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Abstract. In this paper, we present new generalized Cline’s formula for g-Drazin inverse in rings and
Banach algebras. These extend many known results, e.g., Chen and Abdolyousefi (Cline’s formula for
g-Drazin inverses in a ring, Filomat, 33(2019), 2249–2255), Miller and Zguitti (New extensions of Jacobson’s
lemma and Cline’s formula, Rend. Circ. Mat. Palermo, II. Ser., 67(2018), 105–114).

1. Introduction

Let R be an associative ring with an identity. The commutant of a ∈ R is defined by comm(a) = {x ∈
R | xa = ax}. The double commutant of a ∈ R is defined by comm2(a) = {x ∈ R | xy = yx for all y ∈ comm(a)}.
An element a ∈ R has g-Drazin inverse (i.e., generalized Drazin inverse) provided that there exists b ∈ R
such that b = bab, b ∈ comm2(a), a − a2b ∈ Rqnil. The preceding b is unique if exists, we denote it by ad.
Here, Rqnil = {a ∈ R | 1 + ax ∈ R−1 for every x ∈ comm(a)}. The g-Drazin invertibility in rings and Banach
algebras are very attractive. It has widespread applications in singular differential equations, Markov
chains, and iterative methods. Many authors have studied such problems from many different views, e.g.,
[4, 5, 7, 11, 13].

Let a, b ∈ R. If ab ∈ Rd, then ba ∈ Rd and (ba)d = b((ab)d)2a ( [9, Theorem 2.1]). This was known as Cline’s
formula for g-Drazin inverse. Recently, the Cline’s formula for g-Drazin inverse has been extensively
studied. Let a, b, c ∈ R with abc = aca. If ac ∈ Rd, then ba ∈ Rd ( [8, Theorem 2.3]). Let a, b, c ∈ R
with (ac)2a = acaba = abaca = a(ba)2. If ac ∈ Rd, then ba ∈ Rd ( [3, Theorem 2.2]). Let a, b, c, d ∈ R with
aca = dba, acd = dbd. If ac ∈ Rd, then ba ∈ Rd ( [10, Theorem 3.2]). Further extension of Cline’s formula for
generalized Drazin inverse could be found in [5, Theorem 2.2].

In this paper, we present new generalized Cline’s formula for generalized Drazin inverse in rings and
Banach algebras. These make the preceding mentioned results as our special cases. More simpler conditions
are obtained in a Banach algebra. We then apply our results to bounded linear operators and obtain the
common spectral properties.

Throughout the paper, all rings are associative with an identity and all Banach algebras are complex
with an identity. We use R−1,Rd and RD to denote the sets of all invertible, g-Drazin invertible and Drazin
invertible elements in a ring R, respectively. We use aπ to stand for the spectral idempotent 1 − aad of an
element a ∈ Ad.
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2. Generalized Cline’s Formula

As is well known, ab ∈ Rqnil if and only if ba ∈ Rqnil for any a, b ∈ R. This was extended by Lian and Zeng
(see [8, Lemma 2.2.]), Miller and Zguitti ( [10, Lemma 3.1]), Chen and Abdolyousefi ([5, Lemma 2.1]). We
generalize these elementary facts as follows.

Lemma 2.1. Let R be a ring, and let a, b, c, d ∈ R satisfying

dbaca = (db)2a;
acdbd = (db)2d.

If ac ∈ Rqnil, then bd ∈ Rqnil.

Proof. Let x ∈ comm(bd). Then we verify that

(dbdx5bdbac)ac = dbdx5b(dbaca)c
= dbdx5b(dbdba)c
= (dbdbd)x5bdbac
= (acdbd)x5bdbac
= ac(dbdx5bdbac)

This implies that dbdx5bdbac ∈ comm(ac), and then 1 − dbd(x5bdbacac) = (dbdx5bdbac)ac ∈ R−1. In view of
Jacobson’s Lemma, we have

1 − x5bdbdbdbdbd = 1 − x5bdb(dbdbd)bd
= 1 − x5bdbac(dbdbd)
= 1 − (x5bdbacac)dbd
∈ R−1.

Then
(1 − xbd)(1 + xbd + x2bdbd + x3bdbdbd + x4bdbdbdbd)

= (1 + xbd + x2bdbd + x3bdbdbd + x4bdbdbdbd)(1 − xbd)
= 1 − x5bdbdbdbdbd
∈ R−1,

therefore bd ∈ Rqnil, as asserted.

We come now to the main result of this paper.

Theorem 2.2. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2a = acdba = dbaca = (db)2a;
(ac)2d = acdbd = dbacd = (db)2d.

If ac ∈ Rd, then bd ∈ Rd and (bd)d = b((ac)d)2d.

Proof. Suppose that ac has g-Drazin inverse and (ac)d = h. Let e = bh2d and t ∈ comm(bd). We check that

ac(dtbdbdbac) = (acdbdbd)(tbac)
= (dbdbdbd)(tbac)
= dtbdb(dbdba)c
= (dtbdbdbac)ac.
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Thus dtbdbdbac ∈ comm(ac), and so (dtbdbdbac)h = h(dtbdbdbac).We compute that

et = (bh6(ac)4d)t
= bh6acacdbdbdt
= bh6(dbdbdbdbd)t
= bh6(dtbdbdbacd)
= b(dtbdbdbac)h6d
= tbdbdbdbach6d
= tb(ac)4h6d
= tbh2d
= te

Hence e ∈ comm2(bd).
Since bd ∈ comm(bd), by the preceding discussion, we prove that dbdbdbdbac ∈ comm(ac), and so

(db)5(ac) = (db)3(dbdba)c
= (db)4(ac)2

= (dbdbd)b(dbaca)c
= (acdbd)b(dbdba)c
= (ac)(db)4(ac)
= (ac)(db)5.

Hence, we have (db)5h = h(db)5. Also we get

e(bd)e = bh2d(bd)bh2d = b(h5acacac)dbdbh2d = bh5(db)5h2d
= bh7(db)5d = bh7(ac)5d = bh2d = e.

Let p = 1 − (ac)h. Then (pa)c = ac − achac = ac − (ac)2h ∈ Rqnil. Moreover, we have

bd − (bd)2e = bd − bdbdbh2d
= bd − b(dbdba)ch3d
= bd − b(ac)3h3d
= b(1 − ach)d
= b(pd).

We directly compute that

(pa)c(pd)b(pd) = pacdbpd
= acdbd − acdbachd − h(ac)2dbd + h(ac)2dbachd

(pd)b(pd)bd = p(db)p(db)d
= dbdbd − dbhacdbd − hac(db)2d + hacdbhacdbd.

Clearly,
acdbd = dbdbd.

acdbachd = (acdba)c(ac)dd
= (dbaca)c(ac)dd
= db(ac)d(ac)2d
= db(ac)d(acdbd)
= dbhacdbd.

h(ac)2dbd = h(ac)2dbd
= (ac)d(ac)2dbd
= (ac)d(acdbd)bd
= hac(db)2d.
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h(ac)2dbachd = hac(acdbachd)
= hac(acdbac(ac)dd)
= hac(acdbac((ac)d)3(ac)2d)
= hac(dbacac((ac)d)3acdbd)
= hac(db(ac)dacdbd)
= hac(dbhacdbd)
= hacdbhacdbd.

Therefore (pa)c(pd)b(pd) = (pd)b(pd)bd. Likewise, we verify that (pd)b(pa)c(pa) = (pd)b(pd)ba. Then by Lemma
2.1, b(pd) ∈ Rqnil. Hence bd has g-Drazin inverse e. That is, e = bh2a = (bd)d, as desired.

In the case that c = b and d = a, we recover the known generalized Cline’s formula for g-Drazin inverse.

Corollary 2.3. (see [3, Theorem 2.2]) Let R be a ring, and let a, b, c ∈ R satisfying

(ac)2a = acaba = abaca = a(ba)2.

If ac ∈ Rd, then ba ∈ Rd and (ba)d = b((ab)d)2a.

Corollary 2.4. (see [10, Theorem 3.2]) Let R be a ring, and let a, b, c, d ∈ R satisfying

aca = dba;
acd = dbd.

If ac ∈ Rd, then bd ∈ Rd and (bd)d = b((ac)d)2d.

Proof. This is obvious by Theorem 2.2.

The following example shows that the preceding theorem is independent from [10, Theorem 3.2] and
[16, Theorem 2.7].

Example 2.5.

Let R = C3×3. Choose

a =

 0 1 0
0 0 1
0 0 0

 , b =
 0 0 0

0 1 0
0 0 0

 ,
c =

 0 0 0
0 1 0
0 0 1

 , d =
 1 0 0
−1 0 0
0 0 0

 ∈ R.

Then we check that
(ac)2a = acdba = dbaca = (db)2a;
(ac)2d = acdbd = dbacd = (db)2d.

But (ac)2a , a(ba)2 and aca , dba.

3. Extensions in Banach algebras

In this section, we investigate the generalized Cline’s formula in a Banach algebra. We now delieve

Theorem 3.1. LetA be a Banach algebra, and let a, b, c, d ∈ A satisfying

(ac)2a = (db)2a;
(ac)2d = (db)2d.

If ac ∈ Ad, then bd ∈ Ad. In this case, (bd)d = b[(ac)d]2d.
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Proof. Let aca = a′ , c = c′ , dbd = d′ and b = b′ . Then we have

a′c′a′ = ((ac)2aca
= (db)2aca
= d′b′a′ ;

a′c′d′ = (ac)2dbd
= (dbd)b(dbd)
= d′b′d′.

Since ac ∈ Ad, it follows by [11, Corollary 2.2] that a′c′ = (ac)2
∈ A

d, in light of Corollary 2.4, b′d′ = (bd)2
∈ A

d.
Therefore bd ∈ Ad by [11, Corollary 2.2]. Moreover, we have

(bd)d = [(bd)2]dbd
= (b′d′)dbd = b′[(a′c′)d]2d′bd
= b[(ac)d]4(db)2d
= b[(ac)d]4(ac)2d
= b[(ac)d]2d,

as required.

In the case that c = b and d = a, we now derive

Corollary 3.2. Let R be a Banach algebra, and let a, b, c ∈ R with (ac)2a = a(ba)2. If ac ∈ Rd, then ba ∈ Rd and
(ba)d = b((ab)d)2a.

Corollary 3.3. (see [8, Theorem 2.3]) Let A be a Banach algebra, and let a, b, c ∈ A with aba = aca. If ac ∈ A has
g-Drazin inverse, then ba ∈ A has g-Drazin inverse. In this case, (ba)d = b[(ac)d]2a.

Proof. Since aba = aca, we have (ac)2a(ac(aca) = (aca)ba = (ab)2a. This completes the proof by Corollary
3.2.

In particular, ab ∈ A has g-Drazin inverse if and only if ba ∈ A has g-Drazin inverse (see [9, Theorem
2.1]).

Corollary 3.4. LetA be a Banach algebra, and let a, b, c, d ∈ A satisfying

(ac)2a = (db)2a;
(ac)2d = (db)2d.

If ac ∈ AD, then bd ∈ AD. In this case, (bd)D = b[(ac)D]2d.

Proof. Since ac ∈ AD, we have ac ∈ Ad. In light of Theorem 2.2, (bd)d = b[(ac)D]2d. Clearly, bd = (bd)(bd)d(bd)
and (bd)(bd)d = (bd)d(bd). One easily checks that

[bd − (bd)d(bd)2](bd)2 = [bd − b[(ac)D]2d(bd)2](bd)2

= [bd − b[(ac)D]2(ac)2d](bd)2

= b[1 − (ac)(ac)D](db)2d
= b[1 − (ac)(ac)D](ac)2d.

Hence, we have
[bd − (bd)d(bd)2]3 = [bd − (bd)d(bd)2](bd)2[1 − (bd)d(bd)]

= b[ac − (ac)2(ac)D]acd[1 − (bd)d(bd)].

Since ac − (ac)2(ac)D is nilpotent, by induction, bd − (bd)d(bd)2 is nilpotent. Therefore we complete the
proof.
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4. Applications

Let X be Banach space, and let L(X) denote the set of all bounded linear operators from Banach space
to itself, and let a ∈ L(X). The Drazin spectrum σD(a) and g-Drazin spectrum σd(a) are defined by

σD(a) = {λ ∈ C | λ − a < AD
};

σd(a) = {λ ∈ C | λ − a < Ad
}.

The purpose of this section is to present new common spectrum properties of L(X). We now extend [3,
Lemma 3.1] as follows.

Lemma 4.1. Let R be a ring, and let a, b, c, d ∈ R satisfying

(ac)2a = acdba = dbaca = (db)2a;
(ac)2d = acdbd = dbacd = (db)2d.

Then 1 − ac ∈ R−1 if and only if 1 − bd ∈ R−1. In this case,

(1 − bd)−1 = [1 − b(1 − ac)−1(acd − dbd)][1 + b(1 − ac)−1d].

Proof. Let s = (1 − ac)−1. Then s(1 − ac) = 1, and so 1 − s = −sac. We check that

(1 + bsd)(1 − bd) = 1 − b(1 − s)d − bsdbd
= 1 + bsacd − bsdbd
= 1 + bs(acd − dbd).

Hence,
[1 − bs(acd − dbd)](1 + bsd)(1 − bd)

= 1 − b(1 − s)d − bsdbd
= 1 + bsacd − bsdbd
= 1 − bs(acd − dbd)bs(acd − dbd)
= 1 − bs(acd − dbd)b(1 + sac)(acd − dbd)
= 1 − bs(ac − db)db(acd − dbd)
= 1.

Also we check that

(1 − bd)(1 + bd + bacsd) = 1 − bdbd + b(1 − db)acsd
= 1 − b[db(1 − ac) − (1 − db)ac]sd
= 1 − b(db − ac)sd;

hence, we have
(1 − bd)(1 + bd + bacsd)[1 + b(db − ac)sd]

= 1 − b(db − ac)sdb(db − ac)sd
= 1 − b(db − ac)sdb(db − ac)(1 + acs)d
= 1 − b(db − ac)sdb(db − ac)d
= 1.

Therefore 1 − bd is right and left invertible. In this case,

(1 − bd)−1 = [1 − bs(acd − dbd)](1 + bsd).

The converse is symmetric.

We now ready to prove the following.
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Theorem 4.2. Let A,B,C,D ∈ L(X) such that

(AC)2A = ACDBA = DBACA = (DB)2A;
(AC)2D = ACDBD = DBACD = (DB)2D.

then σd(BD) = σd(AC).

Proof. Case 1. 0 ∈ σd(BD). Then BD < Ad. In view of Theorem 2.2, AC < Ad. Thus 0 ∈ σd(AC).
Case 2. 0 < λ ∈ σd(BD). Then λ ∈ accσ(BD). Thus, we see that

λ = lim
n→∞
{λn | λnI − BD < L(X)−1

}.

For λn , 0, it follows by Lemma 4.1 that I − ( 1
λn

A)C ∈ L(X)−1 implies I − B( 1
λn

D) ∈ L(X)−1. Therefore

λ = lim
n→∞
{λn | λnI − AC < L(X)−1

} ∈ accσ(AC) = σd(AC).

Therefore σd(BD) ⊆ σd(AC). By the symmetry, σd(AC) ⊆ σd(BD), as required.

Corollary 4.3. Let A,B ∈ L(X) , then σd(AB) = σd(BA).

Proof. By choosing C = B and D = A in Theorem 4.2, we see that σd(BA) = σd(AB). By the symmetry, we
have σd(AB) = σd(BA), as desired.

For the Drazin spectrum σD(a), we now derive

Theorem 4.4. Let A,B,C,D ∈ L(X) such that

(AC)2A = ACDBA = DBACA = (DB)2A;
(AC)2D = ACDBD = DBACD = (DB)2D.

then σD(BD) = σD(AC).

Proof. In view of Corollary 3.4, AC ∈ L(X)D implies that BD ∈ L(X)D, and therefore we complete the proof
by [15, Theorem 3.1].

A bounded linear operator T ∈ L(X) is a Fredholm operator if dimN(T) and codimR(T) are finite, where
N(T) and R(T) are the null space and the range of T respectively. T ∈ L(X) is a B-Fredholm operator if R(Tn)
is closed and T[n] is a Fredholm operator for some nonnegative integer n. T ∈ L(X) is a B-Weyl operator if
T[n] is a Fredholm operator of index zero. Also we note that an operator T is B-Weyl if and only if π(T) is
Drazin invertible in the Calkin algebra (see [1, 2]). The B-Fredholm and B-Weyl spectrums of T are defined
by

σBF(T) = {λ ∈ C | T − λI is not a B − Fredholm operator};
σBW(T) = {λ ∈ C | T − λI is not a B −Weyl operator}.

(see [3]).

Corollary 4.5. Let A,B,C,D ∈ L(X) such that

(AC)2A = ACDBA = DBACA = (DB)2A;
(AC)2D = ACDBD = DBACD = (DB)2D,

then σBF(BD) = σBF(AC).
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Proof. Let π : L(X) → L(X)/F(X) be the canonical map and F(X) be the ideal of finite rank operators in
L(X). As in well known, T ∈ L(X) is B-Fredholm if and only if π(T) has Drazin inverse. By hypothesis, we
see that

(π(A)π(C))2π(A) = π(A)π(C)π(D)π(B)π(A)
= π(D)π(B)π(A)π(C)π(A) = (π(D)π(B))2π(A);
(π(A)π(C))2π(D) = π(A)π(C)π(D)π(B)π(D)
= π(D)π(B)π(A)π(C)π(D) = (π(D)π(B))2π(D),

By virtue of Theorem 4.4, for every scalar λ, we have

λI − π(AC) has Drazin inverse =⇒ λI − π(BD) has Drazin inverse,

hence the result.

Corollary 4.6. Let A,B,C,D ∈ L(X) such that

(AC)2A = ACDBA = DBACA = (DB)2A;
(AC)2D = ACDBD = DBACD = (DB)2D,

then σBW(BD) = σBW(AC).

Proof. If T is B-Fredholm then for λ , 0 small enough, T−λI is Fredholm and ind(T) = ind(T−λI). Similarly
to [14, Lemma 2.3 and Lemma 2.4], I−AC is Fredholm implies I−BD is Fredholm. This completes the proof
by Corollary 4.5.
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