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Sharp partial order of core-nilpotent endomorphisms
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Abstract. The aim of this work is to offer a definition of the sharp partial order for the set of Core-Nilpotent
endomorphisms. The main properties of this partial order are studied, generalizing the notion of sharp
partial order of finite square matrices. In order to do so, the structure of the set of {1}-commuting inverses
of a Core-Nilpotent endomorphism is described, and in particular, the structure of the set of {1}-commuting
inverses of finite square matrices with entries in an arbitrary field is determined and an algorithm for its
computation is provided.

1. Introduction

As it was stated in [6] by R.E. Hartwig, in a semigroup S there are two types of relations that can be
defined on the set of idempotent elements of S. These relations are the standard partial ordening relation
[1], for e, f ∈ S,

e ≤ f ⇐⇒ e2 = e = e f = f e

and the equivalence relation of Kaplansky [7]

e ∼ f ⇐⇒ e = p̂p, f = pp̂

for some p̂ ∈ eS f , p ∈ f Se where an element a in eS f denotes a = es f for some s ∈ S. In [6], a natural problem
related with this elements is studied, which is how to extend these relations to a larger class of elements
mantaining their respective character. The present work aims to follow this philosophy.
Developments in Matrix Orders have been growing alongside advances in Matrix Generalized Inverses,
with numerous applications during the past years. See for instance, [4], with the use of the Drazin inverse
to study the theory of finite Markov chains, linear programming and computational applications. There are
also several approaches to this problems, using purely linnear algebra techniques, (such us [9] and [17]), or
working in the functional analysis frame, (see for example [3]).
Let us consider an arbitrary (n × n)−matrix A with entries in a general field k. In [9, Theorem 2.2.21], it has
been proven that A can be written as the sum of two matrices A1 and A2 such that

• rk(A1 ) = rk(A2
1
) (where rk denotes the rank of the matrix);
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• A2 is nilpotent;

• A1 A2 = A2 A1 = 0.

The matrices A1 and A2 are called the core and nilpotent parts of A, respectively, and this decomposition
is unique. This ideas where generalized to arbitrary vector spaces (in general, of infinite dimension, see
[12],[13] for details), leading to a new theory of Core-Nilpotent endomorphisms. The main idea in this
notes is to generalize the theory presented in [9] to Core-Nilpotent endomorphisms.
The paper is organized as follows. In Section 2, basic definitions and results of the theory of finite potent
endomorphisms, Core-Nilpotent endomorphisms and Generalized Inverses are summarized recalling the
statements of [12] and [13]. Section 3 deals with the characterization of the set of {1}−commuting inverses
of a Core-Nilpotent endomorphism on an arbitrary vector space, containing an algorithm for computing
the set of {1}−commuting inverses of a square matrix and an example with the explicit application of
this algorithm. Section 4 is devoted to prove that the Sharp Order defines a partial order in the set of
Core-Nilpotent endomorphisms, including several other interesting properties as the construction of the
group inverse of a Core-Nilpotent endomorphism using two {1}−commuting inverses and an exhaustive
study of the structure of the subspaces induced by the AST decomposition (which will be introduced later)
for CN-endomorphisms of the endomorphisms involved in the order relation. Also, several examples are
added showing that the generalization is not trivial.
As far as the author knows, the study of Matrix Orders on infinite vector spaces (using linear algebra
techniques) is not present in the literature. This new approach should lead to a new way of understanding
the theory as well as bringing out new useful properties. Finally, the author wants to point out that this
generalizations are compatible with the theory exposed in [9] which has been used as a model for studying
the topic.

2. Preliminaries

This section is added for the sake of completeness and to fix notation.

2.1. Finite Potent Endomorphisms

Let k be an arbitrary field and let V be a k-vector space. Let us now consider an endomorphism f of V.
We say that f is “finite potent” if f nV is finite dimensional for some n. This definition was introduced by J.
Tate in [15] as a basic tool for his elegant definition of Abstract Residues.

In 2007, M. Argerami, F. Szechtman and R. Tifenbach showed in [2] that an endomorphism f is finite
potent if and only if V admits a f -invariant decomposition V = U f ⊕W f such that f|U f

is nilpotent, W f is

finite dimensional and f|W f
: W f

∼
−→W f is an isomorphism.

Indeed, if k[x] is the algebra of polynomials in the variable x with coefficients in k, we may view V as an
k[x]-module via f , and the explicit definition of the above f -invariant subspaces of V is:

• U f = {v ∈ V such that f m(v) = 0 for some m};

• W f =

{
v ∈ V such that p( f )(v) = 0 for some p(x) ∈ k[x]
relatively prime to x

}
.

If the annihilator polynomial of f is xm
· p(x) with (x, p(x)) = 1, then U f = Ker f m and W f = Ker p( f ).

Hence, this decomposition is unique. We shall call this decomposition the f -invariant AST-decomposition
of V.

Moreover, we shall call “index of f ”, i( f ), to the nilpotent order of f|U f
. One has that i( f ) = 0 if and only

if V is a finite-dimensional vector space and f is an automorphism.
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2.2. Jordan Basis of a nilpotent endomorphism

Let V be a vector space over an arbitrary field k and let 1 ∈ Endk(V) be a nilpotent endomorphism. If n
is the nilpotency index of 1, according to the statements of [11], setting U1i = Ker 1i/[Ker 1i−1 + f (Ker 1i+1)]
with i ∈ {1, 2, . . . ,n}, µi(V, 1) = dimkU1i and Sµi(V,1) a set such that #Sµi(V,1) = µi(V, 1) with Sµi(V,1) ∩ Sµ j(V,1) = ∅
for all i , j, one has that there exists a family of vectors {vsi } that determines a Jordan basis of 1:

B =
⋃

si ∈ Sµi(V,1)

1 ≤ i ≤ n

{vsi , 1(vsi ), . . . , 1
i−1(vsi )} . (2.1)

Moreover, if we write H1si
= ⟨vsi , 1(vsi ), . . . , 1

i−1(vsi )⟩, the basis B induces a decomposition

V =
⊕

si ∈ Sµi(V,1)

1 ≤ i ≤ n

H1si
. (2.2)

2.3. Core-Nilpotent Endomorphisms

Let us consider a square matrix A with entries in a general field k, the index of A, i(A) ≥ 0, is the smallest
integer such that rk(Ai(A)) = rk(Ai(A)+1). In [9, Theorem 2.2.21], it has been proven that A can be written as
the sum of two matrices A1 and A2 such that

• rk(A1 ) = rk(A2
1
) i.e. i(A1 ) ≤ 1;

• A2 is nilpotent;

• A1 A2 = A2 A1 = 0.

The matrices A1 and A2 are called the core and nilpotent parts of A, respectively, and this decomposition is
unique.
If k is a field, given a finite-dimensional k-vector space E we can define the index of an endomorphism
f ∈ Endk(V), i( f ), as the smallest integer such that Im f i( f ) = Im f i( f )+1. Bearing in mind the well known
relationship between endomorphisms and matrices one can easily translate the previous theory to endo-
morphisms on a finite dimensional k-vector space.
Let us now consider an arbitrary k-vector space V (in general, infinite dimensional). For a finite potent
endomorphism f ∈ Endk(V) the index is the smallest integer such that dimk Im f i( f ) = dimk Im f i( f )+1 < ∞,
and this coincides with the nilpotency order of f|U f

where V = W f ⊕U f is the AST-decomposition induced
by f . In [13], the author showed that every finite potent endomorphism admits a unique core-nilpotent
decomposition. Moreover, in [12], the general theory of core-nilpotent endomorphisms of arbitrary vector
spaces was developed.

Definition 2.1. We say that an endomorphism f ∈ Endk(V) is core-nilpotent (CN-endomorphism) when there exists
two endomorphisms f1 , f2 ∈ Endk(V) such that

• f = f1 + f2 ;

• i( f1 ) ≤ 1;

• f2 is nilpotent;

• f1 ◦ f2 = f2 ◦ f1 = 0.
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Basic examples of CN-endomorphisms are all endomorphisms of a finite-dimensional vector space,
finite potent endomorphisms, automorphisms and nilpotent endomorphisms of infinite-dimensional vector
spaces. Several results were given, as the characterization of CN-endomorphisms:

Theorem 2.2. If f ∈ Endk(V), then the following conditions are equivalent:

1. f is a CN-endomorphism.
2. Ker f n = Ker f n+1 and Im f n = Im f n+1 for a certain n ∈N.
3. V = Ker f n

⊕ Im f n for a certain n ∈N.
4. There exists a unique decomposition V = W f ⊕ U f , where W f and U f are f -invariant k-subspaces of V,

f|W f
∈ Autk(W f ) and f|U f

is nilpotent.

Obtaining as a corollary that the core-nilpotent decomposition of a CN-endomorphism is unique. From
this characterization, several properties of Core-Nilpotent endomorphisms were studied, in particular,
bearing in mind the following definition:

Definition 2.3. An endomorphism f ∈ Endk(V) has index 0 when f ∈ Autk(V). Given n ∈ N, an endomorphism
f ∈ Endk(V) has index n when Ker f n , Ker f n−1 or Im f n , Im f n−1, Ker f n = Ker f n+1 and Im f n = Im f n+1.
The index of an endomorphism f is denoted i( f ).

It was shown that:

Lemma 2.4. The index of an endomorphism f ∈ Endk(V) exists if and only if f is a Core-Nilpotent endomorphism.

2.4. Generalized Inverses.
Let k be a ground field and V an arbitrary k-vector space (in general, infinite-dimensional).

Definition 2.5. An endomorphism f− ∈ Endk(V) is a {1}-inverse of f ∈ Endk(V) when

f ◦ f− ◦ f = f .

Definition 2.6. An endomorphism f− ∈ Endk(V) is a {2}-inverse of f ∈ Endk(V) when f is a {1}-inverse of f−, that
is:

f− ◦ f ◦ f− = f− .

Definition 2.7. An endomorphism f− ∈ Endk(V) is a reflexive generalized inverse of f ∈ Endk(V) when it is a
{1}-inverse and a {2}-inverse of f simultaneously.

Definition 2.8. An endomorphism f ∈ Endk(V) has a Drazin inverse when there exists f D
∈ Endk(V) such that :

1. f m+1
◦ f D = f m;

2. f D
◦ f ◦ f D = f D;

3. f D
◦ f = f ◦ f D;

for a certain non-negative integer m.

Definition 2.9. An endomorphism f #
∈ Endk(V) is a group inverse of f when it verifies that:

1. f ◦ f #
◦ f = f ;

2. f #
◦ f ◦ f # = f #;

3. f ◦ f # = f #
◦ f .

This is, f # is a group inverse when it is a commuting reflexive generalized inverse of f .

In [12], the author showed that, with the previous notation, an endomorphism f ∈ Endk(V) has a Drazin
inverse if and only if f is a CN-endomorphism (with m = i( f )). Also, that the group inverse of f ∈ Endk(V)
exists if and only if f is a CN-endomorphism with i( f ) ≤ 1 and f # = f D. Thus, showing that when the group
inverse exists, then it is unique.
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3. Study of the
{
1
}
-commuting inverses of Core-Nilpotent endomorphisms.

The aim of this section is to characterize the set of {1}−commuting inverses of a Core-Nilpotent endo-
morphism, this is, to state explicitely the conditions required for them to exist and their expression.

Let V be a k-vector space and let f ∈ Endk(V) be an arbitrary endomorphism.

Definition 3.1. An endomorphism 1
−
∈ Endk(V) is a

{
1
}
-conmmuting inverse of f when

f ◦ 1
−
◦ f = f

f ◦ 1
−
= 1

−
◦ f .

One can briefly describe this {1}-commuting inverses as {1}-inverses of f that conmmute with f .

We are going to characterize all the endomorphisms for which there exists a {1}-comuting inverse.

Lemma 3.2. Given an endomorphism f ∈ Endk(V) such that V = Ker f n
⊕ Im f n for a certain n ∈ N, then

f
| Im f n ∈ Autk(Im f n).

Proof. Given v ∈ Im f n with v = f n(v′) for v′ ∈ V, then f (v) = f ( f n(v′)) = f n( f (v′)) ∈ Im f n, so the k-subspace
Im f n is f invariant. Therefore, we can consider the linear map

f
| Im f n : Im f n

→ Im f n.

Since Im f n
∩ Ker f n = {0} , then Im f n

∩ Ker f = {0} and Ker( f
| Im f n ) = {0} , deducing that f

| Im f n is injective. If
ṽ ∈ Im f n with ṽ = f n(v),writing v = v1 + f n(v2) with v1 ∈ Ker f n and f n(v2) ∈ Im f n, one has that

ṽ = f n(v) = f n( f n(v2))

which shows that f
| Im f n is surjective. Hence, f

| Im f n ∈ Autk(Im f n) as we wanted to see.

Theorem 3.3. Given f ∈ Endk(V). Then 1
−

exists if and only if V = Ker f ⊕ Im f .
In this case, both Ker f and Im f are (1

−
)-invariant and 1

−
is characterized by

1
−
(v) =

{
( f| Im f )−1(v) i f v ∈ Im f

ṽ i f v ∈ Ker f

with ṽ ∈ Ker f .

Proof. Firstly, let us assume that 1
−

exists. Given v ∈ V then

f ( f (1
−
(v)) − v) = 0 =⇒ f (1

−
(v)) − v ∈ Ker f =⇒ f (1

−
(v)) = v + ṽ

with ṽ ∈ Ker f , so we have that
V = Ker f + Im f .

Lets now consider v ∈ Ker f ∩ Im f . As v ∈ Im f ,writing v = f (ū) we have

v = f (ū) = f (1
−
( f (ū))) = 1

−
( f (v)) = 1

−
(0) = 0.

Therefore, it is
V = Ker f ⊕ Im f .

Lets check this decomposition is (1
−
)-invariant.

If u ∈ Ker f then
f (1

−
(u)) = 1

−
( f (u)) = 1

−
(0) = 0.
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If w ∈ Im f we can write w = f (w′) with w′ ∈ V and then

1
−
(w) = 1

−
( f (w′)) = f (1

−
(w′)) ∈ Im f .

Let us now determine the explicit expression of 1
−
.

Given v ∈ Im f , since f 2(1
−
(v)) = f (v) we have that

f (1
−
(v)) − v ∈ Ker f =⇒ f (1

−
(v)) = v + ṽ =⇒ 1

−
( f (v)) = v + ṽ

with ṽ ∈ Ker f , but it must be ṽ = 0 because (1
−
)| Im f ⊆ Im f . So, using the previous lemma for n = 1, it is

1
−
(v) = ( f| Im f )−1(v)

getting the expression we looked for.
If v ∈ Ker f

f 2(1
−
(v)) = 1

−
( f 2(v)) = 1(0) = 0.

Therefore we have that 1
−
(v) ∈ Ker f 2. Lets now see that Ker f 2 = Ker f .

The inclusion Ker f ⊆ Ker f 2 is inmediate for all linear maps. Given v ∈ Ker f 2, due to Definition 3.1, we
have that

f (v) = f (1
−
( f (v)) = 1

−
( f 2(v)) = 1

−
(0) = 0.

Then v ∈ Ker f proving that Ker f 2
⊆ Ker f .

Conversely, let us prove the existence of that 1
−

from the assumptions made. According to Definition 3.1
we shall show the existence of some 1

−
∈ Endk(V) satisfying

f ◦ 1
−
◦ f = f

f ◦ 1
−
= 1

−
◦ f .

Assuming V = Ker f ⊕ Im f , using the previous lemma for n = 1,we can define 1̄ ∈ Endk(V) such that

1̄(v) =
{

( f| Im f )−1(v) i f v ∈ Im f
ṽ i f v ∈ Ker f

with ṽ ∈ Ker f . It is clear that with this definition, both Ker f and Im f are 1̄−invariant.
If v ∈ Im f then

• f (1̄( f (v)) = f (( f| Im f )−1( f (v)) = f (v);

• f (1̄(v)) = f (( f| Im f )−1(v)) = v and 1̄( f (v)) = ( f| Im f )−1( f (v)) = v.

If v ∈ Ker f then, bearing in mind that Ker f is 1̄−invariant we get f (1
−
(v)) = 0. The rest of the possible

cases are trivial.
Thus taking 1̄ = 1

−
the claim is proved.

Definition 3.4. We will say that an endomorphism f ∈ Endk(V) is admissible for a g-inverse when there exists a{
1
}
-commuting inverse of f in the sense of Theorem 3.3. This can be stated analogously by saying that f ∈ Endk(V)

is admissible for a
{
1
}
-inverse when there exists a decomposition V = Ker f ⊕ Im f .

Corollary 3.5. An arbitrary endomorphism f ∈ Endk(V) admits a
{
1
}
−commuting inverse if and only if f is a

CN-endomorphism of i( f ) ≤ 1.

Corollary 3.6. If we consider the subset

X−
f p

(V) =
{
finite potent endomorphisms of index ≤ 1

}
⊂ Endk(V)

then
{
1
}
-commuting inverses exist for every element of X−

f p
(V).



D. A. Alonso / Filomat 37:10 (2023), 3167–3181 3173

Corollary 3.7. Let f , 1
−
∈ Endk(V), where f is a Core Nilpotent endomorphism with i( f ) ≤ 1 and 1

−
is a

{
1
}
-

commuting inverse of f . If V =W f ⊕U f = Im f ⊕ Ker f is the AST-decomposition induced by f on V then:

1. f D
◦ 1

−
= 1

−
◦ f D.

Moreover, if 1
−

is a Core-Nilpotent endomorphism then f D
◦ (1

−
)D = (1

−
)D
◦ f D. Where f D and (1

−
)D stand

for the Drazin inverse of f and 1
−

respectively.
2. If f = f1 + f2 is the core-nilpotent decomposition of f then:

f1 ◦ 1− = 1− ◦ f1

f2 ◦ 1− = 1− ◦ f2 .

Proof. It is obtained directly from the fact that

f D(v) =
{

( f|W f )
−1(v) i f v ∈W f

0 i f v ∈ U f

and the statement of Theorem 3.3.

Remark 3.8. I wish to point out that Theorem 3.3 generalizes the notion of
{
1
}
-commuting inverse of a matrix that

is presented in the works of Sujit Kumar Mitra, P. Bhimasankaram and Saroj B. Malik in [9] which is used to study
the sharp order.

3.1. Algorithm for the computation of
{
1
}
-commuting inverses of a square matrix

The goal of this section is to apply the previous results for the characterization of the set A(C,−) of
{
1
}
-

commuting inverses of a finite square matrix A with entries in an arbitrary field k and to offer an algorithm
for the explicit computation of A(C,−) .

Let us consider a finite potent endomorphism f ∈ Endk(V), and 1
−
∈ Endk(V) as a

{
1
}
-commuting inverse

of f . We know that the AST-decomposition induced by f can be written as

V =W f ⊕U f = Im f ⊕ Ker f .

We also know that i( f ) ≤ 1 and denoting

BV = BW f ∪ BU f = BIm f ∪ BKer f ,

using the notation introduced in Section 2.2.2, a basis induced from the AST-decomposition can be written
as

BIm f = {w1, . . . ,wr},

being a basis of Im f where r = dimk Im f , and

BKer f =
⋃

s1 ∈ Sµ1(Ker f , f )

{v1 } ,

being a basis of Ker f in our conditions.
Hence, if we denote by X f (1− ) the set of all

{
1
}
- commuting inverses of a finite potent endomorphism

f ∈ Endk(V), from the previous characterization of 1
−

we obtain the existence of a bijection

X f (1− ) ≃
∏

#Sµ1(Ker f , f )

Ker f . (3.1)
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Proof. Using Theorem 3.3 we have the map

X f (1− ) −→
∏

#Sµ1(Ker f , f )

Ker f

1
−
7−→ (1

−
(vs1 ))s1∈Sµ1 (U f , f )

which is clearly a bijection.

Let A ∈Matm×m(k) be now an square matrix with entries in an arbitrary field k. Bearing in mind (3.1) and
the previous discussion and denoting by N(A) the nullspace of matrix A, we can determine the structure of
A(C,−) from the following bijection :

A(C,−) ≃

∏
dimN(A)

N(A)[dimN(A)]
≃ k[dimN(A)]2

(3.2)

Proof. Bearing in mind the well-known relationship between finite square matrices and endomorphisms
of finite-dimensional vector spaces, the statement is immediately deduced from the relation mentioned in
(3.1).

Indeed, the explicit algorithm for computing A
−
∈ A(C,−) is the following :

1. Write A in its Jordan canonical form: A = PJP−1.

2. If J =
(
C 0
0 0

)
with C invertible, compute the inverse C−1.

3. Set J′ =
(
C−1 0

0 R

)
, with R arbitrary.

4. Finally, it is
A
−
= PJ′P−1.

Notice that the expression of A
−

depends on [dimN(A)]2 parametres.
Example 1. We shall now characterize the set of {1}-commuting inverses of the matrix

A =


1 −4 4 −16 −4 28
0 1 1 4 7 15
0 0 1 0 3 11
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ∈ Mat6×6(R) .

Since the Jordan canonical form of A is

A =


−1 2 3 0 0 0
0 1 0 4 0 0
0 0 −1 0 −3 5
0 0 0 −1 −1 −1
0 0 0 0 1 2
0 0 0 0 0 −1

 ·


1 4 2 0 0 0
0 1 −1 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ·

−1 2 −3 8 −1 −25
0 1 0 4 4 4
0 0 −1 0 −3 −11
0 0 0 −1 −1 −1
0 0 0 0 1 2
0 0 0 0 0 −1

 ,
We now set

J′ =


1 −4 −6 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 a b c
0 0 0 d e f
0 0 0 1 h i

 .
Applying the algorithm we obtain that A

−
is a {1}-commuting inverse of A if and only if

A
−
=


−1 2 3 0 0 0
0 1 0 4 0 0
0 0 −1 0 −3 5
0 0 0 −1 −1 −1
0 0 0 0 1 2
0 0 0 0 0 −1

 ·


1 −4 −6 0 0 0
0 1 1 0 0 0
0 0 1 0 0 0
0 0 0 a b c
0 0 0 d e f
0 0 0 1 h i

 ·

−1 2 −3 8 −1 −25
0 1 0 4 4 4
0 0 −1 0 −3 −11
0 0 0 −1 −1 −1
0 0 0 0 1 2
0 0 0 0 0 −1

 =
=


1 4 −8 16 −8 −72
0 1 −1 −4a+4 −4a+4b+1 −4a+8b−4c−7
0 0 1 3d−51 3d−51+5h−3e+3 3d+3 f−51+10h−6e+11−5i
0 0 0 a+d+1 a−b+d+1−h−e a−2b+c+d+ f+1−2h−2e+i
0 0 0 −d−21 −d−21+2h+e −d− f−21+4h+2e−2i
0 0 0 1 1−h 1−2h+i

 ,
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with a, b, c, d, e, f , 1, h, i ∈ R.
Bearing in mind that dim N(A) = 3, it is known from (3.2) that A(C,−) ≃ R9, which is coherent with the

computations made in this example.

4. Sharp partial order of Core-Nilpotent endomorphisms.

The main goal of this section is to generalize the theory presented in [9, Chapter 4], about the sharp
order studied for matrices, to Core-Nilpotent endomorphisms.
Let us begin by introducing the sharp order for matrices.
Recall from [9, Chapter 2] that a matrix G is said to be a conmmuting g-inverse of a matrix A if

• AGA = A

• AG = GA

Moreover, such a commuting g-inverse for A exists if and only if A is of index ≤ 1. Let us denote I1,n the set
of all (n × n) matrices of index ≤ 1.

Definition 4.1. Let A,B ∈ I1,n . A is said to be below B under the sharp order if there exist commuting g-inverses G1

and G2 of A such that AG1 = BG1 and G2 A = G2 B.
When A is below B under the sharp order, we write A <# B.

Let V be an arbitrary k-vector space.

Definition 4.2. Let us consider two Core-Nilpotent endomorphisms f , h ∈ Endk(V) with i( f ) = i(h) ≤ 1, both
admissible for g-commuting inverses. We say that f is under h for the sharp order if and only if there exist Core-
Nilpotent {1}−commuting inverses 11 and 12 of f such that f ◦ 11 = h ◦ 11 and 12 ◦ f = 12 ◦ h.
When f is below h under the sharp order, we write f <# h.

Lemma 4.3. If 11 , 12 are g-commuting inverses of f , then

11 ◦ f ◦ 12 = f #

where f # denotes the group inverse of f (Definition 2.9).

Proof. By the uniqueness of the group inverse, we show that 11 ◦ f ◦ 12 is a reflexive commuting {1}−inverse
of f in the sense of Definition 2.7. This is obvious since

f ◦ (11 ◦ f ◦ 12 ) ◦ f = ( f ◦ 11 ◦ f ) ◦ 12 ◦ f = f ◦ 12 ◦ f = f ;

also

(11 ◦ f ◦ 12 ) ◦ f ◦ (11 ◦ f ◦ 12 ) = 11 ◦ ( f ◦ 12 ◦ f ) ◦ 11 ◦ f ◦ 12

= 11 ◦ ( f ◦ 11 ◦ f ) ◦ 12 = 11 ◦ f ◦ 12 ;

and finally, the conmmuting part is deduced from the fact that both 11 , 12 are
{
1
}
−commuting inverses

of f so
(11 ◦ f ◦ 12 ) ◦ f = f ◦ (11 ◦ f ◦ 12 )

and we have that 11 ◦ f ◦ 12 is a generalized conmmuting inverse of f as we wanted to see.

Corollary 4.4. In particular, one has that 11 ◦ f ◦ 12 is a Core-Nilpotent endomorphism.

Proposition 4.5. Let f , 1 ∈ Endk(V) be two Core-Nilpotent endomorphisms . We have that f <# h if and only if
f ◦ f # = h ◦ f # and f #

◦ f = f #
◦ h, with f # being the group inverse of f .
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Proof. Let 11 and 12 be commuting g-inverses of f such that f ◦ 11 = h ◦ 11 and 12 ◦ f = 12 ◦ h. From the
previous lemma we know that 11 ◦ f ◦ 12 = f #. Therefore, we have

f ◦ f # = f ◦ 11 ◦ f ◦ 12 = h ◦ 11 ◦ f ◦ 12 = h ◦ f #

and
f #
◦ f = 11 ◦ f ◦ 12 ◦ f = 11 ◦ f ◦ 12 ◦ h = f #

◦ h.

Conversely, as f # is a commuting g-inverse of f it is trivial.

Corollary 4.6. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1, then f <# h
if and only if f 2 = f ◦ h = h ◦ f .

Proof. Let us suppose that f <# h.Using the previous theorem we have that f ◦ f # = h◦ f # and f #
◦ f = f #

◦h.
In fact, it is

f 2
◦ f # = f = f #

◦ f 2

and then
f 2 = f ◦ f #

◦ f 2 = h ◦ f #
◦ f 2 = h ◦ f .

Analogoulsy, one can prove that f 2 = f ◦ h.
Conversely, it follows directly from

( f #)2
◦ f = f # = f ◦ ( f #)2,

that
f ◦ f # = f 2

◦ ( f #)2 = h ◦ f ◦ ( f #)2 = h ◦ f #

and
f #
◦ f = ( f #)2

◦ f 2 = ( f #)2
◦ f ◦ h = f #

◦ h

and hence, the statement is proved.

Corollary 4.7. Note that, if f <# h, then Im(h − f ) ∈ Ker f and Im f ∈ Ker(h − f ).

The objective now is to give the explicit relations in the k-subspaces of V of the decomposition induced
by f and h when f <# h.

Proposition 4.8. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1 such that
f <# h, then

f |Im f = h|Im f .

Proof. As f <# h then we have f ◦ 1
−
= h ◦ 1

−
for some Core-Nilpotent

{
1
}
-commuting inverse of f . Given

v ∈ Im f using Theorem 3.3 it is h(1
−
(v)) = f (1

−
(v)) = v and therefore h(( f| Im f )−1(v)) = v and h = f when

restricting to Im f as we wanted to see.

Lemma 4.9. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1 such that
f <# h, then Ker f and Im f are both invariant under h.

Proof. Let us consider v ∈ Ker f , as f <# h then we have 1
−
(h(v)) = 1

−
( f (v)) = 0, for some Core-Nilpotent{

1
}
-commuting inverse of f . This is 1

−
(h(v)) = 0 and therefore h(v) ∈ Ker 1

−
⊆ Ker f and the first statement

is proved.
Let us now consider v ∈ Im f , this is v = f (v′) for some v′ ∈ V. As f <# h, using Corollary 4.6 we have that

h(v) = h( f (v′)) = f (h(v′)) ∈ Im f

as we wanted to see.
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Lemma 4.10. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1 such that
f <# h, then

Ker h ⊆ Ker f .

Proof. Let us consider v ∈ Ker h. Then, by Corollary 4.6 it is

f 2(v) = h( f (v)) = f (h(v)) = f (0) = 0.

This shows that Ker h ⊆ Ker f 2 = Ker f , as f is a Core-Nilpotent endomorphism of i( f ) ≤ 1.

Lemma 4.11. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1 such that
f <# h, then

Im f ⊆ Im h.

Proof. Let us consider u ∈ Im f with u = f (u′) for some u′ ∈ V.We can write u′ = u′
1
+ u′

2
with u′

1
∈ Ker h and

u′
2
∈ Im h according to the decomposition of V induced by h.Hence, using Corollary 4.6 and Lemma 4.10 it

is
u = f (u′) = f (u′

1
) + f (u′

2
) = f (h(ū)) = h( f (ū)) ∈ Im h

with u′
2
= h(ū) ∈ Im h, as we wanted to see.

Lemma 4.12. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1 such that
f <# h, then

Im h ∩ Ker f

is invariant under h.

Proof. For the Im h there is nothing to say and Ker f is also invariant under h according to Lemma 4.9.

Proposition 4.13. Let us consider two Core-Nilpotent endomorphisms f , h ∈ Endk(V) with i( f ) = i(h) ≤ 1 such
that f <# h, then

Ker f = Ker h ⊕ (Im h ∩ Ker f ).

Proof. We have to prove that Ker f = Ker h+(Im h∩Ker f ) and that {0} = Ker h∩(Im h∩Ker f ). Let us consider
v ∈ Ker f and let us express this v as v = v1 + v2 with v1 ∈ Ker h and v2 ∈ Im h using the decomposition of V
induced by h. Then, we can write v2 = v − v1 ∈ Ker f using Lemma 4.10 (v2 ∈ Ker h ⊆ Ker f ), which shows
that v2 ∈ Ker f ∩ Im h. As v1 ∈ Ker h and v2 ∈ Ker f ∩ Im h we conclude that Ker f = Ker h + (Im h ∩ Ker f ).
The other claim is trivial as we already know that Ker h∩ Im h = {0}, so Ker f = Ker h⊕ (Im h∩Ker f ) as we
wanted to prove.

Proposition 4.14. Let us consider two Core-Nilpotent endomorphisms f , h ∈ Endk(V) with i( f ) = i(h) ≤ 1 such
that f <# h, then

Im h = Im f ⊕ (Im h ∩ Ker f ).

Proof. Again, we shall prove that Im h = Im f + (Im h ∩ Ker f ) and that {0} = Im f ∩ (Im h ∩ Ker f ). Let us
consider v ∈ Im h and let us express this v as v = v1+v2 with v1 ∈ Ker f and v2 ∈ Im f ,using the decomposition
of V induced by f . Therefore, it is v1 = v−v2 ∈ Im h according to Lemma 4.11 (v2 ∈ Im f ⊆ Im h). As v2 ∈ Im f
and v1 ∈ Ker f ∩ Im h,we have Im h = Im f + (Im h∩Ker f ). Again, the second claim is trivial as we already
know that Ker f ∩ Im f = {0}. Accordingly, we have that

Im f ∩ (Ker f ∩ Im h) ⊆ Ker f ∩ Im f = {0}.

Lemma 4.15. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1 such that
f <# h, then

h : Im h ∩ Ker f −→ Im h ∩ Ker f

is an isomorphism of k-vector subspaces.
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Proof. Let us consider v ∈ (Im h ∩ Ker f ) ∩ Ker h ⊆ Im h ∩ Ker h = {0} then v = 0 and injectivity is proved.
Now, let us consider ṽ ∈ Im h ∩ Ker f . As h| Im h ∈ Autk(Im h), we know that there exists a unique ṽ′ ∈ Im h
so that h(ṽ′) = ṽ and f (ṽ) = 0. Hence, it is f (h(ṽ′)) = 0, this is h( f (ṽ′)) = 0 so, using Lemma 4.11, we get that
f (ṽ′) ∈ Ker h ∩ Im h = {0} and the claim is deduced.

After this discussion, considering f <# h with f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with
i( f ) = i(h) ≤ 1, we are able to explicitely characterize the {1}−commuting inverses of h in terms of the
decomposition of V induced by f . This will enable us to prove one of the main results of the paper, which
is to give the relation between the {1}−commuting inverses of the endomorphisms that appear in the order.
Let us consider f <# h with f , h ∈ Endk(V) two Core-Nilpotent endomorphisms with i( f ) = i(h) ≤ 1, and let
us denote S = Im h ∩ Ker f . Firstly, according to Theorem 3.3 :

1h− (v) =
{

(h|Im h )−1(v) if v ∈ Im h
ṽ if v ∈ Ker h

with ṽ ∈ Ker h. Then, if v ∈ Im f ⊆ Im h (Lemma 4.11), we know that f−1(v) = h−1(v) ∈ Im f by Lemma 4.8
and using that f|Im f ∈ Autk(Im f ). Finally, using the explicit decomposition of Im h (Proposition 4.14) and the
statement of Lema 4.15 we get :

1h− (v) =


f−1(v) if v ∈ Im f

ṽ′ if v ∈ S ∈ Ker f
ṽ if v ∈ Ker h ⊆ Ker f

with ṽ′ ∈ S ⊆ Ker f and ṽ ∈ Ker h ⊆ Ker f .
Remembering Theorem 3.3, one has inmediately the following

Corollary 4.16. If f <# h, then Xh(1
−
) ⊆ X f (1− ).

Corollary 4.17. If f <# h, then h#
∈ X f (1− ).

Theorem 4.18. The relation “<#” (Definition 4.2) defines a partial order in the set of Core-Nilpotent endomorphisms
of index ≤ 1.

Proof. Reflexivity holds trivially. In order to prove anti-symmetry let us consider two Core-Nilpotent
endomorphisms f , h ∈ Endk(V) such that f <# h and h<# f . Then, according to Corollary 4.16, it is Xh(1

−
) =

X f (1− ) and there exists 1
−
∈ Xh(1

−
) = X f (1− ) satisfying that

f = f ◦ 1
−
◦ f = h ◦ 1

−
◦ f = h ◦ 1

−
◦ h = h

as we wanted to see.
Let us now fix three Core-Nilpotent endomorphisms f , h, t ∈ Endk(V) such that f <# h and h<# t. Therefore,
we can write f ◦ 1 f = h ◦ 1 f and h ◦ 1h = t ◦ 1h . We have to construct {1}−commuting inverses of f such
that f ◦ 1 = t ◦ 1 and 1′ ◦ f = 1′ ◦ t. According to Lemma 4.3, 1h ◦ f ◦ 1 f is, in particular, a Core-Nilpotent
endomorphism and a {1}− commuting inverse of f , bearing in mind that Xh(1

−
) ⊆ X f (1− ) as f <# h. Using

that h <# t, the definition of {1}−commuting inverse and Corollary 4.6 we get the chain of equalities:

t ◦ 1h ◦ f ◦ 1 f = h ◦ 1h ◦ f ◦ 1 f = 1h ◦ h ◦ f ◦ 1 f = 1h ◦ f ◦ h ◦ 1 f = f ◦ 1h ◦ h ◦ 1 f .

Finally, as f <# h it is
f ◦ 1h ◦ h ◦ 1 f = f ◦ 1h ◦ f ◦ 1 f .

So, taking 1 = 1h ◦ f ◦ 1 f we have as desired. For the named 1′ an analogous reasoning shows that
1′ = 1 f ◦ f ◦ 1h works and we conclude.

We give now a series of equivalences that come from the previous study of the Sharp Order, similar to
the ones in [9, Theorem 4.2.12.].
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Definition 4.19. A Core-Nilpotent endomorphism f : V → V is a projector when f 2 = f .

Theorem 4.20. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphisms such that f <# h, then the
following statements are equivalent :

1. f <# h.
2. f 2 = f ◦ h = h ◦ f or equivalently f ◦ (h − f ) = (h − f ) ◦ f = 0.
3. There exists a projector P such that f = P ◦ h = h ◦ P.
4. f #

◦ f = f #
◦ h and (h − f ) ◦ f = 0.

5. f ◦ f # = h ◦ f # and f ◦ (h − f ) = 0.

Proof. 1)⇐⇒ 2) It is Corollary 4.6.
2) =⇒ 3) We have f = f ◦ f #

◦ f = f #
◦ f 2 = f #

◦ f ◦ h. Let us define P = f #
◦ f . Then, P is a projector since

f #
◦ f ◦ f #

◦ f = f #
◦ f and we get f = P ◦ h.Now, h ◦ P = h ◦ f #

◦ f = h ◦ f ◦ f # = f 2
◦ f # = f so we conclude.

3) =⇒ 4) Notice that f ◦ P = h ◦ P2 = h ◦ P = f and that P ◦ f = P2
◦ h = P ◦ h = f , using the definition

of projector and the relation given by (3). Since Im f # = Im f , we have that f # = f #
◦ P = P ◦ f #. Now,

f #
◦ f = f #

◦ P ◦ h = f #
◦ h. As h ◦ P = f ◦ P, then (h − f ) ◦ P = 0. Hence, (h − f ) ◦ f = (h − f ) ◦ P ◦ h = 0 and

the statement is proved.
4) =⇒ 2) Since (h − f ) ◦ f = 0 we get that h ◦ f = f 2. As we have f ◦ f # = f #

◦ h, multiplying by f 2 it is
f 2 = f 2

◦ f #
◦ f = f 2

◦ f #
◦ h. Now, from f 2 = f 2

◦ f #
◦ h we deduce that f 2 = f ◦ h as we wanted.

3) =⇒ 5) =⇒ 2) It is analogous to 3) =⇒ 4) =⇒ 2).

Lemma 4.21. Let us consider f , h ∈ Endk(V) two Core-Nilpotent endomorphism with i( f ) = i(h) ≤ 1. If f is a
projector, then f <# h if and only if h ∈ X f (1− ).

Proof. If f <# h, using Corollary 4.6 we get inmediately that f 2 = f ◦ h = h ◦ f , in particular f ◦ h = h ◦ f .
As f is a projector, then f ◦ h ◦ f = f 2 = f and the first claim is proved. Conversely, if h ∈ X f (1− ), again
by Corollary 4.6 we know that it is sufficient to prove that f 2 = f ◦ h = h ◦ f . The fact that f ◦ h = h ◦ f is
obvious since h ∈ X f (1− ). Finally, f 2 = f ◦ h ◦ f ◦ f = h ◦ f ◦ f ◦ f = h ◦ f ◦ f = h ◦ f using that f is a projector
and concluding the proof.

Remark 4.22. There are several parts along this chapter were, in order to prove a certain statement, it is used that
the set of {1}−commuting inverses of a CN-endomorphism of index ≤ 1 is not empty. This is easily deduced from the
following results.
Firstly, recall that from [12, Proposition 4.2], the Drazin inverse of a CN-endomorphism on an infinite-dimensional
k-vector space exists and it is unique. Also , according to [14, Theorem 3.5], we know that if f ∈ Endk(V) is a
CN-endomorphism with i( f ) ≤ 1, which is our case in this section, then f D = f # is the unique group inverse of f ,
where f D is its Drazin inverse. This enables us to know that, at least, the set X f (1− ) of {1}−commuting inverses of a
CN-endomorphism f , is not empty. In fact we can reformulate the theory for the sharp order as follows f <# h if and
only if f ◦ f D = h ◦ f D and f D

◦ f = f D
◦ h. This is, f <# h if and only if the Drazin inverse of f , f D, conmutes with

h.

Finally, let us include several examples that show that the generalization of the sharp order for matrices
to CN-endomorphisms is not trivial.
Firstly, let us consider a R-vector space of countable dimension

V = ⊕i∈N < vi > .

Then, the endomorphisms f , h : V → V defined as:

f (vi) =


v1 + 2v2 if i = 1

3v1 + 4v2 if i = 2
0 if i > 2

, h(vi) =


v1 + 2v2 if i = 1

3v1 + 4v2 if i = 2
λv3 if i = 3

0 if i = 2 j
λvi if i = 2 j + 1
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for all i ∈N, λ ∈ R with λ , 0 and j > 1, are CN-endomorphisms which verify that f <# h. This fact can be
easily seen using, for example, Corollary 4.6, because

f 2(vi ) = f (h(vi)) = h( f (vi)) =


7v1 + 10v2 if i = 1

15v1 + 22v2 if i = 2
0 if i > 2

for all i ∈N.
Let us now fix a Core-Nilpotent endomorphism f ∈ Endk(V). We shall compute explicitely all the Core-
Nilpotent endomorphisms h ∈ Endk(V) such that f <# h.
Considering an R−vector space of countable dimension

V = ⊕i∈N < vi >,

we define f : V → V as:

f (vi) =
{

vi if i is odd
0 if i is even .

It is easy to see that f is a Core-Nilpotent endomorphism of i( f ) ≤ 1. If we write V as

V =< v2i+1 >i∈N∪{0} ⊕ < v2i >i∈N .

Clearly, Im f =< v2i+1 >i∈N∪{0} and Ker f =< v2i >i∈N, and therefore

V = Ker f ⊕ Im f ,

so by Theorem 2.2 we deduce the previous statement. Notice that

f 2(vi) = f (vi)

for all i ∈ N, so f is a projector. Using Lema 4.21 and the characterization of the {1}−commuting inverses
of h in terms of the decomposition of V induced by f we conclude our task and the expression of all the h´s
above f is:

h(vi) =
{

( f|Im f )
−1(vi) = vi if i is odd∑
j λ ji v2 ji

if i is even ,

with
∑

j λ ji v2 ji
being finite sums with λ ji ∈ R and j ∈N.
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