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Abstract. In this paper, we give some necessary and sufficient conditions for the composition operator C,,
to be isosymmetric on H? when ¢ is a linear fractional self-map of D.

1. Introduction

Let H be a complex Hilbert space, B(H) be the space of all bounded linear operators defined in H. An
operator T € B(H) is called normal if [T, T*] = 0, where [T, T*] = TT* — T*T. An operator T € B(H) is called
hyponormal if T*T > TT*. An operator T € B(H) is subnormal if there is a Hilbert space K containing H
and a normal operator N on K such that NH € H and T = N|H. An operator T € B(H) is quasinormal if T
commutes with T*T, that is, [T, T*T] = 0. Quasimormal operators were first proposed, studied by Brown in

[1]. T € B(H) is said to be binormal if [T*T, TT*] = 0 (see [8]). An operator T is said to belong to © class if
[T*T, T + T*] = 0. From [2, 7], we obtain that

quasinormal C binormal.

normal C quasinormal C subnormal C hyponormal.
Stankus in [10] introduced and studied isosymmetric operators. According to [10] or [11], an operator
T € B(H) is said to be isosymmetric if
T?*T-TT*-T +T=0.
See [10, 11] for more properties of isosymmetric operators.

Let ID denote the open unit disc in the complex plane C. Let H(ID) be the space of those analytic functions
on D. A function f € H(D) belongs to the Hardy space H? if

27T

IfI2. = sup . |f (re')|?d0 < oo.
0<r<1 <70 Jo
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In other words, the space H? consists of all analytic functions on ID having power series representation with
square summable complex coefficients. For any a € D, the function K,(z) = 1= is called the reproducing
kernel for a in H* such that
f (a) = <f ’ Ktz)
for any f € H?. The space H* denote the space of all bounded analytic functions f in D.
Let ¢ be an analytic self-map of ID. The composition operator C, on H? is defined by

Cof=foep, feH.
It is well known that C(,Ka(2z) = Kp()(2) for any a € D. In addition, for ¢ € H(ID) and ¢ is an analytic
self-map of D, the weighted composition operator Wy, is defined by

Wypf=1-fog.
The Toeplitz operator Ty on H? is defined by

Ts(9) = P(fg)
for f € L*(dD) and g € H?, where P denotes the orthogonal projection of L? onto H?. It is easy to check that

T, Ka f (2)K,

fora e Dand f € H®.

Schwarz [9] showed that C, is normal on H? if and only if ¢(z) = az with |a| < 1. In [3], Cowen studied
the subnormality and hyponormality of composition operators on H? (in a more limited way). When ¢ is
an automorphism of D or ¢(z) = ‘gis is a linear fractional self-map into ID with ¢ = 0, Jung, Kim, and Ko [7]
proved that C,e® if and only if Cyis normal. In addition, if Cpisa p-hyponormal operator in O, then it
must be normal. In [8], Jung, Kim, and Ko proved that C,, is quasinormal if and only if C,, is normal when
o(z) = ‘C’Zg is a linear fractional self-map into ID. When (p(z) ’gis is a linear fractional self—map 1nto D and
¢(0) = 0, they proved that C,, is binormal if and only if C, is normal or subnormal. When ¢(z) = —== with
u # 0and [v| > 1+|ul, they also proved that C,, is binormal if and only if C, is hyponormal or p-hyponormal
for 0 <p < 1. If Cy, € O, then C,, is binormal if and only if it is normal. For more results on composition
operators on H?, see [3-9].

In this paper, we study isosymmetric composition operators with linear fractional symbols on H2. We
give some necessary and sufficient conditions for the composition operator C,, to be isosymmetric when

@ is automorphism or ¢(z) = ‘;ﬂg is a linear fractional self-map into D. In partlcular we prove that C, is
az+b

isosymmetric on H? if and only if C, is normal when ¢(z) = =57
c=0.

is a linear fractional self-map into ID w1th

2. Main results and proofs

2.1. Auxiliary results
To prove our main results in this paper, we need some lemmas.

Lemma 1. [9] Let ¢ be an analytic self-map of ID. Then C,, is normal if and only if ¢(z) = az with |a| < 1.

Let ¢(z) = ‘gig be a nonconstant linear fractional self-map of ID, where a,b,c,d € C and ad — bc # 0.
Cowen in [3] proved that
G, = TyC Ty,

where

0@ =T g0 = ——, h) = cz+d,

From now on, unless otherwise stated, we assume that g, g and h are given as above.

Using this adjoint formula, Jung, Kim, and Ko in [8] obtained the following basic lemmas.
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Lemma 2. [8] Let ¢(z) = L be a linear fractional self-map of ID. Then

cz+d

C;,CoKa(2) = —c@K(p(m(Z) +h (é] J(@)K (ot (2)
o(a) o(a)

forany a € D with ao # c.

The following lemma can be directly obtained by [8, Lemma 2.3].

Lemma 3. Let ¢(2) = 2 be a linear fractional self-map of D. Then

cz+d
. B c(a+d)
CoCoCokald) = — @+ b0y 0@
bc + d? c(a +d)

- K o2(«x
Noecr @ —va+da  ca+d) - @+boa) " @

for any a € D with (4> + be)a # c(a + d).
Lemma 4. [7, Lemma 2.1] Let ¢(z) = £t be a linear fractional self-map of D. Then

cz+d

C;,C,,CyKa(2) = —c@K(pZ(o)(z) + h(é)mK@(am»(z)
( a(a)

o(a)

forany a € D with ao # c.

Lemma 5. [7, Lemma 2.3] Let ¢(z) = 5 be a linear fractional self-map into D and ¢ = 0. Then

cz+d
Cp =C3T;,

where 5(z) = EZH and §(z) = —Eiﬁ'

2.2. Automorphism
Theorem 1. Let ¢ be an automorphism of D. Then C,, is isosymmetric on H? if and only if p(z) = —Az, |A| = 1.

A1) \wherea € Dand |A| = 1. Let o(z) = % We note

Proof. Assume that C,, is isosymmetric and ¢(z) = ===,

that (0 o @)(z) = (p 0 0)(z) = z and

_ A =laP)z — Aa(d ~ 1)
(PZ(Z) - (/\ _ 1)52 — (/\|€l|2 - 1) .

From Lemma 4, if « € ID with Aa # g, then

CyCyCopKa(2)

7 a(-1 + Aaw) 1
S aa 0@ Tl m o | g K@ @)
@ 1, Ad1-jaP) 1

A-Aa1 - p(0)z @—A)(Aax 1)1 - g, (0(a))z 1)
_a 1 L Aa- lal?) 1
Ca-Aaqy_ G-y, @- Aw)(Aaa—1) _ 1@,
Xlalz—l aa—1
a Ala? =1 L Aal- lal®) aa — 1

- AT QR -1-da(A -1z @-A@Aax-1) gz —1-A@-a)z
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Also, we obtain from Lemma 3 that for any a € D with A(A — [a*)& # a(A — 1)

a(A - 1)
. K = K
CqJCpr@ a(Z) E(A — 1) — /\()\ _ |a|2)a (P(o)(z)
1 Ala? A - 1)
B K o2(
(1 —AaP + Aa(A =@~ a(A —1) = A(A - jaP)a) " »(2)
_ a(A -1) 1 )
aA=1) = A(A = laP)@ 1 — Tuz
1— Alaf? _ A -1) 1
L= AP+ Aa(i=Da 2k = 1) = AA —laP)a) 1 - 2
In addition,
y 1 1 aa —1
C@KQ(Z) = K(P(a)(z) = S— — _ (3)

1-p@)@) 1-26D, aa-1-A@-az
and

B 1 B az—1
1-ap(z) 1_A(Z_:f)a_ﬁz—l—/\(z—a)§'

az

CpKa(2) = Ka((2)) =

(4)

Taking z = 0in (1), (2), (3), and (4), we obtain that

a Aa(1 - |a?)
C,C CoKp(0) = ———=+ ——————— ,
#CoCeka0) i-Aa  (a-Aa)(Aaa —1)
1 AlaP 1
C;,C,CpK,y(0) = —, C Ky(0)=1, C,K,(0)=——.
pCoCeka0) 1-Ala? + Aa(A - Da’ ¢ © vKa(0) Aaa — 1
Since C,, is isosymmetric, we have
CpCoCopKa(0) — C,CpCypKa(0) — C,Ka(0) + CpKa(0) = 0
foranya e, ie,
a N Aa(1 — |a?) 3 1— Ala)? .1 ~0
a-Aa (@-Aa)(Aaa—-1) 1-AjaP+ Aa(A - Da Aaa—1

for any a € ID, which implies that

1+ Aaa 1 - Ala)?
1-Aaa 1-Alal2 - Aa(A -1

for any a € ID. After a calculation, we get
A22(A = 1)@ + Aa(l + A = 2AlaP)a = 0

for any a € ID. By the assumption that [A| = 1, we geta = 0. Hence, ¢(z) = —Az, |A| = 1.
Conversely, let ¢(z) = —Az,|A| = 1. Set 6(z) = —Az. From Lemmas 3 and 4, we have

C;C;C(PKH(Z) = K(pz(o(a))(z) = K(P(a)(z),

11
1-o(a)z 1+Aaz’

CZ)Cch(pKa(Z) = K(p(az(a))(z) = Ka(a)(z) =
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C;;Ka(z) = K(p(a)(z)/

11
1-ap(z) 1+aldz’

C(pKa(Z) = Ka((P(Z)) =
From the above equalities, we get that
CpCoCoKa(z) — CL,CuCpKa(z) — CiKa(z) + CpKa(z) = 0

forany @ € D and z € D. It is well known that the linear span of uncountably many reproducing kernels is
dense in H2. Hence, C, is isosymmetric on H2. O

2.3. Linear fractional self-maps with ¢ = 0

az+b
cz+d

Theorem 2. Let ¢(z) =
only if C,, is normal.

be a linear fractional self-map into D with ¢ = 0. Then C,, is isosymmetric on H? if and

Proof. Sufficiency. Since C,, is normal, by Lemma 1 we see that ¢(z) = Az, |A| < 1. Similarly to the second
part proof of Theorem 1, we see that

C;,Ci,CyKa(2) = C;yCpCypKal(2) = CpyKal2) + CpKal2) = 0,

for any a € ID and z € ID. Hence C,, is isosymmetric.
sz

Necessity. Since ¢ = 0, set ¢(z) = sz +t, wheres = 7, = 5 and |s| + |t} < 1. Put o(2) = 7=, 9(2) =
According to the proof of [7, Theorem 2.4], we obtain

L
1-tz°

C;,C;,CoKa(2) = C;,C;,C T;Ka(z) = 9()Kpyo(a) ()
1 (©)
(1 —ta)—[(G+ 1)+ (IsI*5 — |t*5 — |t?) a] z

and
CyCoCoKa(z) = CLC Ty CTyKa(2) = g(e)g(0(@)Koore)(2)

1 (6)
1—ﬂs+D§—F+ﬂ#s—m%—HHak

for any a,z € D. In addition,

1

Co,Ka(2) = Kp(a)(2) = —_— = p—
v o 1-@p@)z 1-(Ga+t)z

(7)

and

1 B 1
1-ap(z) 1-a(sz+t)

CpKa(2) = Kalp(2)) =

for any a,z € ID. Taking a = 01in (5), (6), (7), and (8), we get that

1 1
T — C Ko(z) = S
1-1G+1z ole)

C,,C,CoKo(2) = —

) 1
C({)C({,Cq;Ko(Z) = E, CWK()(Z) =1
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Since C,, is isosymmetric, we get that
CyCpCoKo(z) — C,,CpCpKo(z) — C;,Ko(z) + CpKo(z) = 0

for any z € D, which implies that
1 2

— - — +1=0.
1-ts+1)z 1-tz

So 5 B
FG+1)z22+1G-1)z=0
for any z € ID. Hence t = 0. So ¢(z) = sz, [s| < 1. Therefore, C,, is normal by Lemma 1. [J

From the last Theorem and the results in [7, 8], we get the following corollary.

az+b
cz+d

Corollary 1. Let ¢(z) = be a linear fractional self-map into ID with ¢ = 0. Then the following statements are
equivalent.

(i) Cy is normal;

(ii) Cy, is subnormal;

(iii) C, is binormal;

(iv) Cyp €0,

(v) C,, is quasinormal;

(vi) C, is isosymmetric.

Theorem 3. Let ¢(z) = 222 be a linear fractional self-map into D with ¢ = 0. If Cy, is isosymmetric on H?, then

eitherb=00r|§|¢1——

Proof. Assume that Cj, is isosymmetric and b # 0. We suppose that |§| =1- 4. Set ¢(z) = sz + t, where

s=%andt= g. Then t # 0 and || = 1 - s. For a real number 7. Define (U, f)(z) = f(eMz) for any z € D and
f € H3(D). Then U, is unitary and

(U CoU, f)(2) = U, Cyp f(e2) = U f(e(2)) = f(€p(e™2)) = f(x(2)) = (Cf)(2)
for any z € ID and f € H*(ID). Hence, we know that C, is unitary equivalent to C;, where x(z) = sz + (1 —s).
Since C*(p is isosymmetric, so does C}, which means that

C(C C, — C,C,C, = Cy + C, = 0.

From Lemma 5, we get that
Cy = G Ty,

where 6(z) = and g(z) = 1—S)Z Hence,

1- (1 s)z

CyCrCyKa(z) =CT;Co Ty Kyw(2) = 9(x(@))g(0(x (@) Koy (e (2)

_ 1 1 1
1-(1-s)x(@)1-(1-s)o(x(@)1 - —2t@ .
1-(1-s)a(x(a))
_ 1 1
1-(1-s)x(a)1-(1-s)a(x(@) - so(x(@)z
1 1 )

1= (1= s)x(@) 1 - @ _ @
1-(I-s)x(@)  1-(1-s)x(a)
1
1—-(1=s)x(@) —s(l - s)x(@) —s*x(@)z
1
s+52—sls]2 +s(s2 —a—s2(sa+1—5)z’
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C)(C;(C*XK(X(Z) =C;T;K)(z(a)(z) = g(XZ(a))KU()(z(a))(Z)

~ 1 1
1-1-9)x2a)1 - L(“)iz
1-(1-s)x2(@)
) ) (10)
1= (@1 -s)xa(a) —sxa(a)z
_ 1
C s+52—s|sP+s2(s — Da—s(s2a+1-sP)z’
1 1
C,K = — = — , 11
K@) l-ax(z) 1-a(sz+1-5s) (1)
and
1 1
C Ky(z) = = —
K@ 1-x(@z 1-@Ga+l-s9)z (12)
for any a,z € ID. Since C;( is isosymmetric, we have
1 N 1
s+s2—slsP+s(s2-Na—-s2(sa+1-8)z 1-(a+1-s)z (13)
~ 1 N 1
s+ 2 —slsP+s2(s—Da—s@2a+1—[sP)z 1-a(sz+1-5s)
for any a,z € ID. Take z = 0 in (13), we get that
1 1 1
—+1= — + —
S+ 52 —sls]2 +s(s2 — 1a s+s2—slsP+s2(s—1a 1+a(s-1)
forany a € D. Let A = s + 5> — s|s|>. We get
1 1o 1 L1
A+sE2-Da =~ A+2s-Da 1+(-1a
for any a € D, which implies that
A+s(s>—Da+1  1+(@s-Da+A+s*(s—-1a (14)

A+s(s2—Da  [A+s2(s—Da][l+(s-Da]
Therefore,
[A +5(s*> — D)a + 1][A + s*(s = Da][1 + (s - Da]
=[1+(s—Da+A+s*s - 1)al[A +s(s* - 1)a]
for any a € ID. Comparing the coefficients of @° and constant term in above equation, we obtain that
S+1)(s-1)7°=0.
Hence s = +1(s # 0). If s = —1, the equation (14) is true for any a € ID. Then

1

T 1-2a
for any @ € ID. This is a contradiction. In addition, since s # 0, which yields s = 1 and hence t = 0, a
contradiction. Hence |§| #1-4. 0O
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2.4. Linear fractional self-maps with ¢(0) # 0anda =0

Lemma 6. Let ¢ : ID — D be a constant function. Then C,, is isosymmetric on H? if and only if ¢ is identically
zero on ID.

Proof. Sufficiency. It is obvious.
Necessity. Let ¢(z) = b for some b € ID. From Lemma 2, we obtain that

1 1 11
" C K, =C ——K, =——12K, =,
CpCopCoKa(2) = Co 7—=Ko0(2) = T-7=Kn0)(2) T

1

" . 1 1
CoCopCoKa(z) = C,Ka(p2(2)) = mK@(O)(Z) = T_ta; g,

1
1-gp(a)z C1-Bz

C;Ka(z) = K(p(a)(z) =

7

and
1

1
1-ap(z) 1-ab

CpKa(z) = Ka(p(2)) =
for any a,z € ID. Since Cq, is isosymmetric, we have
C;C;C(pKa(z) - C;C(,JC(,,K“(Z) - C;,Ka(z) +CyKa(2) =0
for any a,z € ID. Hence

1 1 1 1 1 1

——— — ——— - —— + —— =0.
I-baq_pz 1-bay_pz 1-pz 1-ab

The above equation holds for any ,z € Dif and only if b = 0. [

Theorem 4. Let ¢(z) = “*L be a linear fractional self-map of D with ¢(0) # 0 and a = 0. Then C, is not
isosymmetric on H>.

1
uz+v’

Proof. Since ¢(0) # 0 and a = 0, we can set ¢(z) = where u = ; and v = % If u =0, then ¢(z) = % #0
and so C,, is not isosymmetric from Lemma 6.

Now we assume that u # 0 and C, is isosymmetric. From Lemma 4, we obtain that

% % a
CoCoCpKa(2) = Kpy(0)(2) + —=Kos(0(a)(2)

v—«

1 a 1

= + — ——
1-¢20)z U741 - ga(o(a))z

1 a 1 (15)
ST = o3 ke

0 (+7)@—v)+u?o

U+ 7 a (i +7) (@ - o) + [u*o

U+0° -0z V= Q@+0)(@—0)+ [uPo - (JuP - [v)2 + a0)z
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for any a € D. Since u # 0 and [v| = |p(0)|~! > 1, by Lemma 3,

U+ v? v

. v
C(pC@C(pKa(Z) :mK(P(O)(Z) + (u p—— - — a)Kq)(gz(a))(Z)

v 1 ( U+ 02 v ) 1
+

_0—51_(P(0)Z u+v’-va v-a 1 - @(02())z
— ) (16)
v v U+o v 1
v-av-z (u+02—va v—a)l_L@—v)z
(uP-lP)@-0)+uv
v v vt v ([uf?> = [P (@ - v) + uv
v—av-z \u+v®—-va v-a)(uf-oP)@a-v)+uv-[u-ov@-o9)z
for any a € ID with ua # uv. In addition,
. 1 1 ua+v
C(pKa(Z) = qu(a)(z) = —— 1 z - = = ’ (17)
l-¢p@)(z) *~@mw HatU-Z
1 1 uz +v
C K = K = = — = .
oKa(2) = Kal9(@) 1-ap(z) 1--2 uz+v-a (18)

uz+ov
Taking a = 0in (15), (16), (17) and (18), we obtain

U+ 7
C:CCoKo(2) = =
T+T -T2 v v-z

7

C;,C;,CyKo(2) =

C Ko(Z) = ﬂ, quKo(Z) =1.

Since

C;,C.,CoKo(2) — C;,CypCyKo(2) — CKo(z) + CyKo(2) = 0

for any z € ID, we have
U+7 20
— = — — = +1=0
u+v —vz 00—z

for any z € ID. This implies that v = 0. Moreover, [v| > 1 since |@(0)| = |11',| < 1and (D) c D, which is a
contradiction. Therefore, C,, is not isosymmetric. [J

2.5. Linear fractional self~-maps with ¢(0) #0,a # Oand ¢ # 0

Theorem 5. Let ¢(z) = gig be a linear fractional self-maps with ¢(0) # 0, a # 0 and ¢ # 0. Then C,, is not
isosymmetric on H2.

Proof. We prove it by contradiction. Assume that C,, is isosymmetric. From Lemma 4, if « € ID withaa # c,
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3018
then
. c c(d - ba) 1
CpCopCoKa(2) =———=Kp,0)(2) + (d T ) T 55 Keato@)(@)
__c 1 +(d_c(d—b_a)) 1_ 1
¢ —aa 1 — ,(0)z c—aa |d-baq_ Pa(0(a))z
NI
C—aqq _ abtbd, c—aa |d-ba
be+d
. 1 (19)
1 — @boa@-o+abbd)(—ba+d) .
(@c+cd)(@am—c)+(bo+d. )(=ba+d)
c bo+d cd-b@)\ 1
=___2__+d— — "=
€T 4 d — (ab + bd)z c-aa ja-ba
1
1— (EZ+E)(aa—c)+@+ﬁ)(—ba+d)Z'
(@+cd)(ad—c)+(bo+d. )(=ba+d)
From Lemma 3, for any & € ID with (a® + be)a # c(a + d), we get
c(a+d) 1
C C,CypKy(z) = -
pCoCoKa(@) a+d)— @ +b0a1 - ()
N bc + d? B c(a+d) 1
be+d>-bla+d)a cla+d)— @ +bc)a)q— P(02(a))z
_ c(a +d) d (20)
Ccla+d)—(@+bo)ag_py
N be + d? B cla+d) 1
be+d -bla+da  cla+d)— (@ +bo)a)  _ (aP—lbP)aa—c)+(d—ac)(-ba+d)
(at—bd)(a@—c)+(|dP—Ic)(~ba+d)
In addition,
i 1 a+d
C(pKa(Z) = K(p(a)(z) = ——- = = _— = (21)
—watb,  Ta+d- (aa+b)z
ca+d
1 1 cz+d
C KO( = KO( = — = = — .
oKa(2) (p() 1-ap(z) 1-g=t  cz+d-az+b) (22)

Taking a = 0in (19), (20), (21), and (22), we obtain that

— =2

. bc+d
CoCoCoKo(z) = ——F———,
bc+d —(ab+ bd)z

d
C C,C Ko(Z) == C: Ko(Z) =—_— C Ko(Z) =1
Py i-bz 7 i-bz

By the assumption, we get

C;,C.,CoKo(2) — C;,CypCyKo(2) — CKo(z) + CyKo(2) = 0
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foranyzeD,ie.,

_ =2 —_
_ _2bc+i _ __2d_ 10
bc+d —(ab+0bd)z d-bz

for any z € D. That is,

be+d d+ bz
— 2 —  — -
bc+d —(ab+0bd)z d-bz

for any z € ID. So if we cross multiply, we get that

(ab + bd)b22 + [(ab + b — 2(bc + 4 )b]z = 0

for any z € ID, which is a contradiction. Hence C, is not isosymmetric. The proof is complete. [J
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