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Abstract. The purpose of this paper is to study generalized matrix functions only using the permutation
matrices and symmetric matrices. Firstly the zeroness of a generalized matrix function and then the
equality of two generalized matrix functions on the permutation matrices and symmetric matrices will be
examined. Secondly generalized matrix functions preserving commutativity of the permutation matrices or
commutativity of the symmetric matrices will be characterized. Thirdly generalized matrix functions which
preserve product of the permutation matrices or product of the symmetric matrices will be investigated.
Finally the Cayley-Hamilton Theorem for generalized characteristic polynomials using the permutation
matrices and symmetric matrices will be studied.

1. Introduction

Throughout the paper denote by Mn(C) the set of all n-by-n matrices over C and let Sn and An be the
symmetric group and the alternating group of degree n, respectively. Let G ⩽ Sn and χ : G → C be an
arbitrary function. The generalized matrix function associated with G and χ is the function dG

χ : Mn(C) → C
given by

dG
χ (A) =

∑
σ∈G

χ(σ)
n∏

i=1

aiσ(i),

where A = (ai j) ∈Mn(C). The determinant and the permanent are two famous generalized matrix functions.
In fact, if G = Sn and χ = ε is the alternating character of G, then dG

χ = det is the determinant and if G = Sn

and χ = 1G is the principal character of G, then dG
χ = per is the permanent. Clearly if χ, φ : G → C are

two functions and λ ∈ C, then dG
χ+λφ = dG

χ + λdG
φ , and if χ̂ is the unique extension of χ to Sn which vanishes

outside of G, then dG
χ = dSn

χ̂ . We refer the reader to [6] and [7] for some deep information about generalized
matrix functions. The reader may also consult the papers [3], [4], [5], [8], and the references therein.

Let us introduce some notations and preliminaries which will be used throughout. For each σ ∈ Sn, let

Fix(σ) = {i : 1 ≤ i ≤ n, σ(i) = i}
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be the set of fixed points of σ and l(σ) = n− |Fix(σ)| be the length of σ. Obviously σ = 1 if and only if l(σ) = 0,
and also l(σ) , 1 for all σ ∈ Sn. It should be noted that l(σ) ≤ 2 if and only if σ = 1 or σ is a transposition,
and l(σ) ≤ 3 if and only if σ = 1 or σ is a transposition or σ is a 3-cycle. It is important to note that the
composition of permutations in Sn means left-to-right, that is, (στ)(i) = τ(σ(i)), for any σ, τ ∈ Sn. Also we
know that each 1 , σ ∈ Sn can be uniquely written as a product of (nontrivial) disjoint cycles. The number
of (nontrivial) disjoint cycles in the decomposition of σ is denoted by c(σ).

Let Ers = (δirδsj) ∈ Mn(C) be the standard matrix units, i.e., the matrix which has 1 in the (r, s)-th entry
and zeros elsewhere. Also for each σ ∈ Sn, let Aσ = (δσ(i) j) ∈Mn(C) be the permutation matrix induced by σ.
It can be easily verified that for any σ, τ ∈ Sn :
(1) Aσ = In if and only if σ = 1;
(2) Aστ = AσAτ;
(3) det Aσ = sgn(σ);
(4) Aσ is diagonalizable;
(5) if σ has order m, then each eigenvalue of Aσ is an m-th root of unity;
(6) A−1

σ = Aσ−1 = At
σ;

(7) Aσ is a symmetric matrix if and only if σ2 = 1;
(8) ErsAσ = Erσ(s) and AσErs = Eσ−1(r)s.

The set of involutions of Sn plays a crucial role in the paper and so we denote it by

Tn = {σ ∈ Sn : σ2 = 1}.

Finally for each σ ∈ Sn, let Sσ = (ai j) ∈Mn(C) in which ai j is given by

ai j =

{
1 if σ(i) = j or σ( j) = i
0 otherwise.

These matrices were originally introduced in [8]. It is clear that for any σ ∈ Sn :
(1) Sσ = In if and only if σ = 1;
(2) Sσ is a symmetric matrix;
(3) Sσ = Sσ−1 .

It should be noted that the matrices Sσ may be singular or nonsingular, for example, S(1234) is singular
while S(123) is not. It is not difficult to see that for any σ ∈ Sn the following are equivalent:
(1) σ ∈ Tn;
(2) σ is a product of disjoint transpositions;
(3) Aσ is a symmetric matrix;
(4) Sσ = Aσ;
(5) 2 is not an eigenvalue of Sσ.

The main objective of this paper is the study of generalized matrix functions using the permutation ma-
trices and symmetric matrices. The results presented here can be viewed as deep generalizations or analogs
of the results presented in [3], [4], and [8]. The most results obtained here, regarding the generalized matrix
function dG

χ , are proven first in the case χ is a character of G and then for an arbitrary function χ. This is
because one can obtain more results and the proofs also are easier when χ is a character of G compared
with the case χ is not a character of G.

The paper is organized as follows. In section 2, first we examine the zeroness of a generalized matrix
function on the permutation matrices or on the symmetric matrices, and then, as a corollary, some equivalent
conditions will be given for the equality of two generalized matrix functions on the symmetric matrices. In
section 3, generalized matrix functions preserving commutativity of the permutation matrices or commu-
tativity of the symmetric matrices will be characterized. In section 4, we concentrate on those generalized
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matrix functions which preserve product of the permutation matrices or product of the symmetric matrices.
Finally, in section 5, our study is focused on the so-called generalized characteristic polynomials and the
Cayley-Hamilton Theorem.

2. Zeroness and equality

We begin this section with a rather simple theorem.

Theorem 2.1. Let G ⩽ Sn and χ be an irreducible character of G. Then either dG
χ = det or dG

χ = per if and only if
dG
χ (Aσ) , 0 for all σ ∈ Sn.

Proof. It is trivial that if σ ∈ Sn, then

det(Aσ) = ε(σ) = ±1 , 0,

per(Aσ) = 1Sn (σ) = 1 , 0.

Conversely, if dG
χ (Aσ) , 0 for all σ ∈ Sn, then χ̂(σ) , 0 for all σ ∈ Sn and so G = Sn and χ is an irreducible

character of Sn which vanishes nowhere. By Burnside’s Theorem, see Theorem 3.15 in [2], every nonlinear
irreducible character vanishes somewhere, hence we deduce that χ is a linear character of Sn. Since 1Sn and
ε are the only linear characters of Sn, one has either χ = ε or χ = 1Sn and the proof is complete.

Irreducibility of the character χ in Theorem 2.1 is essential, as the following example shows.

Example 2.2. It is obvious that χ = 1S2 + 2ε is a character of S2 which is not irreducible. Also dS2
χ (Aσ) = χ(σ) =

1 + 2ε(σ) , 0 for all σ ∈ S2 and dS2
χ , det and dS2

χ , per.

For any character χ of a group G, one has |χ(1)| ≤ χ(1) for any 1 ∈ G. It is proved that the set

Z(χ) = {1 ∈ G : |χ(1)| = χ(1)}

is a normal subgroup of G, see Chapter 2 of [2]. Every nonlinear irreducible character vanishes somewhere
by Burnside’s Theorem. Hence one can deduce that an irreducible character χ of G is linear if and only if
G = Z(χ). It should also be remarked that if a character χ of G is the sum of two characters φ and ψ of
G, then Z(χ) ⊆ Z(φ) ∩ Z(ψ). The zeroness of dG

χ on the symmetric matrices, when χ is a character of G, is
examined in the next theorem.

Theorem 2.3. Let G ⩽ Sn and χ be a character of G. Then the following are equivalent:
(i) dG

χ = χ(1) det;
(ii) dG

χ (A) = χ(1) det(A) for all symmetric matrices A ∈Mn(C);
(iii) dG

χ (Sσ) = χ(1) det(Sσ) for all σ ∈ Sn;
(iv) dG

χ (A(k k+1)) = −χ(1) for all 1 ≤ k ≤ n − 1;
(v) dG

χ (A) = 0 for all singular symmetric matrices A ∈Mn(C);
(vi) dG

χ (A) , 0 for all nonsingular symmetric matrices A ∈Mn(C);
(vii) dG

χ (In + A(k k+1)) = 0 for all 1 ≤ k ≤ n − 1.

Proof. First note that S(k k+1) = A(k k+1) and the matrix In + A(k k+1) is a singular symmetric matrix for any
1 ≤ k ≤ n − 1. So (i)⇒ (ii)⇒ (iii)⇒ (iv), (ii)⇒ (vi), and (ii)⇒ (v)⇒ (vii) are obvious. Hence it suffices to
prove (iv)⇒ (i), (vi)⇒ (i), and (vii)⇒ (i).



M. H. Jafari, A. R. Madadi / Filomat 37:10 (2023), 3119–3142 3122

In the remaining cases, we first claim that χ̂((k k + 1)) = −χ(1) for all 1 ≤ k ≤ n − 1, where n ≥ 2. The
claim is obvious if hypothesis (iv) holds. For any 1 ≤ k ≤ n − 1, using the matrix

In + A(k k+1) =


2Ik−1 0 0

0
1 1
1 1 0

0 0 2In−k−1


one has by hypothesis (vii) that

0 = dG
χ (In + A(k k+1)) = 2n−2(χ(1) + χ̂((k k + 1))),

implying that χ̂((k k + 1)) = −χ(1). Now assuming hypothesis (vi), suppose by way of contradiction that
χ̂((k k + 1)) , −χ(1) for some 1 ≤ k ≤ n − 1. Since χ is a character of G, χ(1) is nonzero and so the matrix

A =


Ik−1 0 0

0 −
χ̂((k k+1))
χ(1) 1
1 1

0

0 0 In−k−1


is a nonsingular symmetric matrix. But this contradicts hypothesis (vi) because dG

χ (A) = 0. Hence the claim
is proved.

Now by the claim χ̂((k k + 1)) = −χ(1) , 0, for any 1 ≤ k ≤ n − 1, and so G contains all transpositions
(k k + 1) and hence χ((k k + 1)) = −χ(1), where 1 ≤ k ≤ n − 1. In particular, |χ((k k + 1))| = χ(1), for
any 1 ≤ k ≤ n − 1, which implies that the subgroup Z(χ) also contains all transpositions (k k + 1), where
1 ≤ k ≤ n − 1. But the set {(k k + 1)| 1 ≤ k ≤ n − 1} generates Sn and thus G = Z(χ) = Sn and χ̂ = χ. Therefore
if φ is an irreducible constituent of χ, then Sn = Z(φ) by the remark mentioned before the theorem. This
means that all irreducible constituents of χ are linear. But 1Sn and ε are the only linear characters of Sn and
hence χ = r1Sn + sε for some nonnegative integers r, s. Thus

−(r + s) = −χ(1) = χ((12)) = r − s,

which implies that r = 0 and so χ = χ(1)ε. This completes the proof.

The next example shows that Theorem 2.3 does not hold if χ is not a character of G. It is also not true
even if χ is a class function of G.

Example 2.4. (i) Let χ : S3 → C be a function given by

χ(σ) =


1 if σ = 1
−1 if l(σ) = 2

2 if σ = (123)
0 if σ = (132)

One can see that dS3
χ (A) = det(A) for all symmetric matrices A ∈M3(C).

(ii) Let χ be a class function ofA3 given by

χ(σ) =


0 if σ = 1
1 if σ = (123)
−1 if σ = (132)

One can easily verify that dA3
χ (A) = 0 for all symmetric matrices A ∈M3(C).
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To state our next results, we need some preliminaries. We define a binary relation on Sn as follows. For
any σ, τ ∈ Sn, we say that

σ ∼ τ if and only if
n∏

i=1

aiσ(i) =

n∏
i=1

aiτ(i),

for all symmetric matrices A = (ai j) ∈ Mn(C). It is clear that ∼ is an equivalence relation on Sn. The
equivalence class of σ ∈ Sn is denoted by [σ]. The next lemma gives us some information about ∼.

Lemma 2.5. Let σ, τ ∈ Sn − {1}. Then
(i) [1] = {1};
(ii) {σ, σ−1

} ⊆ [σ];
(iii) if σ = σ1 . . . σs and τ = τ1 . . . τs are the decompositions of σ and τ into disjoint cycles, where the cycles σi, τi have
the same moving points for any 1 ≤ i ≤ s, then

σ ∼ τ if and only if σi ∼ τi, for any 1 ≤ i ≤ s;

(iv) if σ = σ1 . . . σs is the decomposition of σ into disjoint cycles, then

{σn1
1 . . . σ

ns
s : n1, . . . ,ns ∈ {−1, 1}} ⊆ [σ];

(v) if τ(k) ∈ {σ(k), σ−1(k)} for any 1 ≤ k ≤ n, then Fix(τ) = Fix(σ) and c(τ) ≥ c(σ);
(vi) if σ, τ are two cycles and τ(k) ∈ {σ(k), σ−1(k)} for any 1 ≤ k ≤ n, then τ ∈ {σ, σ−1

};
(vii) if σ = σ1 . . . σs is the decomposition of σ into disjoint cycles, τ(k) ∈ {σ(k), σ−1(k)} for any 1 ≤ k ≤ n, and
c(τ) ≤ c(σ), then

τ ∈ {σn1
1 . . . σ

ns
s : n1, . . . ,ns ∈ {−1, 1}};

(viii) if σ = σ1 . . . σs is the decomposition of σ into disjoint cycles, then

[σ] = {σn1
1 . . . σ

ns
s : n1, . . . ,ns ∈ {−1, 1}};

(ix) |[σ]| = 2m for some nonnegative integer m;
(x) σ ∈ Tn if and only if |[σ]| = 1.

Proof. (i): Taking the symmetric matrix A = (ai j) to be In gives [1] = {1}.
(ii): It is enough to show that σ−1

∈ [σ]. For any symmetric matrix A = (ai j) ∈Mn(C) we have

n∏
i=1

aiσ−1(i) =

n∏
j=1

aσ( j)σ−1(σ( j))

=

n∏
j=1

aσ( j) j

=

n∏
j=1

a jσ( j),

which means that σ ∼ σ−1.
(iii): By hypothesis the cycles σi, τi have the same set Ωi of moving points for any 1 ≤ i ≤ s and so σ, τ have
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the same set Ω0 of fixed points. Now we have

σ ∼ τ ⇔

n∏
i=1

aiσ(i) =

n∏
i=1

aiτ(i), for any symmetric (ai j)

⇔

∏
i<Ω0

aiσ(i) =
∏
i<Ω0

aiτ(i), for any symmetric (ai j)

⇔

s∏
i=1

(∏
j∈Ωi

a jσi( j)

)
=

s∏
i=1

(∏
j∈Ωi

a jτi( j)

)
, for any symmetric (ai j)

⇔

∏
j∈Ωi

a jσi( j) =
∏
j∈Ωi

a jτi( j), ∀1 ≤ i ≤ s, for any symmetric (ai j)

⇔

n∏
j=1

a jσi( j) =

n∏
j=1

a jτi( j), ∀1 ≤ i ≤ s, for any symmetric (ai j)

⇔ σi ∼ τi, ∀1 ≤ i ≤ s.

(iv): It comes from (ii) and (iii).
(v): Since Fix(σ) = Fix(σ−1), using hypothesis we obtain Fix(τ) = Fix(σ). Now assume that σ = σ1 . . . σs is the
decomposition of σ into disjoint cycles and Ωi is the set of moving points of σi for any 1 ≤ i ≤ s. Thus Ωi is
the set of moving points of σ−1

i and by hypothesis τ(k) ∈ Ωi for any k ∈ Ωi, which means that τ maps each
Ωi into itself. Hence τi, the restriction of τ to Ωi, lies in SΩi and therefore τ = τ1 . . . τs, that is, c(τ) ≥ c(σ).
(vi): The two cycles σ, τ have the same fixed points by (v) and so have the same moving points. It then
follows that

σ = (a σ(a) . . . σm−1(a)), τ = (a τ(a) . . . τm−1(a)),

for some m ≥ 2 and 1 ≤ a ≤ n. By hypothesis we have either τ(a) = σ(a) or τ(a) = σ−1(a) and will show that
either τ = σ or τ = σ−1, respectively. Suppose that τ(a) = σ(a) and 2 ≤ k ≤ m − 1 is the least number so that
τk(a) , σk(a). So by hypothesis

τk(a) = τ(τk−1(a)) = τ(σk−1(a)) = σ−1(σk−1(a)) = σk−2(a) = τk−2(a),

which implies that τ2(a) = a, that is, m = 2, a contradiction. Similarly, if τ(a) = σ−1(a), then τ = σ−1.
(vii): We have c(τ) = c(σ) using hypothesis and (v). Now the proof of (v) tells us that τ = τ1 . . . τs is the
decomposition of τ into disjoint cycles andΩi is the set of moving points of the cycles σi, τi for any 1 ≤ i ≤ s.
Since τi(k) ∈ {σi(k), σ−1

i (k)} for any 1 ≤ k ≤ n, one deduces by (vi) that τi ∈ {σi, σ−1
i } for any 1 ≤ i ≤ s and the

proof is complete.
(viii): One part is trivial by (iv). Suppose now that σ ∼ τ and so we have for the symmetric matrix Sσ = (ai j)
that

n∏
i=1

aiτ(i) =

n∏
i=1

aiσ(i) = 1,

implying that aiτ(i) = 1 for any 1 ≤ i ≤ n. It follows by definition of Sσ that τ(i) ∈ {σ(i), σ−1(i)} for any 1 ≤ i ≤ n.
Hence we deduce that c(τ) ≥ c(σ) by (v). In a similar manner, using the symmetric matrix Sτ, one obtains
c(σ) ≥ c(τ). Therefore c(σ) = c(τ) and the result follows by (vii).
(ix) and (x): It is clear from (ii) and (viii).

It should be noted that for any σ ∈ Sn the set [σ] is contained in σSn , the conjugacy class of σ in Sn, and
hence every class function of Sn is constant on [σ].

Taking a closer look at Example 2.4 would lead us to the following generalization of Theorem 2.3. Notice
that the following can be compared with Theorem 2.1 of [3] or Theorem 2.1 of [4]. The zeroness of dSn

χ on
the symmetric matrices is examined in the next theorem when χ is an arbitrary function on Sn.
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Theorem 2.6. Let χ : Sn → C be a function. Then the following are equivalent:
(i)
∑
τ∈[σ] χ(τ) = |[σ]|χ(1)ε(σ) for all σ ∈ Sn;

(ii) dSn
χ (A) = χ(1) det(A) for all symmetric matrices A ∈Mn(C);

(iii) dSn
χ (Sσ) = χ(1) det(Sσ) for all σ ∈ Sn;

(iv) dSn
χ (A) = 0 for all singular symmetric matrices A ∈Mn(C);

(v) dSn
χ (A) = χ(1) det(A) for all nonsingular symmetric matrices A ∈Mn(C).

Also, any one of the conditions (i) − (v) together with the condition χ(1) , 0 is equivalent to:
(vi) dSn

χ (A) , 0 for all nonsingular symmetric matrices A ∈Mn(C).

Proof. (ii)⇒ (iii), (ii)⇒ (iv), (ii)⇒ (v), ((ii) &χ(1) , 0)⇒ (vi), and ((v) &χ(1) , 0)⇒ (vi) are obvious. So it
suffices to show that (i)⇒ (ii), (iii)⇒ (i), (iv)⇒ (i), and (vi)⇒ ((i) &χ(1) , 0).
(i)⇒ (ii): Let Ω be the set of representatives for the equivalence classes of ∼ on Sn. Using hypothesis and
Lemma 2.5, for any symmetric matrix A = (ai j) ∈Mn(C) we have

dSn
χ (A) =

∑
σ∈Ω

∑
τ∈[σ]

χ(τ)
n∏

i=1

aiτ(i)

=
∑
σ∈Ω

( ∑
τ∈[σ]

χ(τ)
) n∏

i=1

aiσ(i)

=
∑
σ∈Ω

|[σ]|χ(1)ε(σ)
n∏

i=1

aiσ(i)

= χ(1)
∑
σ∈Ω

( ∑
τ∈[σ]

ε(τ)
) n∏

i=1

aiσ(i)

= χ(1)
∑
σ∈Ω

∑
τ∈[σ]

ε(τ)
n∏

i=1

aiτ(i)

= χ(1) det(A),

which completes the proof.
(iii)⇒ (i), (iv)⇒ (i), and (vi)⇒ ((i) &χ(1) , 0): If φ : Sn → C is a function given by

φ(σ) = χ(σ) − χ(1)ε(σ),

then ∑
τ∈[σ]

φ(τ) =
∑
τ∈[σ]

χ(τ) −
∑
τ∈[σ]

χ(1)ε(τ) =
∑
τ∈[σ]

χ(τ) − |[σ]|χ(1)ε(σ),

and so we have to show that∑
τ∈[σ]

φ(τ) = 0,

for any σ ∈ Sn. Obviously∑
τ∈[1]

φ(τ) = φ(1) = 0.

By way of contradiction, choose 1 , σ ∈ Sn so that l(σ) is minimal and c(σ) is maximal and∑
τ∈[σ]

φ(τ) , 0.
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Thus if τ ∈ Sn and either l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then∑
α∈[τ]

φ(α) = 0.

Now let A = (ai j) be the symmetric matrix xIn + Sσ, where x ∈ C. By definition of ∼, the set

Ω = {τ ∈ Sn :
n∏

i=1

aiτ(i) , 0}

is a union of equivalence classes of ∼. Clearly

n∏
i=1

aiσ(i) = (x + 1)n−l(σ)

and so σ ∈ Ω if x , −1. Let Γ, containing σ if x , −1, be the set of representatives for the equivalence classes
of ∼ contained in Ω. If α ∈ Γ, then by definition of A we have α(i) ∈ {i, σ(i), σ−1(i)} for any 1 ≤ i ≤ n and so
Fix(σ) ⊆ Fix(α). If Fix(σ) ⊂ Fix(α), then l(α) < l(σ) and so by the choice of σ we have∑

τ∈[α]

φ(τ) = 0.

But if Fix(σ) = Fix(α), then l(σ) = l(α) and α(i) ∈ {σ(i), σ−1(i)} for any 1 ≤ i ≤ n. Hence by (v) of Lemma 2.5,
c(α) ≥ c(σ). If c(α) > c(σ), then again by the choice of σ we obtain∑

τ∈[α]

φ(τ) = 0.

Now if c(α) = c(σ), then by (vii) of Lemma 2.5, α ∈ [σ] and so α = σ, because α, σ ∈ Γ.

Therefore

dSn
χ (A) − χ(1) det(A) = dSn

φ (A)

=
∑
α∈Γ

∑
τ∈[α]

φ(τ)
n∏

i=1

aiτ(i)

=
∑
α∈Γ

∑
τ∈[α]

φ(τ)
n∏

i=1

aiα(i)

=
∑
α∈Γ

( ∑
τ∈[α]

φ(τ)
) n∏

i=1

aiα(i)

=
( ∑
τ∈[σ]

φ(τ)
) n∏

i=1

aiσ(i)

= (x + 1)n−l(σ)
∑
τ∈[σ]

φ(τ). (∗)

Putting x = 0 in relation (∗) will result in

dSn
χ (Sσ) − χ(1) det(Sσ) =

∑
τ∈[σ]

φ(τ) , 0,

which contradicts hypothesis (iii). This completes the proof of (iii)⇒ (i).
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Since tr(Sσ) = n − l(σ) , n, hence Sσ has an eigenvalue λ , 1. Thus the matrix A = −λIn + Sσ is singular
and so by putting x = −λ in relation (∗) we obtain

dSn
χ (A) = (1 − λ)n−l(σ)

∑
τ∈[σ]

φ(τ) , 0,

contradicting hypothesis (iv). This completes the proof of (iv)⇒ (i).

Assuming hypothesis (vi), we haveχ(1) = dSn
χ (In) , 0. Hence it can be easily seen that p(x) = χ(1) det(xIn+

Sσ) and

q(x) = p(x) + (x + 1)n−l(σ)
∑
τ∈[σ]

φ(τ)

are both polynomials in x having degree n and leading coefficient χ(1).
Suppose by way of contradiction that each root of q(x) is also a root of p(x). So each root of q(x) is a root

of q(x) − p(x), too. We get a contradiction if l(σ) = n. So if l(σ) < n, then it follows that −1 is the only root of
q(x). Thus q(x) = χ(1)(x + 1)n and

p(x) = χ(1)(x + 1)n
− (x + 1)n−l(σ)

∑
τ∈[σ]

φ(τ).

One can see using l(σ) ≥ 2 that the coefficient of xn−1 in p(x) is χ(1)n. But this implies that the coefficient
of xn−1 in det(xIn − Sσ) is −n, that is, tr(Sσ) = n, a contradiction. Hence one can choose some root λ of q(x)
such that λ is not a root of p(x). Therefore the matrix A = λIn + Sσ is nonsingular and so by putting x = λ in
relation (∗) we have

dSn
χ (A) = q(λ) = 0,

which contradicts hypothesis (vi). Therefore the proof of (vi) ⇒ ((i) &χ(1) , 0) and so the proof of the
theorem is completed.

As a consequence of Theorem 2.6 we obtain:

Corollary 2.7. Let G ⩽ Sn and χ be a class function of G with χ(1) , 0. Then the following are equivalent:
(i) dG

χ = χ(1) det;
(ii) dG

χ (A) = χ(1) det(A) for all symmetric matrices A ∈Mn(C);
(iii) dG

χ (Sσ) = χ(1) det(Sσ) for all σ ∈ Sn;
(iv) dG

χ (A) = 0 for all singular symmetric matrices A ∈Mn(C);
(v) dG

χ (A) = χ(1) det(A) for all nonsingular symmetric matrices A ∈Mn(C);
(vi) dG

χ (A) , 0 for all nonsingular symmetric matrices A ∈Mn(C).

Proof. First note that dG
χ = dSn

χ̂ . Now, using (x) of Lemma 2.5 and χ(1) , 0, the condition (i) in Theorem 2.6
reduces to χ̂(σ) = χ(1)ε(σ) , 0 for any transposition σ ∈ Sn, which means that G = Sn. Hence χ is a class
function of Sn and the condition (i) in Theorem 2.6 reduces to χ = χ(1)ε and hence dG

χ = χ(1) det.

Another interesting corollary of Theorem 2.6 is the following which is a generalization of Theorem 3.9
and Corollary 3.12 of [8]. It can also be compared with Theorem 2.2 of [3].

Corollary 2.8. Let χ, φ : Sn → C be two functions. Then the following are equivalent:
(i)
∑
τ∈[σ] χ(τ) =

∑
τ∈[σ] φ(τ) for all σ ∈ Sn;

(ii) dSn
χ (A) = dSn

φ (A) for all symmetric matrices A ∈Mn(C);
(iii) dSn

χ (Sσ) = dSn
φ (Sσ) for all σ ∈ Sn;

(iv) dSn
χ (A) = dSn

φ (A) for all singular symmetric matrices A ∈Mn(C) and χ(1) = φ(1);
(v) dSn

χ (A) = dSn
φ (A) for all nonsingular symmetric matrices A ∈Mn(C).



M. H. Jafari, A. R. Madadi / Filomat 37:10 (2023), 3119–3142 3128

Proof. First note that if σ = 1, then Sσ = In and so we have the equality

χ(1) = dSn
χ (In) = dSn

φ (In) = φ(1),

by any one of the conditions (i)-(v). Now consider the function θ : Sn → C given by

θ(σ) = ε(σ) + χ(σ) − φ(σ).

Hence θ(1) = 1 if each of the conditions (i)-(v) is satisfied. Since∑
τ∈[σ]

θ(τ) = |[σ]|ε(σ) +
∑
τ∈[σ]

χ(τ) −
∑
τ∈[σ]

φ(τ),

for all σ ∈ Sn and since for any matrix A ∈Mn(C)

dSn
θ (A) = det(A) + dSn

χ (A) − dSn
φ (A),

hence by applying Theorem 2.6 for θ the result follows.

It should be remarked that if χ, φ are two class functions of Sn, then the condition (i) in the above
corollary is equivalent to “χ = φ”. Also, the condition “χ(1) = φ(1)” is essential in part (iv) of Corollary 2.8,
as part (ii) of Example 2.4 shows.

Applying Corollary 2.8 will immediately give the next corollary which generalizes Corollary 3.13 of [8].

Corollary 2.9. Let χ, φ be two class functions of Sn. Then the following are equivalent:
(i) χ = φ;
(ii) dSn

χ (A) = dSn
φ (A) for all symmetric matrices A ∈Mn(C);

(iii) dSn
χ (Sσ) = dSn

φ (Sσ) for all σ ∈ Sn;
(iv) dSn

χ (A) = dSn
φ (A) for all singular symmetric matrices A ∈Mn(C) and χ(1) = φ(1);

(v) dSn
χ (A) = dSn

φ (A) for all nonsingular symmetric matrices A ∈Mn(C).

Notice that a result similar to the above corollary does not hold if χ, φ are two class functions of a proper
subgroup of Sn.

Example 2.10. Let χ be the irreducible character ofA3 given by

χ(σ) =


1 if σ = 1
ω if σ = (123)
ω2 if σ = (132)

whereω is a primitive cube root of unity. It can be easily verified that ifφ = χ̄, the conjugate ofχ, then dA3
χ (A) = dA3

φ (A)
for all symmetric matrices A ∈M3(C).

3. Preserving commutativity

The first result of this section gives a criterion for a map to be a class function.

Theorem 3.1. Let G ⩽ Sn and χ : G → C be a function. Then χ is a class function of G if and only if dG
χ (AαAβ) =

dG
χ (AβAα) for all α, β ∈ G.
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Proof. Assume that χ is a class function of G and α, β ∈ G are arbitrary. Then

dG
χ (AαAβ) = dG

χ (Aαβ)
= χ(αβ)
= χ(α(βα)α−1)
= χ(βα)
= dG

χ (Aβα)

= dG
χ (AβAα).

Conversely, if α, β ∈ G are arbitrary, then by hypothesis

χ(α) = dG
χ (Aα)

= dG
χ (A(αβ)β−1 )

= dG
χ (AαβAβ−1 )

= dG
χ (Aβ−1 Aαβ)

= dG
χ (Aβ−1αβ)

= χ(β−1αβ),

which means that χ is a class function of G.

As a corollary we obtain:

Corollary 3.2. Let G ⩽ Sn and χ : G → C be a function such that χ(σ) , 0 for some 1 , σ ∈ G. If n , 4 and
dG
χ (AαAβ) = dG

χ (AβAα) for all α, β ∈ Sn, then either G = An or G = Sn.

Proof. Since dSn
χ̂ = dG

χ , it follows by Theorem 3.1 that χ̂ is a class function of Sn. By hypothesis, χ̂ is nonzero
on σSn , the conjugacy class of σ in Sn, and so σSn ⊆ G. If N is the subgroup of Sn generated by σSn , then N is
a nontrivial normal subgroup of Sn contained in G. But Sn has at most three normal subgroups for n , 4.
Therefore, either G = An or G = Sn and the proof is completed.

We need a lemma, whose easy proof is omitted, which plays a key role in the sequel.

Lemma 3.3. (i) Let σ = (a1a2 . . . am) ∈ Sn, where m ≥ 2. Then σ = αβ, where α, β ∈ Tn are defined as follows:

α = (a1am)(a2am−1) · · · (al−1al+2)(alal+1),

β = (ama2)(am−1a3) · · · (al+3al−1)(al+2al),

if m = 2l is even, and

α = (a1am)(a2am−1) · · · (al−1al+3)(alal+2),

β = (ama2)(am−1a3) · · · (al+3al)(al+2al+1),

if m = 2l + 1 is odd;
(ii) For each σ ∈ Sn there exist α, β ∈ Tn such that σ = αβ and Fix(σ) = Fix(α) ∩ Fix(β).

It is a well-known problem that if G ⩽ Sn and χ : G → C is a function, then χ(σ) = χ(σ−1) for all σ ∈ G
if and only if dG

χ (A) = dG
χ (At) for all A ∈ Mn(C), see either Exercise 7 in Section 2.4 of [6] or Exercise 3 in

Chapter 7 of [7]. The authors in Theorem 3.14 of [8] added another equivalent condition to that problem,
that is,

dG
χ (AB) = dG

χ (BA) for all symmetric matrices A,B ∈Mn(C).

Their proof uses a theorem due to Frobenius saying that every square complex matrix is a product of two
symmetric complex matrices, see [1]. The next theorem not only generalizes Theorem 3.14 of [8] but also is
comparable with Theorem 2.2 of [4]. Of course, our proof is different than theirs.
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Theorem 3.4. Let G ⩽ Sn and χ : G→ C be a function. Then the following are equivalent:
(i) χ(σ) = χ(σ−1) for all σ ∈ G;
(ii) dG

χ (Aσ) = dG
χ (Aσ−1 ) for all σ ∈ G;

(iii) dG
χ (A) = dG

χ (At) for all A ∈Mn(C);
(iv) dG

χ (AB) = dG
χ (BA) for all symmetric matrices A,B ∈Mn(C);

(v) dG
χ (AB) = dG

χ (BA) for all nonsingular symmetric matrices A,B ∈Mn(C);
(vi) dG

χ (AB) = dG
χ (BA) for all nonsingular symmetric matrix A ∈Mn(C) and singular symmetric matrix B ∈Mn(C);

(vii) dG
χ (AB) = dG

χ (BA) for all singular symmetric matrices A,B ∈Mn(C);
(viii) dG

χ (SαSβ) = dG
χ (SβSα) for all α, β ∈ Sn;

(ix) dG
χ (AαAβ) = dG

χ (AβAα) for all α, β ∈ Tn.

Proof. (i)⇔ (ii), (iii)⇒ (iv)⇒ (v)⇒ (ix), (iv)⇒ (vi), (iv)⇒ (vii), (iv)⇒ (viii)⇒ (ix) are obvious. We have
to prove the following remaining cases.
(i)⇒ (iii): Let A = (ai j) ∈Mn(C) and At = (bi j). Then by hypothesis

dG
χ (A) =

∑
σ∈G

χ(σ)
n∏

i=1

aiσ(i)

=
∑
σ∈G

χ(σ−1)
n∏

i=1

bσ(i)i

=
∑
σ∈G

χ(σ−1)
n∏

j=1

b jσ−1( j)

=
∑
τ∈G

χ(τ)
n∏

j=1

b jτ( j)

= dG
χ (At).

(vi)⇒ (vii): Let A,B ∈ Mn(C) be singular symmetric matrices. Hence there exists some ϵ > 0 such that for
all 0 < x < ϵ the matrix xIn + A is nonsingular and so by hypothesis

dG
χ ((xIn + A)B) = dG

χ (B(xIn + A)).

But both sides of the above equality are polynomials in x and therefore their constant coefficients are equal,
that is,

dG
χ (AB) = dG

χ (BA),

as required.
(vii)⇒ (i): The assertion is true for the elements of Tn. Suppose by way of contradiction that σ ∈ Sn − Tn
has been chosen so that l(σ) is minimal and c(σ) is maximal and χ(σ) , χ(σ−1). Thus if τ ∈ Sn and either
l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then χ(τ) = χ(τ−1).

Let σ = σ1 . . . σs be the decomposition of σ into disjoint cycles, where σ1 = (a1a2 . . . ak) is a k-cycle
with k ≥ 3. By Lemma 3.3 there exist disjoint permutations α1, . . . , αs ∈ Tn and disjoint permutations
β1, . . . , βs ∈ Tn so that

α = α1 . . . αs, β = β1 . . . βs, σ = αβ,

where

α1 = (a1ak)(a2ak−1) · · · (al−1al+2)(alal+1),

β1 = (aka2)(ak−1a3) · · · (al+3al−1)(al+2al),
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if k = 2l is even, and

α1 = (a1ak)(a2ak−1) · · · (al−1al+3)(alal+2),

β1 = (aka2)(ak−1a3) · · · (al+3al)(al+2al+1),

if k = 2l + 1 is odd.
Now the symmetric matrices

A = Aα + Ea1a1 + Eakak , B = Aβ + Ea2a2 + Eakak

are clearly singular and

AB = Aσ + Eα(a2)a2 + Eα(ak)ak + Ea1β(a1) + Eakβ(ak) + Eakak

= Aσ + Eak−1a2 + Ea1ak + Ea1a1 + Eaka2 + Eakak ,

BA = (AB)t = Aσ−1 + Ea2ak−1 + Eaka1 + Ea1a1 + Ea2ak + Eakak .

Now consider the sets

Ω = {τ ∈ Sn :
n∏

i=1

uiτ(i) , 0},

Γ = {τ ∈ Sn :
n∏

i=1

viτ(i) , 0},

where AB = (ui j) and BA = (vi j). Obviously, ui j = v ji ∈ {0, 1} and so

τ−1
∈ Γ⇐⇒ τ ∈ Ω⇐⇒ uiτ(i) = 1, ∀1 ≤ i ≤ n.

It is not also difficult to see that if τ ∈ Ω, then

τ(a1) ∈ {a1, a2, ak}, τ(ak−1) ∈ {a2, ak}, τ(ak) ∈ {a1, a2, ak},

τ(b) = σ(b), ∀b < {a1, ak−1, ak}.

Three cases can occur for τ ∈ Ω:
If τ(a1) = a1, then either τ(ak−1) = a2 and τ(ak) = ak or τ(ak−1) = ak and τ(ak) = a2. In this case τ ∈ {τ1, τ2},
where

τ1 = (a2 . . . ak−1)σ2 . . . σs, τ2 = (a2 . . . ak)σ2 . . . σs.

If τ(a1) = a2, then τ(ak−1) = ak and so τ(ak) = a1. In this case τ = σ.
If τ(a1) = ak, then τ(ak−1) = a2 and so τ(ak) = a1. In this case

τ = τ3 = (a1ak)(a2 . . . ak−1)σ2 . . . σs.

Since l(τ1) + 1 = l(τ2) < l(σ), l(τ3) = l(σ) and c(τ3) > c(σ), hence by the choice of σ we have

χ(τi) = χ(τ−1
i ), 1 ≤ i ≤ 3.
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Therefore by hypothesis

χ(σ) + χ(τ1) + χ(τ2) + χ(τ3) =
∑
τ∈Ω

χ(τ)

= dG
χ (AB)

= dG
χ (BA)

=
∑
τ∈Γ

χ(τ)

=
∑
τ∈Ω

χ(τ−1)

= χ(σ−1) + χ(τ−1
1 ) + χ(τ−1

2 ) + χ(τ−1
3 )

= χ(σ−1) + χ(τ1) + χ(τ2) + χ(τ3),

which means that χ(σ) = χ(σ−1), a contradiction.
(ix)⇒ (i): Let σ ∈ G be arbitrary. By Lemma 3.3, there exist α, β ∈ Tn such that σ = αβ. Hence by hypothesis

χ(σ) = dG
χ (Aσ)

= dG
χ (Aαβ)

= dG
χ (AαAβ)

= dG
χ (AβAα)

= dG
χ (Aβα)

= dG
χ (Aσ−1 )

= χ(σ−1).

4. Preserving product

We begin this section with a useful theorem characterizing generalized matrix functions which preserve
the product of permutation matrices.

Theorem 4.1. Let G ⩽ Sn and χ be a character of G. Then the following are equivalent:
(i) either dG

χ = det or dG
χ = per;

(ii) dG
χ (AαAβ) = dG

χ (Aα)dG
χ (Aβ) for all α, β ∈ Sn;

(iii) dG
χ (AαAβ) = dG

χ (Aα)dG
χ (Aβ) for all α, β ∈ Tn;

(iv) dG
χ (AαAβ) = dG

χ (Aα)dG
χ (Aβ) for all α, β ∈ Sn with l(α), l(β) ≤ 2;

(v) dG
χ (Aα2 ) = dG

χ (Aα)2 for all α ∈ Sn;
(vi) dG

χ (In) = dG
χ (Aα)dG

χ (Aα−1 ) for all α ∈ Sn;
(vii) dG

χ (In) = dG
χ (Aα)2 for all α ∈ Sn with l(α) ≤ 2.

Proof. (ii)⇒ (iii)⇒ (iv)⇒ (vii), (ii)⇒ (v)⇒ (vii), and (ii)⇒ (vi)⇒ (vii) are obvious. We have to prove the
following remaining cases.
(i)⇒ (ii): The assertion is true if dG

χ = det. So assume that dG
χ = per and α, β ∈ Sn are arbitrary. Then

per(AαAβ) = per(Aαβ) = 1Sn (αβ) = 1Sn (α)1Sn (β) = per(Aα)per(Aβ).

(vii)⇒ (i): For any α ∈ Sn with l(α) ≤ 2 one has

χ(1) = dG
χ (In) = dG

χ (Aα)2 = χ̂(α)2.
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Hence χ(1) = χ(1)2 and so χ(1) = 1, for χ is a character. Also if α ∈ Sn is a transposition, then χ̂(α)2 = χ(1) = 1
and so G contains all transpositions of Sn. Therefore G = Sn and χ is a linear character of Sn. It follows that
χ = 1Sn or χ = ε which concludes the proof.

Some parts of Theorem 4.1 may not be true if χ is not a character of G, as the following example shows.

Example 4.2. Let χ : S4 → C be a class function given by

χ(σ) =
{

1 if l(σ) , 2
−1 if l(σ) = 2

It is easy to see that parts (iv), (v), (vi), and (vii) of Theorem 4.1 hold but dS4
χ , det and dS4

χ , per.

Our next result is a generalization of Theorem 3.19 of [8]. There are of course some errors in Theorem
3.19 of [8] and its proof, because matrices other than the matrices Sα have been employed by the authors
when n = 2. In fact Theorem 3.19 of [8] is not true for n = 2, as part (iv) of Theorem 4.1 shows.

Corollary 4.3. Let G ⩽ Sn and χ be a character of G, where n , 2. Then the following are equivalent:
(i) dG

χ = det;
(ii) dG

χ (SαSβ) = dG
χ (Sα)dG

χ (Sβ) for all α, β ∈ Sn with l(α), l(β) ≤ 3;
(iii) dG

χ (S2
α) = dG

χ (Sα)2 for all α ∈ Sn with l(α) ≤ 3.

Proof. It suffices to prove (iii)⇒ (i). Since Sα = Aα for any α ∈ Sn with l(α) ≤ 2, hence, by hypothesis and
Theorem 4.1, dG

χ = det or dG
χ = per. We may assume by way of contradiction that n ≥ 3 and dG

χ = per. So if
α = (123) then

Sα =


0 1 1
1 0 1
1 1 0

0

0 In−3


and

S2
α =


2 1 1
1 2 1
1 1 2

0

0 In−3


and so

per(S2
α) = 16 , 4 = per(Sα)2,

a contradiction, completing the proof.

We show by means of an example that Corollary 4.3 may not be true if χ is not a character of G. In fact,
Corollary 4.3 need not be true even if χ is a class function of G.

Example 4.4. Let χ : S7 → C be a class function given by

χ(σ) =
{

1 if l(σ) = 7
0 if l(σ) < 7

For each σ ∈ S7 consider the set

Ωσ = {τ ∈ S7 :
7∏

i=1

aiτ(i) , 0},
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where Sσ = (ai j). Obviously, τ ∈ Ωσ if and only if aiτ(i) = 1 for all 1 ≤ i ≤ 7. Hence if τ ∈ Ωσ, then Fix(τ) = Fix(σ)
and so l(τ) = l(σ). Now we have

dS7
χ (Sσ) =

∑
τ∈S7

χ(τ)
7∏

i=1

aiτ(i) =
∑
τ∈Ωσ

χ(τ)
7∏

i=1

aiτ(i) =
∑
τ∈Ωσ

χ(τ).

Therefore if α, β ∈ S7 with l(α), l(β) ≤ 3, then dS7
χ (Sα) = dS7

χ (Sβ) = 0. It suffices to show that dS7
χ (SαSβ) = 0. To this

end, let k ∈ Fix(α) ∩ Fix(β). Now if Sα = (ai j) and Sβ = (bi j), then for any 1 ≤ i ≤ 7

aik = aki = δik,

bik = bki = δik.

Hence if SαSβ = (ci j), then it can be easily seen that cik = cki = δik for any 1 ≤ i ≤ 7. Now

dS7
χ (SαSβ) =

∑
τ∈S7

χ(τ)
7∏

i=1

ciτ(i)

=
∑
τ∈S7

χ(τ)ckτ(k)

7∏
i=1
i,k

ciτ(i)

=
∑
τ∈S7

χ(τ)δkτ(k)

7∏
i=1
i,k

ciτ(i)

=
∑
τ∈S7
τ(k)=k

χ(τ)
7∏

i=1
i,k

ciτ(i)

= 0,

the last equality holds because l(τ) < 7 and so χ(τ) = 0.

As another consequence of Theorem 4.1 one can achieve the following which can be compared with
Corollary 2.4 of [4].

Corollary 4.5. Let G ⩽ Sn and χ be a character of G. Then the following are equivalent:
(i) dG

χ = det;
(ii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all symmetric matrices A,B ∈Mn(C);
(iii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all nonsingular symmetric matrices A,B ∈Mn(C);
(iv) dG

χ (A2) = dG
χ (A)2 for all symmetric matrices A ∈Mn(C);

(v) dG
χ (A2) = dG

χ (A)2 for all nonsingular symmetric matrices A ∈Mn(C).

Proof. (i)⇒ (ii)⇒ (iii)⇒ (v) and (ii)⇒ (iv)⇒ (v) are obvious. So it is sufficient to show that (v)⇒ (i). If
σ ∈ Sn with l(σ) ≤ 2, then Aσ is a nonsingular symmetric matrix and so by hypothesis

dG
χ (Aσ)2 = dG

χ (A2
σ) = dG

χ (Aσ2 ) = dG
χ (In),

hence dG
χ = det or dG

χ = per, by Theorem 4.1. We may assume by way of contradiction that n ≥ 2 and
dG
χ = per. So if

A =

 2 1
1 1 0

0 In−2


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then

A2 =

 5 3
3 2 0

0 In−2


and one gets

per(A2) = 19 , 9 = per(A)2,

a contradiction, which completes the proof.

The analog of Corollary 4.5 for singular symmetric matrices is the following which can be compared
with Corollary 2.3 of [4].

Theorem 4.6. Let G ⩽ Sn and χ be a character of G. Then the following are equivalent:
(i) dG

χ = χ(1) det;
(ii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all nonsingular symmetric matrix A ∈ Mn(C) and singular symmetric matrix
B ∈Mn(C);
(iii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all singular symmetric matrices A,B ∈Mn(C);
(iv) dG

χ (A2) = dG
χ (A)2 for all singular symmetric matrices A ∈Mn(C).

Proof. It suffices to show that (ii)⇒ (iii) and (iv)⇒ (i).
(ii)⇒ (iii): Let A,B ∈Mn(C) be singular symmetric matrices. Hence there exists some ϵ > 0 such that for all
0 < x < ϵ the matrix xIn + A is nonsingular and so by hypothesis

dG
χ ((xIn + A)B) = dG

χ (xIn + A)dG
χ (B).

But both sides of the above equality are polynomials in x and therefore their constant coefficients are equal,
that is,

dG
χ (AB) = dG

χ (A)dG
χ (B),

as desired.
(iv)⇒ (i): For any 1 ≤ k ≤ n − 1, the matrices

A =


Ik−1 0 0

0
1 1
1 1 0

0 0 In−k−1

 , B =


Ik−1 0 0

0
1 2
2 4 0

0 0 In−k−1


are singular symmetric matrices and so

A2 =


Ik−1 0 0

0
2 2
2 2 0

0 0 In−k−1

 , B2 =


Ik−1 0 0

0
5 10

10 20 0

0 0 In−k−1

 .
Hence by hypothesis

4(χ(1) + χ̂((k k + 1))) = dG
χ (A2) = dG

χ (A)2 = (χ(1) + χ̂((k k + 1)))2,

100(χ(1) + χ̂((k k + 1))) = dG
χ (B2) = dG

χ (B)2 = 16(χ(1) + χ̂((k k + 1)))2,

which imply that

dG
χ (In + A(k k+1)) = χ(1) + χ̂((k k + 1)) = 0.

Now the result follows by Theorem 2.3.
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It should be remarked that Example 2.4 shows that if χ is not a character of G, then parts (iv) and (v) of
Corollary 4.5 are not equivalent to part (i) of Corollary 4.5, and part (iv) of Theorem 4.6 is not equivalent to
part (i) of Theorem 4.6.

In the sequel we want to prove results analogous to the above for an arbitrary function χ on G. The next
generalizes Theorem 4.1.

Theorem 4.7. Let G ⩽ Sn and χ : G→ C be a nonzero function. Then the following are equivalent:
(i) either dG

χ = det or dG
χ = per;

(ii) dG
χ (AαAβ) = dG

χ (Aα)dG
χ (Aβ) for all α, β ∈ Sn;

(iii) dG
χ (AαAβ) = dG

χ (Aα)dG
χ (Aβ) for all α, β ∈ Tn.

Proof. We need only to prove that (iii)⇒ (i). For any α, β ∈ Tn one by hypothesis has

χ̂(αβ) = χ̂(α)χ̂(β), (1)

and in particular,

χ(1) = χ(1)2, χ(1) = χ̂(α)2. (2)

Also if σ ∈ Sn, then by Lemma 3.3 there exist α, β ∈ Tn such that σ = αβ and so by (1) one obtains

χ̂(σ) = χ̂(α)χ̂(β). (3)

If χ(1) = 0, then (2) and (3) imply that χ̂ = 0, which is a contradiction. Thus χ(1) = 1 and χ̂ vanishes
nowhere. This implies that G = Sn, χ̂ = χ and χ(α) = ±1 for any transposition α.

Since α, β ∈ Tn, there exist disjoint transpositions α1, . . . , αs and disjoint transpositions β1, . . . , βr such
that

α = α1 . . . αs, β = β1 . . . βr.

It can be deduced using induction from (1) that

χ(α1 . . . αs) = χ(α1) . . . χ(αs),

χ(β1 . . . βr) = χ(β1) . . . χ(βr),

and hence one has by (3) that

χ(σ) = χ(α1) . . . χ(αs)χ(β1) . . . χ(βr). (4)

We now claim that χ has the same value on all transpositions. We may assume that n ≥ 3 and (a1a2a3) is
a 3-cycle. From

(a1a2a3) = (a1a2)(a1a3) = (a2a3)(a1a2) = (a1a3)(a2a3)

and (1) we get

χ((a1a2a3)) = χ((a1a2))χ((a1a3)) = χ((a2a3))χ((a1a2)) = χ((a1a3))χ((a2a3)),

implying that

χ((a1a2)) = χ((a2a3)) = χ((a1a3)).

Also if n ≥ 4 and (a2a3a4) is a 3-cycle, then

χ((a2a3)) = χ((a2a4)) = χ((a3a4)).

Now the claim becomes clear from the two latter relations.
If χ has value 1 on all transpositions, then (4) shows that χ = 1Sn and so dG

χ = per.
If χ has value −1 on all transpositions, then (4) shows that χ = ε and so dG

χ = det. This completes the
proof.



M. H. Jafari, A. R. Madadi / Filomat 37:10 (2023), 3119–3142 3137

The first consequence of Theorem 4.7 is the following which generalizes Corollary 2.4 of [4] and Corollary
4.5.

Corollary 4.8. Let G ⩽ Sn and χ : G→ C be a nonzero function. Then the following are equivalent:
(i) dG

χ = det;
(ii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all symmetric matrices A,B ∈Mn(C);
(iii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all nonsingular symmetric matrices A,B ∈Mn(C).

Proof. It suffices to show that (iii)⇒ (i). Since σ ∈ Tn if and only if Aσ is a nonsingular symmetric matrix,
hence dG

χ = det or dG
χ = per, by Theorem 4.7. We may assume by way of contradiction that n ≥ 2 and

dG
χ = per. Now similar to the proof of Corollary 4.5 if

A =

 2 1
1 1 0

0 In−2


then one gets

per(A2) = 19 , 9 = per(A)2,

a contradiction, which completes the proof.

The second consequence of Theorem 4.7 is the following which can be compared with Corollary 4.3.

Corollary 4.9. Let G ⩽ Sn and χ : G→ C be a nonzero function, where n , 2. Then the following are equivalent:
(i) dG

χ = det;
(ii) dG

χ (SαSβ) = dG
χ (Sα)dG

χ (Sβ) for all α, β ∈ Sn;
(iii) dG

χ (SαSβ) = dG
χ (Sα)dG

χ (Sβ) for all nonsingular Sα,Sβ.

Proof. It is sufficient to show that (iii)⇒ (i). Since Sα = Aα,Sβ = Aβ for any α, β ∈ Tn, hence, by hypothesis
and Theorem 4.7, dG

χ = det or dG
χ = per. We may assume by way of contradiction that n ≥ 3 and dG

χ = per.
Now similar to the proof of Corollary 4.3 if α = (123) then

per(S2
α) = 16 , 4 = per(Sα)2,

a contradiction, completing the proof.

The next example shows that the condition

dG
χ (S2

α) = dG
χ (Sα)2 for all α ∈ Sn

cannot be inserted as an equivalent condition in Corollary 4.9.

Example 4.10. Let χ : S3 → C be a class function given by

χ(σ) =
{

1
2 if l(σ) = 3
0 if l(σ) < 3

It is easy to see that

dS3
χ (S2

α) = dS3
χ (Sα) = 0, if α ∈ S3 with l(α) ≤ 2

and

dS3
χ (S2

α) = dS3
χ (Sα) = 1, if α ∈ {(123), (132)}.
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As a generalization of Corollary 2.3 of [4] and Theorem 4.6 we obtain:

Theorem 4.11. Let G ⩽ Sn and χ : G→ C be a function. Then the following are equivalent:
(i) dG

χ = χ(1) det;
(ii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all nonsingular symmetric matrix A ∈ Mn(C) and singular symmetric matrix
B ∈Mn(C);
(iii) dG

χ (AB) = dG
χ (A)dG

χ (B) for all singular symmetric matrices A,B ∈Mn(C).

Proof. Obviously (i)⇒ (ii) and the proof of (ii)⇒ (iii) is the same as that of Theorem 4.6. So it suffices to
show that (iii)⇒ (i).
First we claim that if φ : Sn → C is a function such that φ(1) = 0 and

dSn
φ (AB) = dSn

φ (A)dSn
φ (B)

for all singular symmetric matrices A,B ∈Mn(C), then φ = 0.
First we show that the assertion is true for the elements of Tn. Let 1 , τ ∈ Tn and τ = τ1 . . . τs be the

decomposition of τ into disjoint transpositions with τ1 = (a1a2). Then the symmetric matrices

A = Aτ + Ea1a1 + Ea2a2 , B = Aτ − Ea1a1 − Ea2a2

are clearly singular and

AB = In − Ea1a1 − Ea2a2 .

Hence by hypothesis

0 = dSn
φ (AB) = dSn

φ (A)dSn
φ (B) = (φ(τ) + φ(τ2 . . . τs))2.

Now by induction on the number of transpositions in the decomposition of τ one obtains φ(τ) = 0.
To complete the proof of the claim, by way of contradiction choose σ ∈ Sn so that l(σ) is minimal and

c(σ) is maximal and φ(σ) , 0. Thus σ < Tn and if τ ∈ Sn and either l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ),
then φ(τ) = 0.

Let σ = σ1 . . . σs be the decomposition of σ into disjoint cycles, where σ1 = (a1a2 . . . ak) is a k-cycle with
k ≥ 3. Let also α, β ∈ Tn be the permutations defined in the proof of Theorem 3.4, (vii) ⇒ (i). Thus, in a
similar manner, the symmetric matrices

A = Aα + Ea1a1 + Eakak , B = Aβ + Ea2a2 + Eakak

are singular,

AB = Aσ + Eak−1a2 + Ea1ak + Ea1a1 + Eaka2 + Eakak ,

and

dSn
φ (AB) = φ(σ) + φ(τ1) + φ(τ2) + φ(τ3),

where

τ1 = (a2 . . . ak−1)σ2 . . . σs,

τ2 = (a2 . . . ak)σ2 . . . σs,

τ3 = (a1ak)(a2 . . . ak−1)σ2 . . . σs.

Since l(τ1) + 1 = l(τ2) < l(σ), l(τ3) = l(σ) and c(τ3) > c(σ), so by the choice of σ we have

φ(τ1) = φ(τ2) = φ(τ3) = 0.
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Hence dSn
φ (AB) = φ(σ).

Since α, β, (a1ak)α, (a2ak)β ∈ Tn and φ is zero on the elements of Tn,

dSn
φ (A) = φ(α) + φ((a1ak)α) = 0,

dSn
φ (B) = φ(β) + φ((a2ak)β) = 0.

Therefore by hypothesis

φ(σ) = dSn
φ (AB) = dSn

φ (A)dSn
φ (B) = 0,

which is a contradiction and the proof of the claim is completed.
To complete the proof, suppose that φ = χ̂ − χ(1)ε and so φ(1) = 0. Thus for all singular symmetric

matrices A,B ∈Mn(C)

dSn
φ (AB) = dSn

χ̂ (AB) − χ(1) det(AB)

= dG
χ (AB)

= dG
χ (A)dG

χ (B)

= dSn
χ̂ (A)dSn

χ̂ (B)

= (dSn
χ̂ (A) − χ(1) det(A))(dSn

χ̂ (B) − χ(1) det(B))

= dSn
φ (A)dSn

φ (B).

Therefore φ = 0 by the claim and so χ̂ = χ(1)ε. This completes the proof of the theorem.

5. Generalized characteristic polynomial

In this final section we would like to look at generalized matrix functions from a different angle. Let us
recall a definition from [7]. Suppose that G ⩽ Sn and χ is a complex valued function defined on G. For any
A ∈ Mn(C), the generalized characteristic polynomial of A associated with G and χ is denoted by CG

χ (x,A) and
defined by CG

χ (x,A) = dG
χ (xIn − A).

It is easy to see that CG
χ (x,A) is a polynomial of degree at most n over C. In fact, if A = (xi j) and

CG
χ (x,A) = anxn + an−1xn−1 + · · · + a0,

then the coefficients ai are polynomials in n2 variables x11, x12, . . . , xnn with coefficients in C. For instance, it
can be easily verified that

an = χ(1), an−1 = −χ(1)trA, a0 = (−1)ndG
χ (A).

Notice that if G = Sn and χ is an irreducible character of Sn, then CG
χ (x,A) is called the χ-th immanantal

polynomial of A. It is clear that the ε-th immanantal polynomial of A is the ordinary characteristic polyno-
mial of A, where ε is the alternating character of Sn.

By the Cayley-Hamilton Theorem, we know that every square matrix satisfies its own ordinary char-
acteristic polynomial. The authors in Theorem 2.7 of [4] showed for a given generalized matrix function
that if every nonsingular (respectively singular) square matrix satisfies its own generalized characteristic
polynomial, then the generalized matrix function is a multiple of the determinant.

The following results will indeed refine Theorem 2.7 of [4]. Similar to the previous sections, we verify the
problem first for a character χ of G and then for an arbitrary function χ on G. Recall that if a square matrix
A satisfies a polynomial p(x), then the minimal polynomial of A divides p(x). In particular, all eigenvalues
of A are roots of p(x).



M. H. Jafari, A. R. Madadi / Filomat 37:10 (2023), 3119–3142 3140

Theorem 5.1. Let G ⩽ Sn and χ be a character of G. Then the following are equivalent:
(i) dG

χ = χ(1) det;
(ii) CG

χ (Aσ,Aσ) = 0 for all σ ∈ Sn;
(iii) CG

χ (Aσ,Aσ) = 0 for all σ ∈ Tn;
(iv) CG

χ (A,A) = 0 for all symmetric matrices A ∈Mn(C);
(v) CG

χ (A,A) = 0 for all nonsingular symmetric matrices A ∈Mn(C);
(vi) CG

χ (A,A) = 0 for all singular symmetric matrices A ∈Mn(C);
(vii) CG

χ (Sσ,Sσ) = 0 for all σ ∈ Sn;
(viii) CG

χ (Aσ,Aσ) = 0 for all σ ∈ Sn with l(σ) ≤ 2;
(ix) CG

χ (In + Aσ, In + Aσ) = 0 for all σ ∈ Sn with l(σ) ≤ 2.

Proof. If dG
χ = χ(1) det, then CG

χ (x,A) = χ(1) det(xIn − A) and so we obtain (i) ⇒ (ii) and (i) ⇒ (iv) by the
Cayley-Hamilton Theorem. Now (ii)⇒ (iii)⇒ (viii), (iv)⇒ (v)⇒ (viii), (iv)⇒ (vi)⇒ (ix), and (iv)⇒ (vii)
⇒ (viii) are obvious. So it is sufficient to show that (viii)⇒ (i) and (ix)⇒ (i).

If CG
χ (A,A) = 0 for a matrix A, then each eigenvalue of A is a root of CG

χ (x,A). We know that ±1 are the
only eigenvalues of A(k k+1) and 0, 2 are the only eigenvalues of In + A(k k+1) for any 1 ≤ k ≤ n − 1. Hence by
hypothesis (viii)

0 = CG
χ (−1,A(k k+1)) = dG

χ (−In − A(k k+1)),

and by hypothesis (ix)

0 = CG
χ (0, In + A(k k+1)) = dG

χ (−In − A(k k+1)).

In both cases one has

(−1)ndG
χ (In + A(k k+1)) = 0.

The result now follows by Theorem 2.3.

The following example shows that Theorem 5.1 may not be true if χ is not a character of G.

Example 5.2. Let χ be a class function ofA3 given by

χ(σ) =


0 if σ = 1
1 if σ = (123)
−1 if σ = (132)

It can be easily seen that for all symmetric matrices A ∈ M3(C) one has dA3
χ (A) = 0 and so CA3

χ (x,A) is the zero
polynomial. Hence parts (iii) − (ix) of Theorem 5.1 hold but dA3

χ , χ(1) det.

The next theorem tells us that if all permutation matrices satisfy their generalized characteristic polyno-
mials associated with G and χ, then dG

χ is a multiple of the determinant.

Theorem 5.3. Let G ⩽ Sn and χ : G → C be a function. Then dG
χ = χ(1) det if and only if CG

χ (Aσ,Aσ) = 0 for all
σ ∈ Sn.

Proof. Assume that CG
χ (Aσ,Aσ) = 0 for any σ ∈ Sn. It then follows that each eigenvalue of Aσ is a root of

CG
χ (x,Aσ). If φ : Sn → C is a function given by

φ(σ) = χ̂(σ) − χ(1)ε(σ),

then we have to show by induction on l(σ) that φ = 0. Obviously φ(1) = 0 and so let l(σ) ≥ 2 and σ = σ1 . . . σs
be the decomposition of σ into disjoint cycles. Since (Aσ1 )l(σ1) = In and Aσ1 , In, hence Aσ1 is diagonalizable
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and so it has an eigenvalue λ , 1 such that λl(σ1) = 1. Let X = (x1, . . . , xn)t be an eigenvector of Aσ1 associated
with λ. Obviously if j ∈ Fix(σ1) then x j = 0, for λ , 1. This implies that Aσi X = X, for any 2 ≤ i ≤ s. Since
Aσ = Aσ1 . . .Aσs , we deduce that AσX = λX, which means that λ is an eigenvalue of Aσ.

Now suppose λIn − Aσ = (ai j) and suppose τ ∈ Sn is chosen such that
∏n

i=1 aiτ(i) , 0. Then τ(i) ∈ {i, σ(i)}
for any 1 ≤ i ≤ n and so Fix(σ) ⊆ Fix(τ). If Fix(σ) ⊂ Fix(τ), then l(τ) < l(σ) and so by induction we have
φ(τ) = 0. But if Fix(σ) = Fix(τ), then clearly τ = σ. Therefore,

0 = CG
χ (λ,Aσ)

= dG
χ (λIn − Aσ)

= dSn
χ̂ (λIn − Aσ)

= dSn
φ (λIn − Aσ) + χ(1) det(λIn − Aσ)

= dSn
φ (λIn − Aσ)

=
∑
τ∈Sn

φ(τ)
n∏

i=1

aiτ(i)

= φ(σ)
n∏

i=1

aiσ(i)

= (λ − 1)n−l(σ)(−1)l(σ)φ(σ),

which completes the proof.

We close the paper with a theorem which says that if all symmetric matrices satisfy their generalized
characteristic polynomials associated with G and χ, then dG

χ is a multiple of the determinant on symmetric
matrices.

Theorem 5.4. Let G ⩽ Sn and χ : G→ C be a function. Then the following are equivalent:
(i)
∑
τ∈[σ] χ̂(τ) = |[σ]|χ(1)ε(σ) for all σ ∈ Sn;

(ii) CG
χ (A,A) = 0 for all symmetric matrices A ∈Mn(C);

(iii) CG
χ (A,A) = 0 for all nonsingular symmetric matrices A ∈Mn(C);

(iv) CG
χ (A,A) = 0 for all singular symmetric matrices A ∈Mn(C);

(v) CG
χ (Sσ,Sσ) = 0 for all σ ∈ Sn.

Proof. (ii)⇒ (iii), (ii)⇒ (iv), and (ii)⇒ (v) are clear. It suffices to prove the following cases.
(i) ⇒ (ii): For any symmetric matrix A ∈ Mn(C) we have by Theorem 2.6 that dG

χ (A) = χ(1) det(A) and so
CG
χ (x,A) = χ(1) det(xIn − A). Now the result follows by the Cayley-Hamilton Theorem.

(iii)⇒ (i), (iv)⇒ (i), and (v)⇒ (i): Let φ : Sn → C be a function given by

φ(σ) = χ̂(σ) − χ(1)ε(σ).

We show that∑
τ∈[σ]

φ(τ) = 0,

for any σ ∈ Sn, which is clearly true for σ = 1. By way of contradiction, choose 1 , σ ∈ Sn so that l(σ) is
minimal and c(σ) is maximal and∑

τ∈[σ]

φ(τ) , 0.
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Thus if τ ∈ Sn and either l(τ) < l(σ) or l(τ) = l(σ) and c(τ) > c(σ), then∑
α∈[τ]

φ(α) = 0.

Similar to the proof of Theorem 2.6 one can deduce for the symmetric matrix λIn + Sσ that

dG
χ (λIn + Sσ) − χ(1) det(λIn + Sσ) = (λ + 1)n−l(σ)

∑
τ∈[σ]

φ(τ),

where λ ∈ C. In particular,

CG
χ (x, λIn + Sσ) − χ(1) det(xIn − (λIn + Sσ)) = (−1)n(λ − x + 1)n−l(σ)

∑
τ∈[σ]

φ(τ). (⋆)

Notice that if CG
χ (A,A) = 0 for a matrix A, then each eigenvalue of A is a root of CG

χ (x,A). Now if σ ∈ Tn−{1},
then Sσ has −1 as an eigenvalue and if σ ∈ Sn − Tn, then Sσ has 2 as an eigenvalue. Hence in either case Sσ
has an eigenvalue λ0 , 1.
Assuming (v) and putting x = λ0 and λ = 0 in relation (⋆) will result in

0 = CG
χ (λ0,Sσ) − χ(1) det(λ0In − Sσ) = (−1)n(1 − λ0)n−l(σ)

∑
τ∈[σ]

φ(τ),

a contradiction. This completes the proof of (v)⇒ (i).
Assuming (iv) and notting that λ0In − Sσ is singular, one can get by putting x = 0 and λ = −λ0 in relation
(⋆) that

0 = CG
χ (0,−λ0In + Sσ) − χ(1) det(λ0In − Sσ) = (−1)n(1 − λ0)n−l(σ)

∑
τ∈[σ]

φ(τ),

again a contradiction. This completes the proof of (iv)⇒ (i).
Finally assuming (iii) and choosing λ1 ∈ C so that λ1In + Sσ is nonsingular, one can see that λ0 + λ1 is an
eigenvalue of λ1In + Sσ. Now putting x = λ0 + λ1 and λ = λ1 in relation (⋆) will result in

0 = CG
χ (λ0 + λ1, λ1In + Sσ) − χ(1) det((λ0 + λ1)In − (λ1In + Sσ))

= (−1)n(1 − λ0)n−l(σ)
∑
τ∈[σ]

φ(τ),

again a contradiction. This completes the proof of (iii) ⇒ (i) and therefore the proof of the theorem is
completed.
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