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Abstract. In this article, we present some refinements of numerical radius inequalities for operators on

Hilbert space. Further, we also obtain some new upper bounds for the numerical radius of the Cartesian
decomposition of operators which improves the existing bounds.

1. Introduction

Let H be a complex Hilbert space with an inner product (-, -) and the corresponding norm ||.|. Let £L(#)
be the C*-algebra of all bounded linear operators from # into itself. In the case when dimH = n , we identify
L(H) with the matrix algebra IM,, of all n x n complex matrices. An operator A € L(H) is said to be positive,

and denoted A > 0, if (Ax, x) > 0 for all x € #, and is called positive definite, denoted A > 0, if {Ax, x) > 0 for
all non zero vectors x € H.

The numerical range of T € L(H) is defined as
W(T) = {{Tx,x) :x e H, |x| =1}

and the numerical radius of T, denoted by w(T), is defined by w(T) = sup{|z|: z ¢ W(T)}.
It is known that the set W(T') is a convex subset of the complex plane and that the numerical radius w(-)

is a norm on £L(#); being equivalent to the usual operator norm |T|| = sup{|Tx| : x € H, |x| = 1}. In fact, for
every T € L(H),

STl (T < 7], )

The inequalities in (1) are sharp. If T? = 0, then the first inequality becomes an equality, on the other
hand the second inequality becomes an equality if T is normal. In fact, for a nilpotant operator T with
T" = 0, Haagerup and Harpe [4] showed that w(T) < ||T| cos(n/(n +1)). In particular, when n = 2, we get
the reverse inequality of the first inequality in (1). For basic information about numerical radius one can
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refer [3]. The author’s of [9, 11] improved the inequality (1) which is stated in the inequality (2). If T € £L(H),
then

1 1
w(T) < 2 ] < ST 1), @
where |T| = (T*T)'/? is the absolute value of T, and
1
%|T*T+TT* <w*(T) < ST T+ 7). 3)

The inequalities in (2) refines the second inequality in (1). For applications of these inequalities one can
refer [9, 10]. Let T = P +iQ be the Cartesian decomposition of T, then P and Q are self-adjoint, and
T*T + TT* = 2(P? + Q*). Thus the inequality (3) can be written as

%||P2+Q2|| <w*(T) <||P*+ Q?|, (4)
or equivalently,
LI+ Q7 + (P QP <wA(T) < 2[(P+ Q) + (P~ QP ©)

Further generalizations of the first inequality in (2) and the second inequality in (3) have been proved in
[1]. It has been shown thatif T,S € £L(H),0 <y <1and r > 1. Then

wr(T) < %H|T|2w i |T*|2(1_M)7”. (6)

wr(T + S) < 2"_2|||T|2r(“ + |T>e|2r(1—y) + |S|27y n |S*|2r(1—y) H (7)

Kittaneh [11] proved a general numerical radius inequality which states that if A,B,C,D,S,T € L(H),
0<pu<1,then

1
w(ATB +CSD) < 5 |AIT* PO A% + B*|T*B + C|S* P C* + D*|S[*D| (8)

In particular,

: ©)

We refer the reader to the recent articles [1, 11-15, 17] for different generalizations, refinements and appli-
cations of numerical radius inequalities.

The objective of the paper is to present some refinement’s of Kittaneh’s inequality. The organization of
the article is as follows. After presenting some results from the literature which are required to prove our
main results; which include certain generalized refinements of numerical radius inequalities for operators
on Hilbert space. In particular, we generalize and refine the inequalities (3) and (5).

1
w(AB+BA) < 5 |A*A+AA* + B*B + BB*

2. Preliminaries

The first needed inequality is the following generalization of the mixed Cauchy-Schwarz inequality [8,
Theorem 1].

Lemma 2.1. Let A € L(H) and let f and g be non-negative continuous functions on [0, o) satisfying the identity
f(t)g(t) =t forallte[0,o00). Then

((Ax, y)l < [ F(AR) [Tg(A™ Dy
forall x,y in H.
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In 1952, Kato [6] showed the mixed Schwarz inequality, which asserts

Lemma 2.2. Let Ae L(H),and 0 < u < 1. Then
(Ax, ) < (JAP* x,x) (|4 P g, y) (10)

for the vectors x, iy € H, where |A| = (A*A)l/z.
When dealing with inner product inequalities, the following inequality becomes handy [2, Theorem
1.2]:

f({Ax, x)) < (f(A)x,x), (11)

valid for the convex function f : | — RR, the self adjoint operator A with spectrum in | and the unit vector
x € H. The inequality (11) is reversed when f is concave. As a consequence of this inequality, we obtain the
following celebrated McCarthy inequality.

Lemma 2.3. Let A€ L(H), A >0and x € H be a unit vector. Then
(i) (Ax,x)" < (A'x,x) forr > 1;
(ii) (A"x,x) < (Ax,x) forO<r< 1.

The following lemma is an immediate consequence of the spectral theorem for self-adjoint operators. For
generalizations of this lemma, one can refer [8].

Lemma 2.4. Let A € L(H) be self-adjoint, and let x € H be any vector. Then
[(Ax, x)| < (|Alx, x).
The following lemma proved by Kian [7] for positive operators and r > 2.
Lemma 2.5. Let A € L(H) be a positive operator and x € H be any unit vector. Then
(Ax, x)" < (A"x,x) = (JA — (Ax,x)|'x,x), for r > 2. (12)
The following lemma is a consequence of the convexity of the function f(t) = ,r> 1.
Lemma 2.6. Let a; be a positive real number, 1 <i<n. Then foreachr > 1
n r n
( Zai) <n! Zaffor allr > 1.
i=1 i=1

The following lemma is a consequence of the classical Jensen inequality concerning the convexity or the
concavity of certain power functions [5].

Lemma 2.7. Fora,b>0and 0<pu<landr+0,
(i) (pua"+(1- y)br)% <(ua®+(1- y)bs)%,for r<s,
(ii) a"b"* <pa+(1-p)b < (ua"+ (1~ y)b’)%for r>0,
(i) (a°+b°)% < (a" + b’)%for O<r<s.
3. Main Results

Due to the theme of the results, we will split our main results into two subsections.
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3.1. Refinements of numerical radius inequalities
The first main result is the following.

Theorem 3.1. Let T € L(H),0< u<landr>2. Then

r(T |||T|2W |T>(-|2(1 H)r” ”Hl.‘lflé( )

where E(x) = L{(|| TR — (|TP#x, x)| + | T* PO — (|T*PA-0x, x)| ), x).
Proof. For every unit vector x € H, we have
(T, )] < (TP, x) 3 (| T* PO, x) 2
1
( (ITP#x, x)" |T*|2(1 Wy, x)" )

N~

1

r

- | (P s By ) (e (e ) (i (PP ) )|

"o [((mz‘” + [T PO ), x) = (TP = ([TPox, x) [+ T PO - (IT*IZ(“‘)%X)V)xrx)]

3046

(ITIZ‘”xx (I - Ile“x,x>\yx/x)+(|T*|2““”x,X>—<HT”(1“’—(IT*IZO”)x,xﬂyx/x))]

1

7

where the first inequality follows from Lemma 2.2, the second inequality follows from Lemma 2.7, and the

third inequality follows from Lemma 2.5.
Thus,

(T2 < L (TP + [T PO x) - £(x),

where &(x) = 2((||TP# - (TR, x)| + || T* PO — (|T* P00, x)[ )x, x).
Taking supremum over all unit vector in #, we have

w'(T) < |||T|2W |T*|2(1 H)r” ”1r”1f1£(x)

O

Remark 3.2. In Theorem 3.1, inf|y -y E(x) = 0 if and only if

0 e W(||T = (| TP, x)| + || T*[RO-0) — (|T*PO-mx, x)| ).

As a special case of Theorem 3.1, which leads to sharper then the inequality (3) for &(x) > 0. By putting s = 3
and 7 = 2 in Theorem 3.1 we have the following corollary which is the refinement of Kittaneh’s inequality

©)
Corollary 3.3. Let T € L(H), then

w*(T) < 1 IT*T + TT*| - inf &(x),
2 =1

where &(x) = Y(|IT] = (1Tl x) + [IT*] = (IT* |, x)[*)x, x).

The following theorem is another generalizations and refinement of Kittaneh’s inequality (3) for £(x) > 0.

1
r
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Theorem 3.4. Let T € L(H),0< u<landr>2. Then

W (T) < [ulTP"+ (1= T - jnf £(x),

where &(x) = (|| T2 ~ (TP x| + (1 - )| T2~ {(IT* P, )] ), ).
Proof. For every unit vector x € H, we have

X
<ITI2"x x)(|T" P, x)
(TP, )| T Px, x) 74

(Tx
<

IA

IN

(TP, 3 + (1= )T P2y

T

IN

(40 (TP = e ) 0) o 0 ) (A7) - P - (70 ) |

1
r

= (TP, x) + (1= (TP, x) - (| TP = (TP, ) 2, 2) = (1= ) (I - <|T*2x,x>|’x,x>]

= (TP + (1= TP ), )~ {(u TP~ |T2x,x>|r+<1—u>||T*|2—<|T*Zx,x>|r)x,x>],

where the first inequality follows from Lemma 2.2, the second inequality follows from Lemma 2.3, the third
inequality follows from Lemma 2.7, and the fourth inequality follows from Lemma 2.5.
Thus,

(T, )P < (TP + (1= )T, x) - jnf £(x).

Taking supremum over x € H, we have

W (T) < [WlTP + (L= )T ] - in £(x),

where &(x) = ([T - (TPx, )|+ (1~ |IT*P ~ (T*Pa,x) %) ©

3.2. Numerical radius inequalities for Cartesian decomposition of operators

In this subsection we present some numerical radius inequalities but with the Cartesian decomposition
of operators.

Theorem 3.5. Let T € L(H) with Cartesian decomposition T = P+ iQ and let r > 2. Then

w'(T) <227 |P +|Qf H_Hlﬂf c(x),

where &(x) = 25‘1<(||P| - <|P|x,x)|y + ||Q| - (|Q|x,x>|r)x,x).



M. R. Jena et al. / Filomat 37:10 (2023), 3043-3051

Proof. For every unit vector x € #, using Lemma 2.7, Lemma 2.4 and Lemma 2.5, we have

(Tx,x)| ((Px,x)2 ; <Qx,x)2)§
N 2
. (|<Px,x>* - |<Qx,x>|f)1
: 2

1

r

< g 0727+ (e

"x,x) +(1Q %, %) - ([1Q1 - (1Qlx, )

1
< 21/r[((|P|rx X ||P| (|P|x, x)

)

- i3 COPY 4100530~ ((1P1= (0t )+ 2 - 10k 0 |

Thus,
(T, )" < 227 ((P)+1Q1")x, x) = 257 ((|[P] = (1P, x)[ + [1Q] = {|QPx, x)[ ), x).

Taking supremum over x € H with |x|| = 1, we have

w(T) <27 +[QP] - int &),

where &(x) = 257Y((||P - (|Plx, x)| +[|Q] - (|QJx, x)[ )x,x). O
The following result is the generalization and refinement of second inequality (5) for &(x) > 0.

Theorem 3.6. Let T € L(H) with Cartesian decomposition T = P+ 1Q and let r > 2. Then

W(T)<*H|P+er +|P-Qf H—leH1f &(x),

where &(x) = 3{(|IP+Q| - (P + Q|x,x)‘y +|IP-Ql-(|P- Q|x,x)‘y)x,x).
Proof. Let x € H be any unit vector. Then
(T, )|
= ((Px,x)* + (Qx,x)z)%
= (P QP+ (P- Q) )

< Sr <25 (P + Q) + (P - Q)

by the convexity of the function f(t) =t on [0, o)

SIS

<2 (1P + Qi) + (1P - Qlx,x))
< 3] 0P+ Q) 1+ @1 P+ Q59+ 1P~ @)~ (1P~ Q1 - P~ Qi ) )
i[“”’*Q" |P-Ql">x,x>—<<||P+Q|—<|P+Q|x,x>|’+||P—Q|—(|P—Q|x,x>|r>x/x>],

3048
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where the second inequality follows from Lemma 2.4, and the third inequality follows from Lemma 2.5.
Taking supremum over x € H with |x|| = 1 on both sides we have

1
w(T) < 7|IP+QI +|P-Qrf - inf &(x),

where &(x) = {(|IP+ Q| - {|P+ Qlx,x)| + [P~ Q| - (P~ Qlx,x)| )x,x). O

In Theorem 3.7, we present an upper bound for numerical radius of sum of operators but with the Cartesian
decomposition.

Theorem 3.7. Let T; € L(H) with Cartesian decomposition T; = P; +1Q; fori=1,2,...,nand let r > 2. Then

1

W (XT) <n 27 Y|P+ QP - inf £(x)
1

i=1 i= lxl1=1
r r

where £(x) = (([IPi? - (1P, x)[ + [|Q:f? = (|Qifx, x)[ ), x).

Proof. Let x € H be any unit vector. Then

(3T
|
&t

<Y ((IPfPx, x) + (|Ql-|2x,x))%

=1

< (Va3 (P )+ (1Q ) )

i=1

((Pix,x)* + (Qix, x)?)

M= o
NI=

N —

.

Il
[ury

(PP x) + <|Qz-|2x,x>)5)

=

1

< (Va5 P (1P - (P )+ (1050 - QP - 122 )|

i=1
=<ﬁn>r1§;[<(u?|” Q) - (PP - |Pz~|2x,x>\’+||Q,~|2—<|Qi|2x,x>\’>x,x>]2,

where the second inequality follows from Lemma 2.2, for u = 1, the third inequality follows from Lemma
2.6, the fourth inequality follows from Lemma 2.6, and the fifth inequality follows from Lemma 2.5.
Taking supremum over x € H with |x|| = 1 we have

1

w’(iﬂ) 2% i[!HP P+ Q|| - inf 5<x>]

i Jxl=1
where &(x) = ((|[Pi2 = (|Pi2x, x)[ +[|QiP* - (|QifPx, %) )x,x). O
For n = 1, we have the following result.

Corollary 3.8. Let T € L(H) with Cartesian decomposition T = P +1iQ for r > 2. Then

1

w (1) <27 [IPP <10 - inf o)

where &(x) = ((|IPR - ([P, x)| + [|QF - (1QPx, )] ), x).



M. R. Jena et al. / Filomat 37:10 (2023), 3043-3051 3050

In the following theorem, we obtain a different upper bound for numerical radius of sum of operators but

with the Cartesian decomposition.

Theorem 3.9. Let T; € L(H) with Cartesian decomposition T; = P; +1Q; fori=1,2,...,nand let r > 2. Then

]

w (Y. T;)<n'"™ 127‘12 [1P; + Qi +|P; - Qif*"| - inf &(x)

i=1

[Ix]=1

where &(x) = ((||Pi + Qi - (|P; + Qz‘|2x,x>|r +|IPi = Qi* = (|P; - Q,-|2x,x)|r)x,x).

Proof. Let x € H be any unit vector. Then
(530
i= ) .
< (5 (P (0 0) )
i=1

< (2(2(«1%- + Q0,2 + (P =~ Q)x, %))

Nl=

(NI

),

(((P +Q)x,x)* + ((Pi - Q)x, x)°)

[NIEY

> (Pi+ QP x) + {IP; - QiPox, )

(IP: + Qi x, ) — (|IP; + Q2 — (|P; + Qi*x, x)| x, x)

In
2
T
R
N
S
N
N
N
| o—

1

o (Pi- QP2 — (1P QP — (IPs - Qilzx,X)|rx,X>]

“1y5-1 D [ (IP; + Qi +|P; = Qi )x, x)

i=1

1

~ (1P + Qi = (|P; + QiPx, x)[ + ||P; - Qi* - (|Pi - Qile/x>|r)x/x)]2/

where the third inequality follows from Lemma 2.6, the fourth inequality follows from Lemma 2.2, the fifth
inequality follows from Lemma 2.6, and the sixth inequality follows from Lemma 2.5.

Taking supremum over x € H with |x|| = 1 we have

w (Y Ti)<n™ 12212 [P+ Q"+ |Pi - Qif*'| - inf &(x)

i=1

o]

where &(x) = ((|[P; + Qi = (|P; + QilPx, x)| + ||Pi = Qi - {|P; - Qif*x, x)| )x,x). O
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