G(C))−1, if C−1 exists,
5. G (C∗1 ) = (G(C))∗.

Remark 2.6. In general, G (C∗2 ) , (G(C))∗,G (C∗3 ) , (G(C))∗ where (G(C))∗ is the conjugate transpose of G(C).

2.2. The structure of the operator vec(RYU)

For any C = C1 + C2 j ∈ Qm×n
c , C1,C2 ∈ Cm×n, we have

C1 + C2 j = C � ΨC = [C1,C2],
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where the symbol � denotes an identification. Define

Ĉ1 =

[
Re (C1)
Im (C1)

]
, Ĉ =


Re (C1)
Im (C1)
Re (C2)
Im (C2)

 .
We have that

vec(Ĉ1) =
[

vec(Re (C1))
vec(Im (C1))

]
,vec(Ĉ) =


vec(Re (C1))
vec(Im (C1))
vec(Re (C2))
vec(Im (C2))

 .
For any given C1 ∈ Cm×n, its Frobenius norm is defined as

∥C1∥ =

√√√ m∑
i=1

n∑
j=1

∥∥∥ci j

∥∥∥2
, ∥ci j∥

2 = (Re ci j)2 + (Im ci j)2.

For any given C = C1 + C2 j ∈ Qm×n
c , we define

∥Ĉ∥ =
√
∥Re C1∥

2 + ∥Im C1∥
2 + ∥Re C2∥

2 + ∥Im C2∥
2.

Obviously, ∥ΨC∥ = ∥Ĉ∥ = ∥vec(Ĉ)∥. Next, we present some properties related toΨC as follows.

Theorem 2.7. Let C = C1 + C2 j ∈ Qm×n
c ,D = D1 +D2 j ∈ Qm×n

c , where C1,C2,D1,D2 ∈ Cm×n. Then
1. C = D if and only ifΨC = ΨD,
2. ΨC+D = ΨC +ΨD andΨlC = lΨC, l ∈ R,
3. ΨCD = ΨCG(D).

Proof. Clearly, (1) and (2) hold, we only need to prove (3). By calculating, we have

CD =
(
C1 + C2 j

) (
D1 +D2 j

)
= (C1D1 + C2D2) + (C1D2 + C2D1) j.

Thus
ΨCD = [C1D1 + C2D2,C1D2 + C2D1]

= [C1,C2]
[

D1 D2
D2 D1

]
= ΨCG(D).

Based on this theorem, we have the following results.

Theorem 2.8. Suppose that R = R1 + R2 j ∈ Qm×n
c ,Y = Y1 + Y2 j ∈ Qn×s

c and U = U1 + U2 j ∈ Qs×t
c , where

R1,R2 ∈ Cm×n,Y1,Y2 ∈ Cn×s and U1,U2 ∈ Cs×t, then

vec (ΨRYU) =
[
G(U)T

⊗ R1,G(Uj)T
⊗ R2

] [ vec (ΨY)
vec (ΨY)

]
. (4)

Proof. By Theorem 2.7, it follows that

ΨRYU =ΨRG(YU)
=ΨRG(Y)G(U)

= [R1,R2]
[

Y1 Y2
Y2 Y1

] [
U1 U2
U2 U1

]
= [R1Y1U1 + R2Y2U1 + R1Y2U2 + R2Y1U2

R1Y1U2 + R2Y2U2 + R1Y2U1 + R2Y1U1] .
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Therefore,

vec (ΨRYU)

=


(
UT

1 ⊗ R1

)
vec (Y1) +

(
UT

1 ⊗ R2

)
vec(Y2) +

(
U2

T
⊗ R1

)
vec (Y2) +

(
U2

T
⊗ R2

)
vec(Y1)(

UT
2 ⊗ R1

)
vec (Y1) +

(
UT

2 ⊗ R2

)
vec(Y2) +

(
U1

T
⊗ R1

)
vec (Y2) +

(
U1

T
⊗ R2

)
vec(Y1)


=

[ U1 U2
U2 U1

]T

⊗ R1,

[
U2 U1
U1 U2

]T

⊗ R2

 [ vec (ΨY)
vec (ΨY)

]
=

[
G(U)T

⊗ R1,G
(
Uj

)T
⊗ R2

] [ vec (ΨY)
vec (ΨY)

]
.

Note that the above results are important for solving a system of constrained two-sided coupled
Sylvester-type matrix equations over the commutative quaternion ring.

Lemma 2.9. For B = B1 + B2 j ∈ Qn×s
c ,B1,B2 ∈ Cn×s. Let

Ks =


Ins iIns 0 0
0 0 Ins iIns

Ins iIns 0 0
0 0 Ins iIns

 . (5)

Then [
vec (ΨB)
vec (ΨB)

]
= Ks vec(B̂). (6)

Proof. If B = B1 + B2 j ∈ Qn×s
c , then it follows that

[
vec (ΨB)
vec (ΨB)

]
=


vec (B1)
vec (B2)
vec(B1)
vec(B2)


=


Ins iIns 0 0
0 0 Ins iIns

Ins iIns 0 0
0 0 Ins iIns




vec (Re (B1))
vec (Im (B1))
vec (Re (B2))
vec (Im (B2))


= Ks vec(B̂).

(7)

By Theorem 2.8 and Lemma 2.9, we can obtain the following corollary.

Corollary 2.10. If R = R1 + R2 j ∈ Qm×n
c ,Y = Y1 + Y2 j ∈ Qn×s

c and U = U1 +U2 j ∈ Qs×t
c , then

vec (ΨRYU) =
(
G(U)T

⊗ R1,G( jU)T
⊗ R2

)
Ks vec(Ŷ). (8)

Lemma 2.11. [13] The matrix equation Ax = b, with A ∈ Rm×n and b ∈ Rn, has a solution x ∈ Rn if and only if

AA†b = b. (9)

In this case, it has the general solution given by

x = A†b +
(
In − A†A

)
y, (10)

where y ∈ Rn is an arbitrary matrix, and it has a unique solution A†b if rank(A) = n.
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3. The Solution of (1)

From the previous discussion, we now turn our attention to solving the system of commutative
quaternion matrix equations (1). For convenience, we define some useful notations which will be used in
the sequel. Let A1 = A11+A12 j,A2 = A21+A22 j,A3 = A31+A32 j ∈ Qm×n

c ,C1,C2,C3 ∈ Qm×n
c ,B1,B2,B3,D1,D2,D3

∈ Qn×k
c ,A4 = A41 + A42 j,A5 = A51 + A52 j,C4 = C41 + C42 j,C5 = C51 + C52 j ∈ Qs×n

c ,B4,B5,D4, D5 ∈ Qn×t
c and

P,Q ∈ Qs×t
c . Set

L =



G(I)T
⊗ A11 G( jI)T

⊗ A12
0 0
0 0

G(B1)T
⊗ I 0

0 0
0 0

G(B4)T
⊗ A41 G( jB4)T

⊗ A42
0 0


Kn, M =



0 0
G(I)T

⊗ A21 G( jI)T
⊗ A22

0 0
0 0

G(B2)T
⊗ I 0

0 0
G(D4)T

⊗ C41 G( jD4)T
⊗ C42

G(D5)T
⊗ C51 G( jD5)T

⊗ C52


Kn,

N =



0 0
0 0

G(I)T
⊗ A31 G( jI)T

⊗ A32
0 0
0 0

G(B3)T
⊗ I 0

0 0
G(B5)T

⊗ A51 G( jB5)T
⊗ A52


Kn,E =



vec(ΨC1 )
vec(ΨC2 )
vec(ΨC3 )
vec(ΨD1 )
vec(ΨD2 )
vec(ΨD3 )
vec(ΨP)
vec(ΨQ)


,

L1 = Re L, L2 = Im L, M1 = Re M, M2 = Im M, N1 = Re N, N2 = Im N,
V1 = [L1,M1,N1] ,V2 = [L2,M2,N2] ,

(11)

and

E1 =



vec(ReΨC1 )
vec(ReΨC2 )
vec(ReΨC3 )
vec(ReΨD1 )
vec(ReΨD2 )
vec(ReΨD3 )
vec(ReΨP)
vec(ReΨQ)


,E2 =



vec(ImΨC1 )
vec(ImΨC2 )
vec(ImΨC3 )
vec(ImΨD1 )
vec(ImΨD2 )
vec(ImΨD3 )
vec(ImΨP)
vec(ImΨQ)


, ε =

[
E1
E2

]
. (12)

Now we can give the expression of general solution to the system (1).

Theorem 3.1. For A1,A2,A3,C1,C2,C3 ∈ Qm×n
c ,B1,B2,B3,D1,D2,D3 ∈ Qn×k

c ,A4,A5,C4, C5 ∈ Qs×n
c ,B4,B5,D4,

D5 ∈ Qn×t
c and P,Q ∈ Qs×t

c . Let V1,V2, ε be defined in (11) and (12). Then the system (1) has a solution X,Y,Z ∈ Qn×n
c

if and only if[
V1
V2

] [
V1
V2

]†
ε = ε. (13)

In that case, the set of general solution can be expressed as

Γ =

[X,Y,Z]

∣∣∣∣∣∣


vec(X̂)
vec(Ŷ)
vec(Ẑ)

 =
[

V1
V2

]†
ε +

 I12n2 −

[
V1
V2

]† [
V1
V2

] y

 , (14)
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where y is an arbitrary vector with appropriate order. Moreover, the system of commutative quaternion matrix
equations (1) has a unique solution [X,Y,Z] ∈ Γ if and only if

rank
[

V1
V2

]
= 12n2. (15)

In this case, we have

Γ =

[X,Y,Z]

∣∣∣∣∣∣


vec(X̂)
vec(Ŷ)
vec(Ẑ)

 =
[

V1
V2

]†
ε

 . (16)

Proof. By Corollary 2.10 and Theorem 2.7, it follows that

(1)⇐⇒


ΨA1X = ΨC1 , ΨA2Y = ΨC2 , ΨA3Z = ΨC3 ,
ΨXB1 = ΨD1 , ΨYB2 = ΨD2 , ΨZB3 = ΨD3 ,

ΨA4XB4 +ΨC4YD4 = ΨP, ΨA5ZB5 +ΨC5YD5 = ΨQ,

⇐⇒L vec(X̂) +M vec(Ŷ) +N vec(Ẑ) = E,

⇐⇒(Re L + i Im L) vec(X̂) + (Re M + i Im M) vec(Ŷ) + (Re N + i Im N) vec(Ẑ)
= E1 + iE2,

⇐⇒

[
Re L Re M Re N
Im L Im M Im N

] 
vec(X̂)
vec(Ŷ)
vec(Ẑ)

 = ε,
⇐⇒

[
V1
V2

] 
vec(X̂)
vec(Ŷ)
vec(Ẑ)

 = ε.

(17)

By Lemma 2.11, we can see that the system (1) has a solution [X,Y,Z] ∈ Γ if and only if (13) holds.
Consequently, 

vec(X̂)
vec(Ŷ)
vec(Ẑ)

 =
[

V1
V2

]†
ε +

 I12n2 −

[
V1
V2

]† [
V1
V2

] y,

which implies (14) holds. Furthermore, if (13) holds, then the system (1) has a unique solution [X,Y,Z] ∈ Γ
if and only if [

V1
V2

]† [
V1
V2

]
= I12n2 ,

that is to say, (15) holds and (16) is trivial.

Next, we consider the Moore-Penrose generalized inverse of the column block matrix. Let

q = 6mn + 6kn + 4st,

S =
(
I12n2 − V†1V1

)
VT

2 ,

W =
(
Iq +

(
Iq − S†S

)
V2V†1V†T1 VT

2

(
Iq − S†S

))−1
,

J = S† +
(
Iq − S†S

)
WV2V†1V†T1

(
I12n2 − VT

2 S†
)
,

Θ1 = Iq − V1V†1 + V†T1 VT
2 W

(
Iq − S†S

)
V2V†1 ,

Θ2 = −V†T1 VT
2

(
Iq − S†S

)
W,

Θ3 =
(
Iq − S†S

)
W.
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From the results in [14], we have[
V1
V2

]†
=

[
V†1 − JTV2V†1 JT

]
,

[
V1
V2

]† [
V1
V2

]
= V†1V1 + SS†. (18)

I2q −

[
V1
V2

] [
V1
V2

]†
=

[
Θ1 Θ2
ΘT

2 Θ3

]
. (19)

Corollary 3.2. The system of commutative quaternion matrix equations (1) has a solution [X,Y,Z] if and only if[
Θ1 Θ2
ΘT

2 Θ3

]
ε = 0. (20)

In this case, the set of general solution of system (1) can be expressed as

Γ =

[X,Y,Z]

∣∣∣∣∣∣


vec(X̂)
vec(Ŷ)
vec(Ẑ)

 = [V†1 − JTV2V†1 JT]ε +
(
I12n2 − V†1V1 − SS†

)
y

 , (21)

where X,Y,Z ∈ Qn×n
c and y is an arbitrary vector with appropriate order. Furthermore, if (20) holds, then the system

(1) has a unique solution [X,Y,Z] ∈ Γ if and only if (15) holds. In this case,

Γ =

[X,Y,Z]

∣∣∣∣∣∣


vec(X̂)
vec(Ŷ)
vec(Ẑ)

 = [
V†1 − JTV2V†1 JT

]
ε

 . (22)

Corollary 3.3. Let the condition be satisfied in Corollary 3.2. Then the optimization problem

min
[X,Y,Z]∈Γ

(
∥ΨX∥

2 + ∥ΨY∥
2 + ∥ΨZ∥

2
)

has a unique minimizer [Xw,Yw,Zw] which satisfies
vec(X̂w)
vec(Ŷw)
vec(Ẑw)

 = [V†1 − JTV2V†1 JT]ε. (23)

Proof. From (21), we can see that the solution set Γ is a nonempty closed convex set. Hence,

min
[X,Y,Z]∈Γ

(
∥ΨX∥

2 + ∥ΨY∥
2 + ∥ΨZ∥

2
)
= min

[X,Y,Z]∈Γ

(
∥X̂∥2 + ∥Ŷ∥2 + ∥Ẑ∥2

)
= min

[X,Y,Z]∈Γ

(
∥vec(X̂)∥2 + ∥vec(Ŷ)∥2 + ∥vec(Ẑ)∥2

)
= min

[X,Y,Z]∈Γ

∥∥∥∥∥∥∥∥


vec(X̂)
vec(Ŷ)
vec(Ẑ)


∥∥∥∥∥∥∥∥

2

.

By Corollary 3.2, we have


vec(X̂w)
vec(Ŷw)
vec(Ẑw)

 is in the form (23).
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4. Numerical exemplification

Next, we give a numerical algorithm and a numerical example to solve the system (1).
Algorithm 1

1. Input the matrix: A1 = A11 + A12 j,A2 = A21 + A22 j,A3 = A31 + A32 j ∈ Qm×n
c ,C1,C2,C3 ∈

Qm×n
c ,B1,B2,B3,D1,D2,D3 ∈ Qn×k

c ,A4 = A41 +A42 j,A5 = A51 +A52 j,C4 = C41 +C42 j,C5 = C51 +C52 j ∈
Qs×n

c ,B4,B5,D4,D5 ∈ Qn×t
c and P,Q ∈ Qs×t

c .
2. Compute V1,V2,S,W, J,Θ1,Θ2,Θ3, and ε.
3. If both (15) and (20) hold, then calculate [Xw,Yw,Zw] ∈ Γ according to (22).
4. If (20) hold, then calculate [Xw,Yw,Zw] ∈ Γ according to (21). Otherwise, go to next step.
5. Calculate [Xw,Yw,Zw] ∈ Γ according to (23).

If the system (1) is consistent, then we have that

Q1 =

∥∥∥∥∥∥∥
[

V1
V2

] [
V1
V2

]†
ε − ε

∥∥∥∥∥∥∥ , Q2 =

∥∥∥∥∥∥
[
Θ1 Θ2
ΘT

2 Θ3

]
ε

∥∥∥∥∥∥
and

Q3 =

∥∥∥∥∥∥∥I −
[

V1
V2

] [
V1
V2

]†
−

[
Θ1 Θ2
ΘT

2 Θ3

]∥∥∥∥∥∥∥
are small.

Example 4.1. Given the commutative quaternion matrices:

A1 =

[
i 0
0 i

]
,C1 =

[
i − j + k −1 + i + k

1 + 0.5i − j 0.5k

]
,A3 =

[
1 1
1 1

]
,

C2 =

[
−2 + 0.5i + k − j + k

0 −0.25i

]
,C3 =

[
1 + i + 0.5k 0.25 j
1 + i + 0.5k 0.25 j

]
,

D1 =

[
1 + j + k 1 + i + j

0.5 − i + k 0.5 j

]
,D2 =

[
−0.5 − 2i − j − j − k

0 −0.25i

]
,

B1 =

[
1 0
0 1

]
,B3 =

[
i i
0 0

]
,B4 =

[
j i
i k

]
,D4 =

[
1 j
i k

]
,

D3 =

[
−1 + i −1 + i
−0.5 j −0.5 j

]
,B5 =

[
k j
i 0

]
,C5 =

[
j 0
0 i

]
,D5 =

[
0 0
0 1

]
,

Q =
[

0 1 + i
0 −0.25

]
,P =

[
0.25 + 4i + j + 2k 3i − 1.75 j + 4k

0.25 + 3i + 0.5 j + 0.5k 1 + 2i − 0.75 j + 2k

]
,

A1 = A2, B1 = −B2 = A4, A3 = C4, A5 = 0.

Taking

X̃ =
[

1 + j + k 1 + i + j
0.5 − i + k 0.5 j

]
, Ỹ =

[
0.5 + 2i + j j + k

0 0.25i

]
, Z̃ =

[
1 + i 0.25 j
0.5k 0

]
.

Let
ΨC1 = ΨA1 G(X̃), ΨC2 = ΨA2 G(Ỹ), ΨC3 = ΨA3 G(Z̃),
ΨD1 = ΨX̃G(B1), ΨD2 = ΨỸG(B2), ΨD3 = ΨZ̃G(B3),

ΨP = ΨA4 G(X̃)G(B4) +ΨC4 G(Ỹ)G(D4), ΨQ = ΨA5 G(Z̃)G(B5) +ΨC5 G(Ỹ)G(D5).

From Matlab and Algorithm 1, we obtain

rank
[

V1
V2

]
= 44 < 12n2 = 48, Q2 = 1.3172 × 10−14.
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Therefore, we can easily see that the system (1) is consistent. Besides, we can also compute Q1 =
1.4357 × 10−14,Q3 = 2.7365 × 10−14. Consequently, the system (1) has infinite solutions [X,Y,Z] ∈ Γ and an
approximate solution [Xw,Yw,Zw] ∈ Γ and we can get ∥Ψ[X̃,Ỹ,Z̃] −Ψ[Xw,Yw,Zw]∥ = 9.8306 × 10−15.

5. Conclusion

In this paper, we have proposed a necessary and sufficient condition for the solvability of the system (1)
by the complex representation of commutative quaternion matrices. In this case, we establish an expression
of the general solution of the system (1). If the system (1) is inconsistent, then we develop an algorithm to
obtain its approximate solution. Moreover, we also provide an example to illustrate our results.
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