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Abstract. In this paper we study a class of first order impulsive periodic boundary value problems on
time scales. We give conditions under which the considered problem has at least one and at least two
solutions. The arguments are based upon recent fixed point index theory in cones of Banach spaces for a
k-set contraction perturbed by an expansive operator. An example is given to illustrate the obtained result.

1. Introduction

Dynamic equations on time scales have attracted great interest since S. Hilger introduced the concept
of time scales [13] to create an idea that could combine continuous and discrete analysis. The theory of
impulsive differential equations has received significant attention recently as the differential equations with
impulses are more amenable to modeling [2, 3, 14]. Naturally, some authors have focused their attention
on the study of the existence of solutions for boundary value problems of impulsive dynamic equations
on time scales [4, 15]. In this work, we focus on the existence of at least one and at least two solutions for
first-order impulsive periodic boundary value problems on time scales.

In [11], Wang and Guan studied the following nonlinear first-order periodic boundary value problem
on time scales:

x∆(t) + p(t)x(σ(t)) = λ f (t, x(σ(t))), t ∈ J\{t1, . . . , tm},

x(t+k ) − x(t−k ) = Ik(x(t−k )), k ∈ {1, . . . ,m},
x(0) = x(σ(T)),

(1)

where λ > 0 is a positive parameter. By using the Leggett-Williams fixed point theorem, they provided
sufficient conditions for existence of three positive solutions of (1).

In [12], Guan, Li and Ma studied the following nonlinear first-order periodic boundary value problem
on time scales:

x∆(t) + p(t)x(σ(t)) = 0, t ∈ J = [0,T]T t , tk, k = 1, 2 . . .m,
x(t+k ) − x(t−k ) = Ik(x(t−k )), k ∈ {1, . . . ,m},
x(0) = x(σ(T)).

(2)
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By using the fixed point theorem in cones, they provided existence criteria for single and multiple positive
solutions to the class of nonlinear first-order periodic boundary value problems of impulsive dynamic
equations on time scales (2).

In [16], Li and Shu are concerned with the following first-order nonlinear impulsive integral boundary
value problem on time scales:

x∆(t) + p(t)x(σ(t)) = f (t, x(σ(t))), t ∈ J\{t1, . . . , tm},

x(t+i ) − x(t−i ) = Ik(x(t−k )), i ∈ {1, . . . ,m},

αx(0) − βx(σ(t)) =
∫ σ(t)

0
1(s)x(s)∆s.

(3)

They obtained some sufficient conditions for existence of at least one, two, or three positive solutions
for BVP (3) using Guo-Krasnoselskii and Legget-Williams fixed point theorem, respectively.

Motivated by the above studies, in this work we deal with the first-order multi-point boundary value
problem for impulsive dynamic equations of the form:

x∆(t) + p(t)x(σ(t)) = f (t, x(σ(t))), t ∈ J\{t1, . . . , tm},

x(t+k ) − x(t−k ) = Ik(x(t−k )), k ∈ {1, . . . ,m},

x(0) = x(σ(T)),

(4)

where

(H1) T > 0, 0 < t1 < . . . < tm < tm+1 = σ(T) are right-dense, p ∈ R+, J = [0, σ(T)],

(H2) f ∈ C([0, σ(T)] ×R),

| f (t, z)| ≤ a1(t) + a2(t)|z|l, t ∈ [0, σ(T)], z ∈ R,

a1, a2 ∈ C(J), 0 ≤ a1, a2 ≤ B on J, l ≥ 0, for some positive constant B,

(H3) Ik ∈ C(R),

|Ik(z)| ≤ bk|z|pk + ck, z ∈ R,

bk, ck ≥ 0, k ∈ {1, . . . ,m}, are constants.

Let J0 = [0, t1], Jk = (tk, tk+1], k ∈ {1, . . . ,m}, and

PC(J) = {x : J→ R : x ∈ C(Jk), ∃x(t+k ), x(t−k ),

x(t−k ) = x(tk), k ∈ {1, . . . ,m}}.

We will investigate the PBVP (4) for existence of solutions in PC(J)∩C1(J\{t1, . . . , tm}). Our main results are
as follows.

Theorem 1.1. Suppose (H1)-(H3). Then the PBVP (4) has at least one solution in PC(J) ∩ C1(J\{t1, . . . , tm}).

Theorem 1.2. Suppose (H1)-(H3). Then the PBVP (4) has at least two solutions in PC(J) ∩ C1(J\{t1, . . . , tm}).

In [10], the PBVP (4) is investigated under the following conditions:

(G1) f : J ×R→ R is continuous and there exist nonnegative constants α and K so that for any λ ∈ (0, 1)

λ| f (t, x)| ≤ α(λ f (t, x) − p(t)x) + K, t ∈ J, x ∈ R,
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(G2) Ik : R→ R is continuous and there exist nonnegative constants βk and Nk such that

|Ik(z)| ≤ βk|z| +Nk, k ∈ {1, . . . ,m}, z ∈ R,

(G3) mβ∗ep(σ(T), 0) < ep(σ(T), 0) − 1, where β∗ = max
k∈{1,...,m}

βk,

and it is proved that the PBVP (4) has at least one solution in PC(J) ∩ C1(J\{t1, . . . , tm}). When pk = 1,
k ∈ {1, . . . ,m}, in (H3), we get that (G2) and (H3) coincide. Note that (H2) is valid for any pk ≥ 0, k ∈ {1, . . . ,m}.
Therefore our results are valid for more classes Ik, k ∈ {1, . . . ,m}, than the results in [10]. Moreover, our
condition (H2) for f is different than the condition (G1) in [10]. Thus, we can consider the results in this
paper as complementary results to the results in [10]. Next, our conditions (H1)-(H3) ensure nonuniqueness
of the solutions of the PBVP (4). Also, the results in [10] are proved using the Schaefer fixed point theorem.
In this paper we propose new arguments based upon recent fixed point index theory in cones of Banach
spaces for a k-set contraction perturbed by an expansive operator.

The paper is organized as follows. In the next section, we make a short overview on time scale calculus.
In Section 3, we give some auxiliary results. In Section 4, we prove Theorem 1.1. In Section 5, we prove
Theorem 1.2, and in Section 6, we give an example.

2. Elements of Time Scale Calculus

Before giving further details, we give some of the main definitions for time scales extracted from [1], [5],
and [6] that we need in the sequel.

A time scale T is any closed subset of the real numbers. The forward and backward jump operators
σ, ρ : T→ T are defined, respectively as

σ(t) = inf {s ∈ T : s > t}, ρ(t) = sup {s ∈ T : s < t}.

The point t ∈ T is left dense, left scattered, right dense, right scattered if ρ(t) = t, ρ(t) < t, σ(t) = t, σ(t) > t,
respectively.

Definition 2.1. If T has a left scattered maximum m, then Tκ = T − {m}. Otherwise Tκ = T. In other words,

Tκ =

T\
(
ρ(supT), supT

]
if supT < ∞

T if supT = T
.

Definition 2.2. For a function f : T→ R we define f σ : T→ R by f σ(t) = f (σ(t)).

Definition 2.3. We define f∆(t) to be the number with the property that given any ϵ > 0 there is a neighborhood U
of t such that ∣∣∣[ f (σ(t)) − f (s)

]
− f∆(t) [σ(t) − s]

∣∣∣ ≤ ϵ |σ(t) − s|

for all s ∈ U . Here, f∆(t) is called the delta derivative of f at t, and f is called delta differentiable in Tκ provided that
f∆(t) exists for all t ∈ Tκ.

Definition 2.4. A function f : T→ R is called regulated provided that its right-sided limits exist at all right-dense
points in T and its left-sided limits exist at all left-dense points in T.

We define the indefinite integral of a regulated function f by∫
f (t)∆t = F(t) + C,

where C is an arbitrary constant and F is a pre-antiderivative of f .
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Definition 2.5. A function F : T→ R is called an antiderivative of f : T→ R if

F∆(t) = f (t) for all t ∈ Tκ.

Definition 2.6. f : T→ R is said to be rd-continuous provided that f is continuous at each right-dense point of T
and has a finite left-dense limit at each left-dense point of T. The set of rd-continuous functions will be denoted by
Crd(T) and the set of differentiable functions that posseses rd-continuous derivatives is denoted by C1

rd(T).

Theorem 2.7. Let a, b, c ∈ T, α ∈ R and f , 1 ∈ Crd. Then,

(i)
∫ b

a
[ f (t) + 1(t)]∆t =

∫ b

a
f (t)∆t +

∫ b

a
1(t)∆t;

(ii)
∫ b

a
(α f )(t)∆t = α

∫ b

a
f (t)∆t;

(iii)
∫ b

a
f (σ(t))1∆(t)∆t = ( f1)(b) − ( f1)(a) −

∫ b

a
f∆(t)1(t)∆t;

(iv) if
∣∣∣ f (t)

∣∣∣ ≤ 1(t) on [a, b), then

∣∣∣∣∣∣
∫ b

a
f (t)∆t

∣∣∣∣∣∣ ≤
∫ b

a
1(t)∆t;

(v) if f (t) ≥ 0 for all a ≤ t < b, then
∫ b

a
f (t)∆t ≥ 0;

(vi) if t ∈ Tκ, then
∫ σ(t)

t
f (T )∆(T ) = µ(t) f (t);

(vii)
∫ b

a
[ f (t)1(t)]∆t ≤

∫ b

a

∣∣∣ f (t)1(t)
∣∣∣∆t ≤ sup

t∈[a,b)

∣∣∣ f (t)
∣∣∣ ∫ b

a

∣∣∣1(t)∣∣∣∆t.

Definition 2.8. A function p : T→ R is regressive provided that 1+µ(t)p(t) , 0 for all t ∈ Tκ where µ(t) = σ(t)− t
is the graininess function.

The set of all regressive and rd-continuous functions will be denoted by R.

Definition 2.9. If p ∈ R, then we define the exponential function by

ep(t, s) = exp
(∫ t

s
ξµ(T )(p(T ))∆T

)
,

where

ξh(z) =

 log(1 + hz)
h

if h , 0,
z if h = 0,

is the cylinder transformation for s, t ∈ T.

Theorem 2.10. [5] If p, q ∈ R, then

(i) e0(t, s) = 1 and ep(t, t) = 1;

(ii) ep(t, s) =
1

ep(s, t)
= e⊖p(t, s);

(iii) ep(t,u)ep(u, s) = ep(t, s);
(iv) e∆p (t, t0) = p(t)ep(t, t0) for t ∈ Tκ and t0 ∈ T.
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3. Auxiliary Results

To prove our existence result we will use the following fixed point theorem.

Theorem 3.1. Let ϵ > 0, B > 0, E be a Banach space and X = {x ∈ E : ∥x∥ ≤ B}. Let also, Tx = −ϵx, x ∈ X,
S : X→ E is continuous, (I − S)(X) resides in a compact subset of E and

{x ∈ E : x = λ(I − S)x, ∥x∥ = B} = ∅ (5)

for any λ ∈
(
0,

1
ϵ

)
. Then, there exists x∗ ∈ X so that

Tx∗ + Sx∗ = x∗.

Proof. Define

r
(
−

1
ϵ

x
)
=


−

1
ϵx if ∥x∥ ≤ Bϵ

Bx
∥x∥ if ∥x∥ > Bϵ.

Then r
(
−

1
ϵ

(I − S)
)

: X→ X is continuous and compact. Hence, by Schauder fixed point theorem, it follows

that there exists x∗ ∈ X so that

r
(
−

1
ϵ

(I − S)x∗
)
= x∗.

Assume that −
1
ϵ

(I − S)x∗ < X. Then

∥∥∥∥(I − S)x∗
∥∥∥∥ > Bϵ,

B
∥(I − S)x∗∥

<
1
ϵ

and

x∗ =
B

∥(I − S)x∗∥
(I − S)x∗ = r

(
−

1
ϵ

(I − S)x∗
)

and hence, ∥x∗∥ = B. This contradicts with (5). Therefore −
1
ϵ

(I − S)x∗ ∈ X and

x∗ = r
(
−

1
ϵ

(I − S)x∗
)
= −

1
ϵ

(I − S)x∗

or

−ϵx∗ + Sx∗ = x∗,

or

Tx∗ + Sx∗ = x∗.

This completes the proof.

Let X be a real Banach space.

Definition 3.2. A mapping K : X → X is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.
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The concept for l-set contraction is related to that of the Kuratowski measure of noncompactness which we
recall for completeness.

Definition 3.3. LetΩX be the class of all bounded sets of X. The Kuratowski measure of noncompactness α : ΩX →

[0,∞) is defined by

α(Y) = inf

δ > 0 : Y =
m⋃

j=1

Y j and diam(Y j) ≤ δ, j ∈ {1, . . . ,m}

 ,
where diam(Y j) = sup{∥x − y∥X : x, y ∈ Y j} is the diameter of Y j, j ∈ {1, . . . ,m}.

For the main properties of measure of noncompactness we refer the reader to [7].

Definition 3.4. A mapping K : X → X is said to be l-set contraction if it is continuous, bounded and there exists a
constant l ≥ 0 such that

α(K(Y)) ≤ lα(Y),

for any bounded set Y ⊂ X. The mapping K is said to be a strict set contraction if l < 1.

Obviously, if K : X→ X is a completely continuous mapping, then K is 0-set contraction (see [9]).

Definition 3.5. Let X and Y be real Banach spaces. A mapping K : X → Y is said to be expansive if there exists a
constant h > 1 such that

∥Kx − Ky∥Y ≥ h∥x − y∥X

for any x, y ∈ X.

Definition 3.6. A closed, convex set P in X is said to be cone if

1. αx ∈ P for any α ≥ 0 and for any x ∈ P,
2. x,−x ∈ P implies x = 0.

Denote P∗ = P\{0}.

Lemma 3.7. Let X be a closed convex subset of a Banach space E and U ⊂ X a bounded open subset with 0 ∈ U.
Assume there exists ε > 0 small enough and that K : U → X is a strict k-set contraction that satisfies the boundary
condition:

Kx < {x, λx} for all x ∈ ∂U and λ ≥ 1 + ε.

Then the fixed point index i (K,U,X) = 1.

Proof. Consider the homotopic deformation H : [0, 1] ×U→ X defined by

H(t, x) =
1
ε + 1

tKx.

The operator H is continuous and uniformly continuous in t for each x, and the mapping H(t, .) is a strict
set contraction for each t ∈ [0, 1]. In addition, H(t, .) has no fixed point on ∂U. On the contrary,
• if t = 0, there exists some x0 ∈ ∂U such that x0 = 0, contradicting x0 ∈ U.

• if t ∈ (0, 1], there exists some x0 ∈ P∩ ∂U such that
1
ε + 1

tKx0 = x0; then Kx0 =
1 + ε

t
x0 with

1 + ε
t
≥ 1+ ε,

contradicting the assumption. From the invariance under homotopy and the normalization properties of
the index, we deduce

i (
1
ε + 1

K,U,X) = i (0,U,X) = 1.
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Now, we show that

i (K,U,X) = i (
1
ε + 1

K,U,X).

We have

1
ε + 1

Kx , x, ∀ x ∈ ∂U. (6)

Then, there exists γ > 0 such that

∥x −
1
ε + 1

Kx∥ ≥ γ, ∀ x ∈ ∂U.

On the other hand, we have
1
ϵ + 1

Kx→ Kx as ϵ→ 0, for x ∈ U. So, for ε small enough

∥Kx −
1
ε + 1

Kx∥ <
γ

2
, ∀ x ∈ ∂U.

Define the convex deformation G : [0, 1] ×U→ X by

G(t, x) = tKx + (1 − t)
1
ε + 1

Kx.

The operator G is continuous and uniformly continuous in t for each x, and the mapping G(t, .) is a strict set

contraction for each t ∈ [0, 1], since t +
1
ε + 1

(1 − t) < t + 1 − t = 1. In addition, G(t, .) has no fixed point on

∂U. In fact, for all x ∈ ∂U, we have

∥x − G(t, x)∥ = ∥x − tKx − (1 − t)
1
ε + 1

Kx∥

≥ ∥x −
1
ε + 1

Kx∥ − t∥Kx −
1
ε + 1

Kx∥

> γ −
γ

2
>
γ

2
.

Then, our claim follows, from the invariance property by homotopy of the index.

Proposition 3.8. Let P be a cone in a Banach space E. Let also, U be a bounded open subset of P with 0 ∈ U.
Assume that T : Ω ⊂ P → E is an expansive mapping with constant h > 1, S : U → E is a l-set contraction with
0 ≤ l < h − 1, and S(U) ⊂ (I − T)(Ω). If there exists ε ≥ 0 such that

Sx , {(I − T)(x), (I − T)(λx)} for all x ∈ ∂U ∩Ω and λ ≥ 1 + ε,

then the fixed point index i∗ (T + S,U ∩Ω,P) = 1.

Proof. The mapping (I − T)−1S : U → P is a strict set contraction and it is readily seen that the following
condition is satisfied

(I − T)−1Sx < {x, λx} for all x ∈ ∂U and λ ≥ 1 + ϵ.

Our claim then follows from the definition of i∗ and Lemma 3.7.

The following result will be used to prove our main result.

Theorem 3.9. Let P be a cone of a Banach space E; Ω a subset of P and U1,U2 and U3 three open bounded
subsets of P such that U1 ⊂ U2 ⊂ U3 and 0 ∈ U1. Assume that T : Ω → P is an expansive mapping with
constant h > 1, S : U3 → E is a k-set contraction with 0 ≤ k < h − 1 and S(U3) ⊂ (I − T)(Ω). Suppose that
(U2 \U1) ∩Ω , ∅, (U3 \U2) ∩Ω , ∅, and there exists u0 ∈ P

∗ such that the following conditions hold:
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(i) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U1 ∩ (Ω+ λu0),

(ii) there exists ϵ ≥ 0 such that Sx , (I − T)(λx), for all λ ≥ 1 + ϵ, x ∈ ∂U2 and λx ∈ Ω,

(iii) Sx , (I − T)(x − λu0), for all λ > 0 and x ∈ ∂U3 ∩ (Ω+ λu0).

Then T + S has at least two non-zero fixed points x1, x2 ∈ P such that

x1 ∈ ∂U2 ∩Ω and x2 ∈ (U3 \U2) ∩Ω

or
x1 ∈ (U2 \U1) ∩Ω and x2 ∈ (U3 \U2) ∩Ω.

Proof. If Sx = (I − T)x for x ∈ ∂U2 ∩ Ω, then we get a fixed point x1 ∈ ∂U2 ∩ Ω of the operator T + S.
Suppose that Sx , (I − T)x for any x ∈ ∂U2 ∩ Ω. Without loss of generality, assume that Tx + Sx ,
x on ∂U1 ∩ Ω and Tx + Sx , x on ∂U3 ∩ Ω, otherwise the conclusion has been proved. By [8, Proposition
2.11 and Proposition 2.16] and Proposition 3.8, we have

i∗ (T + S,U1 ∩Ω,P) = i∗ (T + S,U3 ∩Ω,P) = 0 and i∗ (T + S,U2 ∩Ω,P) = 1.

The additivity property of the index yields

i∗ (T + S, (U2 \U1) ∩Ω,P) = 1 and i∗ (T + S, (U3 \U2) ∩Ω,P) = 1.

Consequently, by the existence property of the index, T + S has at least two fixed points x1 ∈ (U2 \ U1) ∩
Ω and x2 ∈ (U3 \U2) ∩Ω.

Let

G(t, s) =


ep(s,t)ep(σ(T),0)

ep(σ(T),0)−1 , 0 ≤ s ≤ t ≤ σ(T),

ep(s,t)
ep(σ(T),0)−1 , 0 ≤ t < s ≤ σ(T).

We have

sup
t,s∈[0,σ(T)]

|G(t, s)| ≤
ep(σ(T), 0)

ep(σ(T), 0) − 1
= G1.

In [17], it is proved that the function G is the Green function for the PBVP (4) and x ∈ PC(J)∩C1(J\{t1, . . . , tm})
is a solution to the PBVP (4) if and only if it is a solution to the integral equation

u(t) =
∫ σ(T)

0
G(t, s) f (s,u(σ(s)))∆s +

m∑
k=1

G(t, tk)Ik(u(tk)), t ∈ J.

In X = PC(J) define the norm

∥u∥ = max
k∈{1,...,m}

{ sup
t∈(tk ,tk+1]

|u(t)|}.

For u ∈ X, define the operator

S1u(t) = u(t) −
∫ σ(T)

0
G(t, s) f (s,u(σ(s)))∆s −

m∑
k=1

G(t, tk)Ik(u(tk)),
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t ∈ J. Note that if u ∈ X satisfies the equation

S1u(t) = 0, t ∈ J, (7)

then u is a solution to the PBVP (4). Set

B1 = B + G1B(1 + Bl)σ(T) + G1

m∑
k=1

(bkBpk + ck) .

Lemma 3.10. Suppose (H1)-(H3). If u ∈ X, ∥u∥ ≤ B, then

∥S1u∥ ≤ B1.

Proof. We have

|S1u(t)| =
∣∣∣∣∣u(t) −

∫ σ(T)

0
G(t, s) f (s,u(σ(s)))∆s −

m∑
k=1

G(t, tk)Ik(u(tk))
∣∣∣∣∣

≤ |u(t)| +
∫ σ(T)

0
|G(t, s)|| f (s,u(σ(s)))|∆s +

m∑
k=1

|G(t, tk)||Ik(u(tk))|

≤ B + G1

∫ σ(T)

0

(
a1(s) + a2(s)|u(σ(s))|l

)
∆s + G1

m∑
k=1

(bk|u(tk)|pk + ck)

≤ B + G1B(1 + Bl)σ(T) + G1

m∑
k=1

(bkBpk + ck)

= B1, t ∈ J.

This completes the proof.

4. Proof of Theorem 1.1

Below, suppose

(H4) ϵ ∈ (0, 1), A and B satisfy the inequalities ϵB1(1 + A) < B and AB1 < 1.

For u ∈ X, define the operator

S2u(t) =
A
σ(T)

∫ t

0
S1u(s)∆s, t ∈ J.

Lemma 4.1. Suppose that (H1)-(H3) hold. If u ∈ X satisfies the equation

S2u(t) = C, t ∈ J, (8)

where C is an arbitrary constant, then u is a solution to the PBVP (4). Moreover, if u ∈ X and ∥u∥ ≤ B, then
∥S2u∥ ≤ AB1.

Proof. Let u ∈ X be a solution to the equation (9). Then

A
σ(T)

∫ t

0
S1u(s)∆s = C, t ∈ J.
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We differentiate with respect to t the last equation and we find

A
σ(T)

S1u(t) = 0, t ∈ J,

whereupon S1u(t) = 0, t ∈ J. Hence, from (7), we get that u satisfies (4). Next, let u ∈ X and ∥u∥ ≤ B. Then,
by the definition of the operator S2 and Lemma 3.10, we arrive at

∥S2u∥ ≤
A
σ(T)

∫ σ(T)

0
∥S1u∥∆s

≤ AB1.

This completes the proof.

Let
˜̃̃
Y denote the set of all equi-continuous families in X with respect to the norm ∥ · ∥. Let also, ˜̃Y = ˜̃̃

Y be the

closure of
˜̃̃
Y,

Y = {u ∈ ˜̃Y : ∥u∥ ≤ B}.

Note that Y is a compact set in X. For u ∈ X, define the operators

Tu(t) = −ϵu(t, x),

Su(t) = u(t, x) + ϵu(t) + ϵS2u(t), t ∈ J.

For u ∈ Y, we have

∥(I − S)u∥ = ∥ϵu − ϵS2u∥

≤ ϵ∥u∥ + ϵ∥S2u∥

≤ ϵB1 + ϵAB1

= ϵB1(1 + A)

< B

Thus, S : Y→ X is continuous and (I − S)(Y) resides in a compact subset of X. Now, suppose that there is a
u ∈ X so that ∥u∥ = B and

u = λ(I − S)u

or

1
λ

u = (I − S)u = −ϵu − ϵS2u,

or ( 1
λ
+ ϵ

)
u = −ϵS2u
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for some λ ∈
(
0,

1
ϵ

)
. Hence, ∥S2u∥ ≤ AB1 < B,

ϵB <
( 1
λ
+ ϵ

)
B =

( 1
λ
+ ϵ

)
∥u∥ = ϵ∥S2u∥ < ϵB,

which is a contradiction. By Theorem 3.1, it follows that the operator T + S has a fixed point u∗ ∈ Y.
Therefore

u∗(t) = Tu∗(t) + Su∗(t)

= −ϵu∗(t) + u∗(t) + ϵu∗(t) + ϵS2u∗(t), t ∈ J,

whereupon

0 = S2u∗(t), t ∈ J,

and

0 = S1u∗(t), t ∈ J.

From here, it follows that u is a solution to the PBVP (4). This completes the proof.

5. Proof of Theorem 1.2

Let X be the space used in the previous section. Suppose the following.

(H5) Let m1 > 0 be large enough and A, B, r, L, R1 be positive constants that satisfy the following conditions

r < L < R1, ϵ > 0, R1 >
( 2

5m1
+ 1

)
L,

AB1 <
L
5
.

Let

P̃ = {u ∈ X : u ≥ 0 on J}.

With Pwe will denote the set of all equi-continuous families in P̃. For v ∈ X, define the operators

T1v(t) = (1 +m1ϵ)v(t) − ϵ
L
10
,

S3v(t) = −ϵS2v(t) −m1ϵv(t) − ϵ
L
10
,

t ∈ J. By Lemma 4.1, it follows that any fixed point v ∈ X of the operator T1 + S3 is a solution to the PBVP
(4). Define

U1 = Pr = {v ∈ P : ∥v∥ < r},

U2 = PL = {v ∈ P : ∥v∥ < L},

U3 = PR1 = {v ∈ P : ∥v∥ < R1},

R2 = R1 +
A
m1

B1 +
L

5m1
,

Ω = PR2 = {v ∈ P : ∥v∥ ≤ R2}.
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1. For v1, v2 ∈ Ω, we have

∥T1v1 − T1v2∥ = (1 +mε)∥v1 − v2∥,

whereupon T1 : Ω→ X is an expansive operator with a constant h = 1 +mε > 1.
2. For v ∈ PR1 , we get

∥S3v∥ ≤ ε∥S2v∥ +m1ε∥v∥ + ε
L
10

≤ ε
(
AB1 +m1R1 +

L
10

)
.

Therefore S3(PR1 ) is uniformly bounded. Since S3 : PR1 → X is continuous, we have that S3(PR1 ) is
equi-continuous. Consequently S3 : PR1 → X is a 0-set contraction.

3. Let v1 ∈ PR1 . Set

v2 = v1 +
1
m

S2v1 +
L

5m1
.

Note that S2v1 +
L
5
≥ 0 on J because ∥S2v1∥ ≤ AB1 and AB1 <

L
5

. We have v2 ≥ 0 on J and

∥v2∥ ≤ ∥v1∥ +
1

m1
∥S2v1∥ +

L
5m1

≤ R1 +
A
m1

B1 +
L

5m1

= R2.

Therefore v2 ∈ Ω and

−εm1v2 = −εm1v1 − εS2v1 − ε
L
10
− ε

L
10

or

(I − T1)v2 = −εm1v2 + ε
L
10

= S3v1.

Consequently S3(PR1 ) ⊂ (I − T1)(Ω).
4. Assume that for any u0 ∈ P

∗ there exist λ ≥ 0 and x ∈ ∂Pr∩ (Ω+λu0) or x ∈ ∂PR1 ∩ (Ω+λu0) such that

S3x = (I − T1)(x − λu0).

Then

−ϵS2x −m1ϵx − ϵ
L
10
= −m1ϵ(x − λu0) + ϵ

L
10

or

−S2x = λm1u0 +
L
5
.

Hence,

∥S2x∥ =
∥∥∥∥∥λm1u0 +

L
5

∥∥∥∥∥ > L
5
.

This is a contradiction.
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5. Suppose that for any ϵ1 ≥ 0 small enough there exist a x1 ∈ ∂PL and λ1 ≥ 1 + ϵ1 such that λ1x1 ∈ PR1

and

S3x1 = (I − T1)(λ1x1). (9)

In particular, for ϵ1 >
2

5m1
, we have x1 ∈ ∂PL, λ1x1 ∈ PR1 , λ1 ≥ 1 + ϵ1 and (9) holds. Since x1 ∈ ∂PL

and λ1x1 ∈ PR1 , it follows that( 2
5m1

+ 1
)

L < λ1L = λ1∥x1∥ ≤ R1.

Moreover,

−ϵS2x1 −m1ϵx1 − ϵ
L
10
= −λ1m1ϵx1 + ϵ

L
10
,

or

S2x1 +
L
5
= (λ1 − 1)m1x1.

From here,

2
L
5
≥

∥∥∥∥∥S2x1 +
L
5

∥∥∥∥∥ = (λ1 − 1)m1∥x1∥ = (λ1 − 1)m1L

and

2
5m1

+ 1 ≥ λ1,

which is a contradiction.

Therefore all conditions of Theorem 3.9 hold. Hence, the PBVP (4) has at least two solutions u1 and u2 so
that

∥u1∥ = L < ∥u2∥ < R1

or

r < ∥u1∥ < L < ∥u2∥ < R1.

6. Example

Let T =
4⋃

i=1

[2i, 2i + 1], where each interval [2i, 2i + 1], i ∈ {1, . . . 4}, is real-valued. Let also, T = 7, m = 3,

p(t) = a2(t) = 1, a1(t) = 0, t ∈ J, l = 1, pk = 2, bk = 1, ck = 0, k ∈ {1, 2, 3}, and

R1 = 10, B =
1

1030 , L = 5, r = 4, m1 = 1050, A =
1

10B1
, ϵ =

1
5B1(1 + A)

,

and

t0 = 0, t1 = 2, t2 = 4, t3 = 6,

Then

ϵB1(1 + A) < 1, AB1 < 1, r < L < R1, R1 >
( 2

5m1
+ 1

)
L.
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Thus, (H4) and (H5) hold. Consider the following PBVP
x∆(t) + x(σ(t)) =

x(σ(t))
1 + (x(σ(t)))2 , t ∈ J\{t1, t2, t3},

x(t+k ) − x(tk) =
(x(tk))2

2 + 4(x(tk))2 , k ∈ {1, . . . , 3},

x(0) = x(8).

(10)

Here

f (t, x) =
x

1 + x2 ≤ 1,

Ik(x) =
x2

2 + 4x2 ≤ 1, k ∈ {1, . . . , 3}.

Thus, for the PBVP (10) Theorem 1.1 and Theorem 1.2 hold.
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