

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Isosymmetric composition operators on H^2

Rong Yanga, Songxiao Lib,*, Lian Hua

^aInstitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, Sichuan, P. R. China. ^bDepartment of Mathematics, Shantou University, 515063, Shantou, Guangdong, P.R. China

Abstract. In this paper, we give some necessary and sufficient conditions for the composition operator C_{φ} to be isosymmetric on H^2 when φ is a linear fractional self-map of \mathbb{D} .

1. Introduction

Let H be a complex Hilbert space, B(H) be the space of all bounded linear operators defined in H. An operator $T \in B(H)$ is called normal if $[T, T^*] = 0$, where $[T, T^*] = TT^* - T^*T$. An operator $T \in B(H)$ is called hyponormal if $T^*T \geq TT^*$. An operator $T \in B(H)$ is subnormal if there is a Hilbert space K containing H and a normal operator N on K such that $NH \subset H$ and T = N|H. An operator $T \in B(H)$ is quasinormal if T commutes with T^*T , that is, $[T, T^*T] = 0$. Quasimormal operators were first proposed, studied by Brown in [1]. $T \in B(H)$ is said to be binormal if $[T^*T, TT^*] = 0$ (see [8]). An operator T is said to belong to Θ class if $[T^*T, T + T^*] = 0$. From [2, 7], we obtain that

quasinormal \subset binormal.

 $normal \subset quasinormal \subset subnormal \subset hyponormal.$

Stankus in [10] introduced and studied isosymmetric operators. According to [10] or [11], an operator $T \in B(H)$ is said to be isosymmetric if

$$T^{*2}T - T^*T^2 - T^* + T = 0.$$

See [10, 11] for more properties of isosymmetric operators.

Let $\mathbb D$ denote the open unit disc in the complex plane $\mathbb C$. Let $H(\mathbb D)$ be the space of those analytic functions on $\mathbb D$. A function $f \in H(\mathbb D)$ belongs to the Hardy space H^2 if

$$||f||_{H^2}^2 = \sup_{0 \le r \le 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta < \infty.$$

2020 Mathematics Subject Classification. Primary 30H10; Secondary 47B33

Keywords. Composition operator, isosymmetry, linear fractional self-map

Received: 27 April 2022; Revised: 13 July 2022; Accepted: 17 July 2022

Communicated by Dragan S. Djordjević

Research supported by the GuangDong Basic and Applied Basic Research Foundation (No.2022A1515010317 and No.2023A1515010614).

* Corresponding author: Songxiao Li

Email addresses: yangrong071428@163.com (Rong Yang), jyulsx@163.com (Songxiao Li), hl152808@163.com (Lian Hu)

In other words, the space H^2 consists of all analytic functions on $\mathbb D$ having power series representation with square summable complex coefficients. For any $a \in \mathbb D$, the function $K_a(z) = \frac{1}{1-\bar az}$ is called the reproducing kernel for a in H^2 such that

$$f(a) = \langle f, K_a \rangle$$

for any $f \in H^2$. The space H^{∞} denote the space of all bounded analytic functions f in \mathbb{D} . Let φ be an analytic self-map of \mathbb{D} . The composition operator C_{φ} on H^2 is defined by

$$C_{\varphi}f = f \circ \varphi, \quad f \in H^2.$$

It is well known that $C^*_{\varphi}K_{\alpha}(z) = K_{\varphi(\alpha)}(z)$ for any $\alpha \in \mathbb{D}$. In addition, for $\psi \in H(\mathbb{D})$ and φ is an analytic self-map of \mathbb{D} , the weighted composition operator $W_{\psi,\varphi}$ is defined by

$$W_{\psi,\varphi}f = \psi \cdot f \circ \varphi.$$

The Toeplitz operator T_f on H^2 is defined by

$$T_f(g) = P(fg)$$

for $f \in L^{\infty}(\partial \mathbb{D})$ and $g \in H^2$, where P denotes the orthogonal projection of L^2 onto H^2 . It is easy to check that

$$T_f^*K_\alpha=\overline{f(\alpha)}K_\alpha$$

for $\alpha \in \mathbb{D}$ and $f \in H^{\infty}$.

Schwarz [9] showed that C_{φ} is normal on H^2 if and only if $\varphi(z) = az$ with $|a| \leq 1$. In [3], Cowen studied the subnormality and hyponormality of composition operators on H^2 (in a more limited way). When φ is an automorphism of $\mathbb D$ or $\varphi(z) = \frac{az+b}{cz+d}$ is a linear fractional self-map into $\mathbb D$ with c=0, Jung, Kim, and Ko [7] proved that $C_{\varphi} \in \Theta$ if and only if C_{φ} is normal. In addition, if C_{φ} is a p-hyponormal operator in Θ , then it must be normal. In [8], Jung, Kim, and Ko proved that C_{φ} is quasinormal if and only if C_{φ} is normal when $\varphi(z) = \frac{az+b}{cz+d}$ is a linear fractional self-map into $\mathbb D$ and $\varphi(0) = 0$, they proved that C_{φ} is binormal if and only if C_{φ} is normal or subnormal. When $\varphi(z) = \frac{z}{uz+v}$ with $u \neq 0$ and $|v| \geq 1 + |u|$, they also proved that C_{φ} is binormal if and only if C_{φ} is hyponormal or p-hyponormal for $0 . If <math>C_{\varphi} \in \Theta$, then C_{φ} is binormal if and only if it is normal. For more results on composition operators on H^2 , see [3–9].

In this paper, we study isosymmetric composition operators with linear fractional symbols on H^2 . We give some necessary and sufficient conditions for the composition operator C_{φ} to be isosymmetric when φ is automorphism or $\varphi(z) = \frac{az+b}{cz+d}$ is a linear fractional self-map into $\mathbb D$. In particular, we prove that C_{φ} is isosymmetric on H^2 if and only if C_{φ} is normal when $\varphi(z) = \frac{az+b}{cz+d}$ is a linear fractional self-map into $\mathbb D$ with c=0.

2. Main results and proofs

2.1. Auxiliary results

To prove our main results in this paper, we need some lemmas.

Lemma 1. [9] Let φ be an analytic self-map of \mathbb{D} . Then C_{φ} is normal if and only if $\varphi(z) = \alpha z$ with $|\alpha| \leq 1$.

Let $\varphi(z) = \frac{az+b}{cz+d}$ be a nonconstant linear fractional self-map of \mathbb{D} , where $a,b,c,d \in \mathbb{C}$ and $ad-bc \neq 0$. Cowen in [3] proved that

$$C_{\varphi}^* = T_q C_{\sigma} T_h^*,$$

where

$$\sigma(z) = \frac{\bar{a}z - \bar{c}}{-\bar{b}z + \bar{d}}, \quad g(z) = \frac{1}{-\bar{b}z + \bar{d}}, \quad h(z) = cz + d.$$

From now on, unless otherwise stated, we assume that σ , q and h are given as above.

Using this adjoint formula, Jung, Kim, and Ko in [8] obtained the following basic lemmas.

Lemma 2. [8] Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map of \mathbb{D} . Then

$$C_{\varphi}^*C_{\varphi}K_{\alpha}(z) = -c\frac{\overline{g(\alpha)}}{\overline{\sigma(\alpha)}}K_{\varphi(0)}(z) + h\left(\frac{1}{\overline{\sigma(\alpha)}}\right)\overline{g(\alpha)}K_{\varphi(\sigma(\alpha))}(z)$$

for any $\alpha \in \mathbb{D}$ *with* $a\overline{\alpha} \neq c$.

The following lemma can be directly obtained by [8, Lemma 2.3].

Lemma 3. Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map of \mathbb{D} . Then

$$\begin{split} C_{\varphi}^* C_{\varphi} C_{\varphi} K_{\alpha}(z) &= \frac{c(a+d)}{c(a+d)-(a^2+bc)\overline{\alpha}} K_{\varphi(0)}(z) \\ &+ \left(\frac{bc+d^2}{bc+d^2-b(a+d)\overline{\alpha}} - \frac{c(a+d)}{c(a+d)-(a^2+bc)\overline{\alpha}}\right) K_{\varphi(\sigma_2(\alpha))}(z) \end{split}$$

for any $\alpha \in \mathbb{D}$ with $(a^2 + bc)\overline{\alpha} \neq c(a + d)$.

Lemma 4. [7, Lemma 2.1] Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map of \mathbb{D} . Then

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_{\alpha}(z) = -c \frac{\overline{g(\alpha)}}{\overline{\sigma(\alpha)}} K_{\varphi_2(0)}(z) + h(\frac{1}{\overline{\sigma(\alpha)}}) \overline{g(\alpha)} K_{\varphi_2(\sigma(\alpha))}(z)$$

for any $\alpha \in \mathbb{D}$ *with* $a\overline{\alpha} \neq c$.

Lemma 5. [7, Lemma 2.3] Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map into \mathbb{D} and c = 0. Then

$$C_{\varphi} = C_{\tilde{\sigma}}^* T_{\tilde{q}}^*,$$

where $\tilde{\sigma}(z) = \frac{\bar{a}z}{-\bar{b}z+\bar{d}}$ and $\tilde{g}(z) = \frac{\bar{d}}{-\bar{b}z+\bar{d}}$.

2.2. Automorphism

Theorem 1. Let φ be an automorphism of \mathbb{D} . Then C_{φ} is isosymmetric on H^2 if and only if $\varphi(z) = -\lambda z$, $|\lambda| = 1$.

Proof. Assume that C_{φ} is isosymmetric and $\varphi(z) = \frac{\lambda(z-a)}{\bar{a}z-1}$, where $a \in \mathbb{D}$ and $|\lambda| = 1$. Let $\sigma(z) = \frac{\overline{\lambda}z-a}{\bar{\lambda}az-1}$. We note that $(\sigma \circ \varphi)(z) = (\varphi \circ \sigma)(z) = z$ and

$$\varphi_2(z) = \frac{\lambda(\lambda - |a|^2)z - \lambda a(\lambda - 1)}{(\lambda - 1)\overline{a}z - (\lambda|a|^2 - 1)}.$$

From Lemma 4, if $\alpha \in \mathbb{D}$ with $\lambda \overline{\alpha} \neq \overline{a}$, then

$$C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}K_{\alpha}(z)$$

$$=\frac{\overline{a}}{\overline{a}-\lambda\overline{\alpha}}K_{\varphi_{2}(0)}(z)+\left(-1-\frac{\overline{a}(-1+\lambda a\overline{\alpha})}{\overline{a}-\lambda\overline{\alpha}}\right)\frac{1}{-1+\lambda a\overline{\alpha}}K_{\varphi_{2}(\sigma(\alpha))}(z)$$

$$=\frac{\overline{a}}{\overline{a}-\lambda\overline{\alpha}}\frac{1}{1-\frac{\overline{\alpha}(1-|a|^{2})}{\overline{a}-\lambda\overline{\alpha}}(\lambda a\overline{\alpha}-1)}\frac{1}{1-\frac{\overline{\alpha}(\alpha-1)}{\overline{\alpha}(\alpha-1)}z}$$

$$=\frac{\overline{a}}{\overline{a}-\lambda\overline{\alpha}}\frac{1}{1-\frac{\overline{\lambda}a(\overline{\lambda}-1)}{\overline{\lambda}|a|^{2}-1}z}+\frac{\lambda\overline{\alpha}(1-|a|^{2})}{(\overline{a}-\lambda\overline{\alpha})(\lambda a\overline{\alpha}-1)}\frac{1}{1-\frac{\overline{\lambda}(\overline{\alpha}-\overline{a})}{\overline{a}\overline{\alpha}-1}z}$$

$$=\frac{\overline{a}}{\overline{a}-\lambda\overline{\alpha}}\frac{\overline{\lambda}|a|^{2}-1}{\overline{\lambda}|a|^{2}-1-\overline{\lambda}a(\overline{\lambda}-1)z}+\frac{\lambda\overline{\alpha}(1-|a|^{2})}{(\overline{a}-\lambda\overline{\alpha})(\lambda a\overline{\alpha}-1)}\frac{a\overline{\alpha}-1}{a\overline{\alpha}-1-\overline{\lambda}(\overline{\alpha}-\overline{a})z}.$$
(1)

Also, we obtain from Lemma 3 that for any $\alpha \in \mathbb{D}$ with $\lambda(\lambda - |a|^2)\overline{\alpha} \neq \overline{a}(\lambda - 1)$

$$C_{\varphi}^{*}C_{\varphi}C_{\varphi}K_{\alpha}(z) = \frac{\overline{a}(\lambda - 1)}{\overline{a}(\lambda - 1) - \lambda(\lambda - |a|^{2})\overline{\alpha}}K_{\varphi(0)}(z)$$

$$+ \left(\frac{1 - \lambda|a|^{2}}{1 - \lambda|a|^{2} + \lambda a(\lambda - 1)\overline{\alpha}} - \frac{\overline{a}(\lambda - 1)}{\overline{a}(\lambda - 1) - \lambda(\lambda - |a|^{2})\overline{\alpha}}\right)K_{\varphi(\sigma_{2}(\alpha))}(z)$$

$$= \frac{\overline{a}(\lambda - 1)}{\overline{a}(\lambda - 1) - \lambda(\lambda - |a|^{2})\overline{\alpha}} \frac{1}{1 - \overline{\lambda az}}$$

$$+ \left(\frac{1 - \lambda|a|^{2}}{1 - \lambda|a|^{2} + \lambda a(\lambda - 1)\overline{\alpha}} - \frac{\overline{a}(\lambda - 1)}{\overline{a}(\lambda - 1) - \lambda(\lambda - |a|^{2})\overline{\alpha}}\right) \frac{1}{1 - \frac{\lambda\overline{\alpha} - \overline{a}}{\lambda a\overline{\alpha} - 1}}z.$$

$$(2)$$

In addition,

$$C_{\varphi}^* K_{\alpha}(z) = K_{\varphi(\alpha)}(z) = \frac{1}{1 - \overline{\varphi(\alpha)}(z)} = \frac{1}{1 - \frac{\overline{\lambda}(\overline{\alpha} - \overline{a})}{a\overline{\alpha} - 1} z} = \frac{a\overline{\alpha} - 1}{a\overline{\alpha} - 1 - \overline{\lambda}(\overline{\alpha} - \overline{a})z}$$
(3)

and

$$C_{\varphi}K_{\alpha}(z) = K_{\alpha}(\varphi(z)) = \frac{1}{1 - \overline{\alpha}\varphi(z)} = \frac{1}{1 - \frac{\lambda(z-a)}{\overline{z}-1}\overline{\alpha}} = \frac{\overline{a}z - 1}{\overline{a}z - 1 - \lambda(z-a)\overline{\alpha}}.$$
(4)

Taking z = 0 in (1), (2), (3), and (4), we obtain that

$$C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}K_{\alpha}(0) = \frac{\overline{a}}{\overline{a} - \lambda \overline{\alpha}} + \frac{\lambda \overline{\alpha}(1 - |a|^{2})}{(\overline{a} - \lambda \overline{\alpha})(\lambda a \overline{\alpha} - 1)},$$

$$C_{\varphi}^{*}C_{\varphi}C_{\varphi}K_{\alpha}(0) = \frac{1 - \lambda |a|^{2}}{1 - \lambda |a|^{2} + \lambda a(\lambda - 1)\overline{\alpha}}, \quad C_{\varphi}^{*}K_{\alpha}(0) = 1, \quad C_{\varphi}K_{\alpha}(0) = \frac{-1}{\lambda a \alpha - 1}.$$

Since C_{φ} is isosymmetric, we have

$$C_\varphi^*C_\varphi^*C_\varphi K_\alpha(0) - C_\varphi^*C_\varphi C_\varphi K_\alpha(0) - C_\varphi^*K_\alpha(0) + C_\varphi K_\alpha(0) = 0$$

for any $\alpha \in \mathbb{D}$, i.e.,

$$\frac{\overline{a}}{\overline{a} - \lambda \overline{\alpha}} + \frac{\lambda \overline{\alpha} (1 - |a|^2)}{(\overline{a} - \lambda \overline{\alpha})(\lambda a \overline{\alpha} - 1)} - \frac{1 - \lambda |a|^2}{1 - \lambda |a|^2 + \lambda a(\lambda - 1)\overline{\alpha}} - 1 - \frac{1}{\lambda a \alpha - 1} = 0$$

for any $\alpha \in \mathbb{D}$, which implies that

$$\frac{1 + \lambda a \overline{\alpha}}{1 - \lambda a \overline{\alpha}} = \frac{1 - \lambda |a|^2}{1 - \lambda |a|^2 - \lambda a (\lambda - 1) \overline{\alpha}}$$

for any $\alpha \in \mathbb{D}$. After a calculation, we get

$$\lambda^2 a^2 (\lambda - 1) \overline{\alpha}^2 + \lambda a (1 + \lambda - 2\lambda |a|^2) \overline{\alpha} = 0$$

for any $\alpha \in \mathbb{D}$. By the assumption that $|\lambda| = 1$, we get a = 0. Hence, $\varphi(z) = -\lambda z$, $|\lambda| = 1$. Conversely, let $\varphi(z) = -\lambda z$, $|\lambda| = 1$. Set $\sigma(z) = -\overline{\lambda}z$. From Lemmas 3 and 4, we have

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_{\alpha}(z) = K_{\varphi_2(\sigma(\alpha))}(z) = K_{\varphi(\alpha)}(z),$$

$$C_{\varphi}^* C_{\varphi} C_{\varphi} K_{\alpha}(z) = K_{\varphi(\sigma_2(\alpha))}(z) = K_{\sigma(\alpha)}(z) = \frac{1}{1 - \sigma(\alpha)z} = \frac{1}{1 + \lambda \overline{\alpha} z},$$

$$C_{\varphi}^* K_{\alpha}(z) = K_{\varphi(\alpha)}(z),$$

$$C_{\varphi} K_{\alpha}(z) = K_{\alpha}(\varphi(z)) = \frac{1}{1 - \overline{\alpha} \varphi(z)} = \frac{1}{1 + \overline{\alpha} \lambda z}.$$

From the above equalities, we get that

$$C_\varphi^* C_\varphi^* C_\varphi K_\alpha(z) - C_\varphi^* C_\varphi C_\varphi K_\alpha(z) - C_\varphi^* K_\alpha(z) + C_\varphi K_\alpha(z) = 0$$

for any $\alpha \in \mathbb{D}$ and $z \in \mathbb{D}$. It is well known that the linear span of uncountably many reproducing kernels is dense in H^2 . Hence, C_{φ} is isosymmetric on H^2 .

2.3. Linear fractional self-maps with c = 0

Theorem 2. Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map into $\mathbb D$ with c=0. Then C_{φ} is isosymmetric on H^2 if and only if C_{φ} is normal.

Proof. Sufficiency. Since C_{φ} is normal, by Lemma 1 we see that $\varphi(z) = \lambda z$, $|\lambda| \le 1$. Similarly to the second part proof of Theorem 1, we see that

$$C_{\varphi}^*C_{\varphi}^*C_{\varphi}K_{\alpha}(z)-C_{\varphi}^*C_{\varphi}C_{\varphi}K_{\alpha}(z)-C_{\varphi}^*K_{\alpha}(z)+C_{\varphi}K_{\alpha}(z)=0,$$

for any $\alpha \in \mathbb{D}$ and $z \in \mathbb{D}$. Hence C_{φ} is isosymmetric.

Necessity. Since c=0, set $\varphi(z)=sz+t$, where $s=\frac{a}{d}$, $t=\frac{b}{d}$ and $|s|+|t|\leq 1$. Put $\sigma(z)=\frac{\bar{s}z}{1-\bar{t}z}$, $g(z)=\frac{1}{1-\bar{t}z}$. According to the proof of [7, Theorem 2.4], we obtain

$$C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}K_{\alpha}(z) = C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}^{*}T_{g}^{*}K_{\alpha}(z) = \overline{g(\alpha)}K_{\varphi_{2}(\sigma(\alpha))}(z)$$

$$= \frac{1}{(1 - t\bar{\alpha}) - [\bar{t}(\bar{s} + 1) + (|s|^{2}\bar{s} - |t|^{2})\bar{\alpha}]z}$$
(5)

and

$$C_{\varphi}^{*}C_{\varphi}C_{\varphi}K_{\alpha}(z) = C_{\varphi}^{*}C_{\sigma}^{*}T_{g}^{*}C_{\sigma}^{*}T_{g}^{*}K_{\alpha}(z) = \overline{g(\alpha)g(\sigma(\alpha))}K_{\varphi(\sigma_{2}(\alpha))}(z)$$

$$= \frac{1}{1 - t(s+1)\overline{\alpha} - \left[\overline{t} + (|s|^{2}s - |t|^{2}s - |t|^{2})\overline{\alpha}\right]z}$$
(6)

for any $\alpha, z \in \mathbb{D}$. In addition,

$$C_{\varphi}^* K_{\alpha}(z) = K_{\varphi(\alpha)}(z) = \frac{1}{1 - \overline{\varphi(\alpha)}z} = \frac{1}{1 - (\overline{s\alpha} + \overline{t})z},\tag{7}$$

and

$$C_{\varphi}K_{\alpha}(z) = K_{\alpha}(\varphi(z)) = \frac{1}{1 - \overline{\alpha}\varphi(z)} = \frac{1}{1 - \overline{\alpha}(sz + t)}$$
(8)

for any $\alpha, z \in \mathbb{D}$. Taking $\alpha = 0$ in (5), (6), (7), and (8), we get that

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_0(z) = \frac{1}{1 - \bar{t}(\bar{s} + 1)z}, \quad C_{\varphi}^* K_0(z) = \frac{1}{1 - \bar{t}z},$$
$$C_{\varphi}^* C_{\varphi} C_{\varphi} K_0(z) = \frac{1}{1 - \bar{t}z}, \quad C_{\varphi} K_0(z) = 1.$$

Since C_{φ} is isosymmetric, we get that

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_0(z) - C_{\varphi}^* C_{\varphi} C_{\varphi} K_0(z) - C_{\varphi}^* K_0(z) + C_{\varphi} K_0(z) = 0$$

for any $z \in \mathbb{D}$, which implies that

$$\frac{1}{1 - \bar{t}(\bar{s} + 1)z} - \frac{2}{1 - \bar{t}z} + 1 = 0.$$

So

$$\overline{t}^2(\overline{s}+1)z^2 + \overline{t}(\overline{s}-1)z = 0$$

for any $z \in \mathbb{D}$. Hence t = 0. So $\varphi(z) = sz$, $|s| \le 1$. Therefore, C_{φ} is normal by Lemma 1. \square

From the last Theorem and the results in [7, 8], we get the following corollary.

Corollary 1. Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map into $\mathbb D$ with c=0. Then the following statements are equivalent.

- (i) C_{φ} is normal;
- (ii) C_{φ} is subnormal;
- (iii) C_{φ} is binormal;
- (iv) $C_{\varphi} \in \Theta$;
- (v) C_{φ} is quasinormal;
- (vi) C_{φ} is isosymmetric.

Theorem 3. Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map into $\mathbb D$ with c=0. If C_{φ}^* is isosymmetric on H^2 , then either b=0 or $|\frac{b}{d}| \neq 1-\frac{a}{d}$.

Proof. Assume that C_{φ}^* is isosymmetric and $b \neq 0$. We suppose that $|\frac{b}{d}| = 1 - \frac{a}{d}$. Set $\varphi(z) = sz + t$, where $s = \frac{a}{d}$ and $t = \frac{b}{d}$. Then $t \neq 0$ and |t| = 1 - s. For a real number η . Define $(U_{\eta}f)(z) = f(e^{i\eta}z)$ for any $z \in \mathbb{D}$ and $f \in H^2(\mathbb{D})$. Then U_{η} is unitary and

$$(U_{\eta}^*C_{\varphi}U_{\eta}f)(z) = U_{\eta}^*C_{\varphi}f(e^{i\eta}z) = U_{\eta}^*f(e^{i\eta}\varphi(z)) = f(e^{i\eta}\varphi(e^{-i\eta}z)) = f(\chi(z)) = (C_{\chi}f)(z)$$

for any $z \in \mathbb{D}$ and $f \in H^2(\mathbb{D})$. Hence, we know that C_{φ} is unitary equivalent to C_{χ} , where $\chi(z) = sz + (1 - s)$. Since C_{φ}^* is isosymmetric, so does C_{χ}^* , which means that

$$C_\chi C_\chi C_\chi^* - C_\chi C_\chi^* C_\chi^* - C_\chi + C_\chi^* = 0.$$

From Lemma 5, we get that

$$C_{\chi} = C_{\sigma}^* T_{\sigma}^*$$

where $\sigma(z) = \frac{sz}{1-(1-s)z}$ and $g(z) = \frac{1}{1-(1-s)z}$. Hence,

$$C_{\chi}C_{\chi}C_{\chi}^{*}K_{\alpha}(z) = C_{\sigma}^{*}T_{g}^{*}C_{\sigma}^{*}T_{g}^{*}K_{\chi(\alpha)}(z) = \overline{g(\chi(\alpha))g(\sigma(\chi(\alpha)))}K_{\sigma_{2}(\chi(\alpha))}(z)$$

$$= \frac{1}{1 - (1 - s)\overline{\chi(\alpha)}} \frac{1}{1 - (1 - s)\overline{\sigma(\chi(\alpha))}} \frac{1}{1 - \frac{s\overline{\sigma(\chi(\alpha))}}{1 - (1 - s)\overline{\sigma(\chi(\alpha))}}z}$$

$$= \frac{1}{1 - (1 - s)\overline{\chi(\alpha)}} \frac{1}{1 - (1 - s)\overline{\sigma(\chi(\alpha))} - s\overline{\sigma(\chi(\alpha))}z}$$

$$= \frac{1}{1 - (1 - s)\overline{\chi(\alpha)}} \frac{1}{1 - \frac{s(1 - s)\overline{\chi(\alpha)}}{1 - (1 - s)\overline{\chi(\alpha)}} - \frac{s^{2}\overline{\chi(\alpha)}}{1 - (1 - s)\overline{\chi(\alpha)}}z}$$

$$= \frac{1}{1 - (1 - s)\overline{\chi(\alpha)} - s(1 - s)\overline{\chi(\alpha)} - s^{2}\overline{\chi(\alpha)}z}$$

$$= \frac{1}{s + s^{2} - s|s|^{2} + s(s^{2} - 1)\overline{\alpha} - s^{2}(s\overline{\alpha} + 1 - s)z'}$$
(9)

$$C_{\chi}C_{\chi}^{*}C_{\chi}^{*}K_{\alpha}(z) = C_{\sigma}^{*}T_{g}^{*}K_{\chi_{2}(\alpha)}(z) = \overline{g(\chi_{2}(\alpha))}K_{\sigma(\chi_{2}(\alpha))}(z)$$

$$= \frac{1}{1 - (1 - s)\overline{\chi_{2}(\alpha)}} \frac{1}{1 - \frac{s\overline{\chi_{2}(\alpha)}}{1 - (1 - s)\overline{\chi_{2}(\alpha)}}z}$$

$$= \frac{1}{1 - (1 - s)\overline{\chi_{2}(\alpha)} - s\overline{\chi_{2}(\alpha)}z}$$

$$= \frac{1}{s + s^{2} - s|s|^{2} + s^{2}(s - 1)\overline{\alpha} - s(s^{2}\overline{\alpha} + 1 - |s|^{2})z'}$$
(10)

$$C_{\chi}K_{\alpha}(z) = \frac{1}{1 - \overline{\alpha}\chi(z)} = \frac{1}{1 - \overline{\alpha}(sz + 1 - s)},\tag{11}$$

and

$$C_{\chi}^* K_{\alpha}(z) = \frac{1}{1 - \overline{\chi(\alpha)}z} = \frac{1}{1 - (s\overline{\alpha} + 1 - s)z}$$

$$\tag{12}$$

for any $\alpha, z \in \mathbb{D}$. Since C_{χ}^* is isosymmetric, we have

$$\frac{1}{s+s^2-s|s|^2+s(s^2-1)\overline{\alpha}-s^2(s\overline{\alpha}+1-s)z} + \frac{1}{1-(s\overline{\alpha}+1-s)z} \\
= \frac{1}{s+s^2-s|s|^2+s^2(s-1)\overline{\alpha}-s(s^2\overline{\alpha}+1-|s|^2)z} + \frac{1}{1-\overline{\alpha}(sz+1-s)}$$
(13)

for any $\alpha, z \in \mathbb{D}$. Take z = 0 in (13), we get that

$$\frac{1}{s+s^2-s|s|^2+s(s^2-1)\overline{\alpha}}+1=\frac{1}{s+s^2-s|s|^2+s^2(s-1)\overline{\alpha}}+\frac{1}{1+\overline{\alpha}(s-1)}$$

for any $\alpha \in \mathbb{D}$. Let $A = s + s^2 - s|s|^2$. We get

$$\frac{1}{A+s(s^2-1)\overline{\alpha}}+1=\frac{1}{A+s^2(s-1)\overline{\alpha}}+\frac{1}{1+(s-1)\overline{\alpha}}$$

for any $\alpha \in \mathbb{D}$, which implies that

$$\frac{A+s(s^2-1)\overline{\alpha}+1}{A+s(s^2-1)\overline{\alpha}} = \frac{1+(s-1)\overline{\alpha}+A+s^2(s-1)\overline{\alpha}}{[A+s^2(s-1)\overline{\alpha}][1+(s-1)\overline{\alpha}]}.$$
(14)

Therefore,

$$[A + s(s^2 - 1)\overline{\alpha} + 1][A + s^2(s - 1)\overline{\alpha}][1 + (s - 1)\overline{\alpha}]$$

= $[1 + (s - 1)\overline{\alpha} + A + s^2(s - 1)\overline{\alpha}][A + s(s^2 - 1)\overline{\alpha}]$

for any $\alpha \in \mathbb{D}$. Comparing the coefficients of $\overline{\alpha}^3$ and constant term in above equation, we obtain that

$$s^3(s+1)(s-1)^3 = 0.$$

Hence $s = \pm 1 (s \neq 0)$. If s = -1, the equation (14) is true for any $\alpha \in \mathbb{D}$. Then

$$1 = \frac{1}{1 - 2\overline{\alpha}}$$

for any $\alpha \in \mathbb{D}$. This is a contradiction. In addition, since $s \neq 0$, which yields s = 1 and hence t = 0, a contradiction. Hence $|\frac{b}{d}| \neq 1 - \frac{a}{d}$. \square

2.4. Linear fractional self-maps with $\varphi(0) \neq 0$ and a = 0

Lemma 6. Let $\varphi : \mathbb{D} \to \mathbb{D}$ be a constant function. Then C_{φ} is isosymmetric on H^2 if and only if φ is identically zero on \mathbb{D} .

Proof. Sufficiency. It is obvious.

Necessity. Let $\varphi(z) \equiv b$ for some $b \in \mathbb{D}$. From Lemma 2, we obtain that

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_{\alpha}(z) = C_{\varphi}^* \frac{1}{1 - b\overline{\alpha}} K_{\varphi(0)}(z) = \frac{1}{1 - b\overline{\alpha}} K_{\varphi_2(0)}(z) = \frac{1}{1 - b\overline{\alpha}} \frac{1}{1 - \overline{b}z},$$

$$C_{\varphi}^* C_{\varphi} C_{\varphi} K_{\alpha}(z) = C_{\varphi}^* K_{\alpha}(\varphi_2(z)) = \frac{1}{1 - b\overline{\alpha}} K_{\varphi(0)}(z) = \frac{1}{1 - b\overline{\alpha}} \frac{1}{1 - b\overline{\alpha}} K_{\varphi(0)}(z)$$

$$C_{\varphi}^* K_{\alpha}(z) = K_{\varphi(\alpha)}(z) = \frac{1}{1 - \overline{\varphi(\alpha)}z} = \frac{1}{1 - \overline{b}z},$$

and

$$C_{\varphi}K_{\alpha}(z) = K_{\alpha}(\varphi(z)) = \frac{1}{1 - \overline{\alpha}\varphi(z)} = \frac{1}{1 - \overline{\alpha}b}$$

for any $\alpha, z \in \mathbb{D}$. Since C_{φ} is isosymmetric, we have

$$C_{\varphi}^*C_{\varphi}^*C_{\varphi}K_{\alpha}(z)-C_{\varphi}^*C_{\varphi}C_{\varphi}K_{\alpha}(z)-C_{\varphi}^*K_{\alpha}(z)+C_{\varphi}K_{\alpha}(z)=0$$

for any $\alpha, z \in \mathbb{D}$. Hence

$$\frac{1}{1-b\overline{\alpha}}\frac{1}{1-\overline{b}z}-\frac{1}{1-b\overline{\alpha}}\frac{1}{1-\overline{b}z}-\frac{1}{1-\overline{b}z}+\frac{1}{1-\overline{\alpha}b}=0.$$

The above equation holds for any $\alpha, z \in \mathbb{D}$ if and only if b = 0. \square

Theorem 4. Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-map of $\mathbb D$ with $\varphi(0) \neq 0$ and a = 0. Then C_{φ} is not isosymmetric on H^2 .

Proof. Since $\varphi(0) \neq 0$ and a = 0, we can set $\varphi(z) = \frac{1}{uz+v}$, where $u = \frac{c}{b}$ and $v = \frac{d}{b}$. If u = 0, then $\varphi(z) = \frac{1}{v} \neq 0$ and so C_{φ} is not isosymmetric from Lemma 6.

Now we assume that $u \neq 0$ and C_{φ} is isosymmetric. From Lemma 4, we obtain that

$$C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}K_{\alpha}(z) = K_{\varphi_{2}(0)}(z) + \frac{\overline{\alpha}}{v - \overline{\alpha}}K_{\varphi_{2}(\sigma(\alpha))}(z)$$

$$= \frac{1}{1 - \overline{\varphi_{2}(0)}z} + \frac{\overline{\alpha}}{v - \overline{\alpha}}\frac{1}{1 - \overline{\varphi_{2}(\sigma(\alpha))}z}$$

$$= \frac{1}{1 - \frac{\overline{v}z}{\overline{u} + \overline{v}^{2}}} + \frac{\overline{\alpha}}{v - \overline{\alpha}}\frac{1}{1 - \frac{(|u|^{2} - |v|^{2} + \overline{\alpha v})z}{(\overline{u} + \overline{v}^{2})(\overline{\alpha} - v) + |u|^{2}\overline{v}}}$$

$$= \frac{\overline{u} + \overline{v}^{2}}{\overline{u} + \overline{v}^{2} - \overline{v}z} + \frac{\overline{\alpha}}{v - \overline{\alpha}}\frac{(\overline{u} + \overline{v}^{2})(\overline{\alpha} - v) + |u|^{2}\overline{v}}{(\overline{u} + \overline{v}^{2})(\overline{\alpha} - v) + |u|^{2}\overline{v}}$$

$$(15)$$

for any $\alpha \in \mathbb{D}$. Since $u \neq 0$ and $|v| = |\varphi(0)|^{-1} > 1$, by Lemma 3,

$$C_{\varphi}^{*}C_{\varphi}C_{\varphi}K_{\alpha}(z) = \frac{v}{v - \overline{\alpha}}K_{\varphi(0)}(z) + \left(\frac{u + v^{2}}{u + v^{2} - v\overline{\alpha}} - \frac{v}{v - \overline{\alpha}}\right)K_{\varphi(\sigma_{2}(\alpha))}(z)$$

$$= \frac{v}{v - \overline{\alpha}}\frac{1}{1 - \overline{\varphi(0)}z} + \left(\frac{u + v^{2}}{u + v^{2} - v\overline{\alpha}} - \frac{v}{v - \overline{\alpha}}\right)\frac{1}{1 - \overline{\varphi(\sigma_{2}(\alpha))}z}$$

$$= \frac{v}{v - \overline{\alpha}}\frac{\overline{v}}{\overline{v} - z} + \left(\frac{u + v^{2}}{u + v^{2} - v\overline{\alpha}} - \frac{v}{v - \overline{\alpha}}\right)\frac{1}{1 - \frac{u - v(\overline{\alpha} - v)}{(|u|^{2} - |v|^{2})(\overline{\alpha} - v) + u\overline{v}}z}$$

$$= \frac{v}{v - \overline{\alpha}}\frac{\overline{v}}{\overline{v} - z} + \left(\frac{u + v^{2}}{u + v^{2} - v\overline{\alpha}} - \frac{v}{v - \overline{\alpha}}\right)\frac{(|u|^{2} - |v|^{2})(\overline{\alpha} - v) + u\overline{v}}{(|u|^{2} - |v|^{2})(\overline{\alpha} - v) + u\overline{v} - [u - v(\overline{\alpha} - \overline{v})]z}$$

$$(16)$$

for any $\alpha \in \mathbb{D}$ with $u\overline{\alpha} \neq uv$. In addition,

$$C_{\varphi}^* K_{\alpha}(z) = K_{\varphi(\alpha)}(z) = \frac{1}{1 - \frac{z}{\overline{\varphi(\alpha)}(z)}} = \frac{1}{1 - \frac{z}{\overline{u}\overline{\alpha} + \overline{v}}} = \frac{\overline{u}\overline{\alpha} + \overline{v}}{\overline{u}\overline{\alpha} + \overline{v} - z},\tag{17}$$

$$C_{\varphi}K_{\alpha}(z) = K_{\alpha}(\varphi(z)) = \frac{1}{1 - \overline{\alpha}\varphi(z)} = \frac{1}{1 - \frac{\overline{\alpha}}{uz + v}} = \frac{uz + v}{uz + v - \overline{\alpha}}.$$
(18)

Taking $\alpha = 0$ in (15), (16), (17) and (18), we obtain

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_0(z) = \frac{\overline{u} + \overline{v}^2}{\overline{u} + \overline{v}^2 - \overline{v}z}, \qquad C_{\varphi}^* C_{\varphi} C_{\varphi} K_0(z) = \frac{\overline{v}}{\overline{v} - z},$$

$$C_{\varphi}^* K_0(z) = \frac{\overline{v}}{\overline{v} - z}, \qquad C_{\varphi} K_0(z) = 1.$$

Since

$$C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}K_{0}(z) - C_{\varphi}^{*}C_{\varphi}C_{\varphi}K_{0}(z) - C_{\varphi}^{*}K_{0}(z) + C_{\varphi}K_{0}(z) = 0$$

for any $z \in \mathbb{D}$, we have

$$\frac{\overline{u} + \overline{v}^2}{\overline{u} + \overline{v}^2 - \overline{v}z} - \frac{2\overline{v}}{\overline{v} - z} + 1 = 0$$

for any $z \in \mathbb{D}$. This implies that v = 0. Moreover, |v| > 1 since $|\varphi(0)| = |\frac{1}{v}| < 1$ and $\varphi(\mathbb{D}) \subset \mathbb{D}$, which is a contradiction. Therefore, C_{φ} is not isosymmetric. \square

2.5. Linear fractional self-maps with $\varphi(0) \neq 0$, $a \neq 0$ and $c \neq 0$

Theorem 5. Let $\varphi(z) = \frac{az+b}{cz+d}$ be a linear fractional self-maps with $\varphi(0) \neq 0$, $a \neq 0$ and $c \neq 0$. Then C_{φ} is not isosymmetric on H^2 .

Proof. We prove it by contradiction. Assume that C_{φ} is isosymmetric. From Lemma 4, if $\alpha \in \mathbb{D}$ with $a\overline{\alpha} \neq c$,

then

$$C_{\varphi}^{*}C_{\varphi}^{*}C_{\varphi}K_{\alpha}(z) = \frac{c}{c - a\overline{\alpha}}K_{\varphi_{2}(0)}(z) + \left(d - \frac{c(d - b\overline{\alpha})}{c - a\overline{\alpha}}\right)\frac{1}{d - b\overline{\alpha}}K_{\varphi_{2}(\sigma(\alpha))}(z)$$

$$= \frac{c}{c - a\overline{\alpha}}\frac{1}{1 - \overline{\varphi_{2}(0)}z} + \left(d - \frac{c(d - b\overline{\alpha})}{c - a\overline{\alpha}}\right)\frac{1}{d - b\overline{\alpha}}\frac{1}{1 - \overline{\varphi_{2}(\sigma(\alpha))}z}$$

$$= \frac{c}{c - a\overline{\alpha}}\frac{1}{1 - \frac{\overline{ab + bd}}{\overline{bc + d^{2}}}z} + \left(d - \frac{c(d - b\overline{\alpha})}{c - a\overline{\alpha}}\right)\frac{1}{d - b\overline{\alpha}}$$

$$\cdot \frac{1}{1 - \frac{(\overline{a^{2} + b\overline{c}})(a\overline{\alpha} - c) + (a\overline{b} + b\overline{d})(-b\overline{\alpha} + d)}{(a\overline{c} + c\overline{d})(a\overline{\alpha} - c) + (b\overline{c} + \overline{d}^{2})(-b\overline{\alpha} + d)}z}$$

$$= \frac{c}{c - a\overline{\alpha}}\frac{\overline{bc} + \overline{d^{2}}}{\overline{bc} + \overline{d^{2}} - (a\overline{b} + \overline{bd})z} + \left(d - \frac{c(d - b\overline{\alpha})}{c - a\overline{\alpha}}\right)\frac{1}{d - b\overline{\alpha}}$$

$$\cdot \frac{1}{1 - \frac{(\overline{a^{2} + b\overline{c}})(a\overline{\alpha} - c) + (\overline{ab + b\overline{d}})(-b\overline{\alpha} + d)}{(a\overline{c} + c\overline{d})(a\overline{\alpha} - c) + (b\overline{c} + \overline{d}^{2})(-b\overline{\alpha} + d)}z}.$$

$$(19)$$

From Lemma 3, for any $\alpha \in \mathbb{D}$ with $(a^2 + bc)\overline{\alpha} \neq c(a + d)$, we get

$$C_{\varphi}^{*}C_{\varphi}C_{\varphi}K_{\alpha}(z) = \frac{c(a+d)}{c(a+d) - (a^{2} + bc)\overline{\alpha}} \frac{1}{1 - \overline{\varphi(0)z}} + \left(\frac{bc + d^{2}}{bc + d^{2} - b(a+d)\overline{\alpha}} - \frac{c(a+d)}{c(a+d) - (a^{2} + bc)\overline{\alpha}}\right) \frac{1}{1 - \overline{\varphi(\sigma_{2}(\alpha))z}} = \frac{c(a+d)}{c(a+d) - (a^{2} + bc)\overline{\alpha}} \frac{\overline{d}}{\overline{d} - \overline{b}z} + \left(\frac{bc + d^{2}}{bc + d^{2} - b(a+d)\overline{\alpha}} - \frac{c(a+d)}{c(a+d) - (a^{2} + bc)\overline{\alpha}}\right) \frac{1}{1 - \frac{(|a|^{2} - |b|^{2})(a\overline{\alpha} - c) + (\overline{b}d - \overline{a}c)(-b\overline{\alpha} + d)}{(a\overline{c} - b\overline{d})(a\overline{\alpha} - c) + (|d|^{2} - |c|^{2})(-b\overline{\alpha} + d)}z}.$$
(20)

In addition,

$$C_{\varphi}^* K_{\alpha}(z) = K_{\varphi(\alpha)}(z) = \frac{1}{1 - \frac{\overline{a}\overline{\alpha} + \overline{b}}{\overline{c}\overline{\alpha} + \overline{d}}z} = \frac{\overline{c}\overline{\alpha} + \overline{d}}{\overline{c}\overline{\alpha} + \overline{d} - (\overline{a}\overline{\alpha} + \overline{b})z}.$$
(21)

$$C_{\varphi}K_{\alpha}(z) = K_{\alpha}(\varphi(z)) = \frac{1}{1 - \overline{\alpha}\varphi(z)} = \frac{1}{1 - \overline{\alpha}\frac{az+b}{cz+d}} = \frac{cz+d}{cz+d-\overline{\alpha}(az+b)}.$$
 (22)

Taking $\alpha = 0$ in (19), (20), (21), and (22), we obtain that

$$C_{\varphi}^* C_{\varphi}^* C_{\varphi} K_0(z) = \frac{\overline{bc} + \overline{d}^2}{\overline{bc} + \overline{d}^2 - (\overline{ab} + \overline{bd})z},$$

$$C_{\varphi}^* C_{\varphi} C_{\varphi} K_0(z) = \frac{\overline{d}}{\overline{d} - \overline{bz}}, \quad C_{\varphi}^* K_0(z) = \frac{\overline{d}}{\overline{d} - \overline{bz}}, \quad C_{\varphi} K_0(z) = 1.$$

By the assumption, we get

$$C_{\omega}^* C_{\omega}^* C_{\omega} K_0(z) - C_{\omega}^* C_{\omega} C_{\omega} K_0(z) - C_{\omega}^* K_0(z) + C_{\omega} K_0(z) = 0$$

for any $z \in \mathbb{D}$, i.e.,

$$\frac{\overline{bc} + \overline{d}^2}{\overline{bc} + \overline{d}^2 - (\overline{ab} + \overline{bd})z} - \frac{2\overline{d}}{\overline{d} - \overline{b}z} + 1 = 0$$

for any $z \in \mathbb{D}$. That is,

$$\frac{\overline{bc} + \overline{d}^2}{\overline{bc} + \overline{d}^2 - (\overline{ab} + \overline{bd})z} = \frac{\overline{d} + \overline{bz}}{\overline{d} - \overline{bz}}$$

for any $z \in \mathbb{D}$. So if we cross multiply, we get that

$$(\overline{ab} + \overline{bd})\overline{b}z^2 + [(\overline{ab} + \overline{bd})\overline{d} - 2(\overline{bc} + \overline{d}^2)\overline{b}]z = 0$$

for any $z \in \mathbb{D}$, which is a contradiction. Hence C_{φ} is not isosymmetric. The proof is complete. \square

Data Availability No data were used to support this study.

Conflicts of Interest The authors declare that they have no conflicts of interest.

References

- [1] A. Brown, On a class of operators, Proc. Amer. Math. Soc. 4 (1953) 723-728.
- [2] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, **36**, American Mathematical Society, Providence, RI, 1991. xvi+436 pp.
- [3] C. Cowen, Linear fractional composition operators on H², Integral Equations Operator Theory 11(2) (1988) 151–160.
- [4] C. Cowen and B. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, 1995.
- [5] M. Fatehi and M. Shaabani, Norms of hyponormal weighted composition operators on the Hardy and weighted Bergman spaces, Oper. Matrices 12 (2018) 997–1007.
- [6] M. Fatehi, M. Shaabani and D. Thompson, Quasinormal and hyponormal weighted composition operators on H^2 and A_α^2 with linear fractional compositional symbol, Complex Anal. Oper. Theory 12 (2018) 1767–1778.
- [7] S. Jung, Y. Kim and E. Ko, Composition operators for which $C_{\varphi}^*C_{\varphi}$ and $C_{\varphi} + C_{\varphi}^*$ commute, Complex Var. Elliptic Equ. **59** (2014) 1608–1625.
- [8] S. Jung, Y. Kim and E. Ko, Characterizations of binormal composition operators with linear fractional symbols on H², Appl. Math. Comput. 261 (2015) 252–263.
- [9] H. Schwartz, Composition operators on H^p , Thesis (Ph.D.) The University of Toledo, 1969, 84 pp.
- [10] M. Stankus, Isosymmetric linear transformations on complex Hilbert space, Thesis (Ph.D.) The University of California, 1993, 80 pp.
- [11] M. Stankus, *M*-isometries, *n*-symmetries and other linear transformations which are hereditary roots, Integral Equations Operator Theory 75 (2013) 301–321.