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Abstract. Hankel and Toeplitz operators are the compressions of Laurent and bilateral Hankel operators,
which in turn can be presented as two-by-two operator matrices with Toeplitz and Hankel entries.

0. Introduction Toeplitz operators

0.1 Tφ : f 7→ φ · f : H2(S)→ H2(S) ⊆ L2(S)

are compressions of a simpler “bilateral” version, known as Laurent operators,

0.2 Lφ : f 7→ φ · f : L2(S)→ L2(S),

multiplication by φ ∈ L∞(S), essentially bounded on the unit circle S ⊆ C. Hilbert space isomorphism

0.3 H2(S) � L2(S) � ℓ2(Z) � ℓ2(N)

enables us to work with infinite matrices throughout.
Here, (0.1) just reminds the reader that we are looking at the same Toeplitz operators as all those complex

analysts. The relation (0.3) just recalls the fact that every two infinite dimensional separable Hilbert spaces
are mutually isomorphic, which allows us to switch from L2(S) to ℓ2(N) and ℓ2(Z).

1. Hankel and Toeplitz operators

On the linear space X = CN all complex sequences x = (x1, x2, . . .) the forward shift

1.1 u : (x1, x2, x3, . . .) 7→ (0, x1, x2, . . .)

and the backward shift

1.2 v : (x1, x2, x3, . . .) 7→ (x2, x3, x4, . . .)
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satisfy

1.3 vu = 1 , uv ;

the difference is the rank one operator

1.4 1 − uv = δ1 ⊗ δ1 := δ∗1 ⊙ δ1 : (x1, x2, x3, . . .) 7→ (x1, 0, 0, . . .)

where δn := (δnj) is the Kronecker delta:

1.5 δnj = 1, ( j = n), δnj = 0 ( j , n).

A linear operator a : X→ X can be represented by an infinite matrix (ai j) where, for each {i, j} ⊆N ×N,

1.6 ai j = (aδi) j,

and has an adjoint, a∗ : X→ X, with

1.7 (a∗)i j = (a ji);

there is a partially defined inner product:

1.8
∞∑

n=1

|xn| |yn| < ∞ =⇒ ⟨x, y⟩ =
∞∑

n=1

xnyn.

When (1.8) holds then we write

1.9 x ⊗ y = y∗ ⊙ x : w 7→ y∗(w)x = ⟨w, y⟩x

for the induced rank one operator. We can extend this discussion to subspaces X ⊆ CN for which

1.10 u(X) + v(X) ⊆ X ; {δn : n ∈N} ⊆ X,

in particular the familiar spaces ℓp and c0, which of course carry norms. (1.8) holds in particular when
(x, y) ∈ ℓp × ℓq with 1/p + 1/q = 1. When a : ℓ2 → ℓ2 is bounded then of course for arbitrary x and y in
ℓ2 = ℓ2(N),

1.11 ⟨ax, y⟩ = ⟨x, a∗y⟩.

Restricted to ℓp and c0, the shifts become bounded operators of norm one. Following Brown and Halmos
[3, Theorem 6], we shall call the linear operator a : X→ X a Hankel operator if

1.12 va = au,

and a Toeplitz operator if

1.13 vau = a.

In terms of the matrix representation (ai j) of (1.6), the Toeplitz condition says that the entries are constant on
diagonals, the Hankel condition that they are constant on skew diagonals. We use the same terminology on
each of the Banach spaces ℓp, but most particularly on the Hilbert space ℓ2. Evidently the Hankel operators
form the null space of the generalized inner derivation

1.14 Lv − Ru : a 7→ va − au,

while the Toeplitz operators form the null space of its multiplicative analogue

1.15 LvRu − I : a 7→ vau − a.
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The shifts u and v are each Toeplitz, while the rank one operator 1− uv is Hankel. More generally bounded
Toeplitz operators on ℓ2 have expansions

1.16 a = α0 +

∞∑
j=1

α ju j +

∞∑
j=1

α− jv j, (α0, α j, α− j ∈ C)

while Hankel operators can be expanded

1.17 m =
∞∑
j=1

β jw j, (β j ∈ C)

where

w1 = 1 − uv,w2 = uw1 + w1v,w3 = u2w1 + uw1v + w1v2, . . .

i.e.

1.18 wk =

k−1∑
i=0

uk−1−iw1vi for k ≥ 1.

Thus

vw1 = 0 = w1u, vw2 = w1 = w2u, vw3 = w2 = w3u, . . .

i.e.

1.19 vwk = wk−1 = wku for k ≥ 1 and w0 = 0.

Notice [7, Theorem 7] that Toeplitz operators a can be divided into analytic Toeplitz operators, which satisfy

1.20 au = ua,

and co-analytic Toeplitz operators,

1.21 av = va :

then every Toeplitz operator is the sum of an analytic and a co-analytic Toeplitz operator, uniquely to within
a scalar. In the notation of (1.16), a is analytic iff j < 0 =⇒ α j = 0, co-analytic iff j > 0 =⇒ α j = 0. Stronger
than the condition (1.12), we are tempted to call a : X→ X hyper Hankel if it satisfies

1.22 ua = av ,

equivalent to equality

1.23 vav = a = uau .

Stronger than (1.13), the condition

1.24 uav = a

implies both au = ua and va = av, which together imply that a = λ is a scalar.
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2. Laurent and bilateral Hankel operators

We recall the forward and backward “unilateral shifts” of (1.1) and (1.2), linear operators on X = CN,
which characterized (1.13) “Toeplitz” and (1.12) “Hankel” operators. Their “bilateral” equivalents, acting
on CZ, can be interpreted as linear operators on X ×X, and hence as 2 × 2 matrices of operators on X ⊆ CN

which satisfy the conditions (1.10); note the isomorphism

2.1 w ∈ CZ ↔ (x, y) ∈ CN × CN : (n ∈N =⇒ wn = xn,w1−n = yn) .

This of course holds in particular when X = ℓ2 ⊆ CN. For example the bilateral shifts, forward and backward,
are given by

2.2 U =
(
u 1 − uv
0 v

)
; V =

(
v 0

1 − uv u

)
;

the difference is that now, in place of (1.4), we have

2.3 VU = I = UV.

There are bilateral analogues of the Toeplitz and Hankel conditions (cf [3, Theorem 2]):

Definition 2.1. A : X2
→ X2 will be called a Laurent operator, or bilateral Toeplitz operator if

2.4 AU = UA,

and a bilateral Hankel operator if

2.5 AU = VA.

There is here no distinction between “Laurent”, “analytic Laurent”, or “co-analytic Laurent” operators.

The identity I =
(
1 0
0 1

)
is an example of a Laurent operator, while the matrix E =

(
0 1
1 0

)
is a bilateral Hankel

operator. Evidently, E2 = I, EUE = V, and each of the shifts U and V is Laurent.
The basic properties of a Laurent operator A on X2 with X ⊆ CN are very simple. The defining condition

(2.4) says that A is in the null space of the inner derivation LU − RU, commutant of the bilateral shift U,
therefore closed under the taking of inverses; the bilateral Hankel operators make up (2.5) the null space
of LV − RU. When we restrict to X2 with X = ℓ2 then the bilateral shifts become normal operators, and
then Fuglede’s theorem [7] says that the Laurent operators are also the double commutant of U, and also
closed under the taking of adjoints. It follows that if A is Laurent then so is A∗, also An, and more generally
p(A) whenever p is polynomial. More generally still f (A) is Laurent whenever f is a function analytic on
some neighborhood of the spectrum σ(A) of A. Collectively therefore the Laurent operators constitute a
commutative C* algebra, isometrically isomorphic to L∞(S). The bilateral Hankel operators do not form a
subalgebra, but collectively are just the Laurent operators multiplied by one specific Hankel operator:

2.6 E =
(
0 1
1 0

)
.

Evidently

2.7 E2 = I ; EU = VE ; EUE = V.

Theorem 2.2. If A ∈ B(X2) then

2.8 A bilateral Hankel⇐⇒ AE Laurent⇐⇒ EA Laurent

and dually

2.9 A Laurent⇐⇒ AE bilateral Hankel⇐⇒ EAE Laurent.
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Rewriting this

2.10
(
a m
n b

)
Laurent⇐⇒

(
b n
m a

)
Laurent

and

2.11
(
a m
n b

)
bilateral Hankel⇐⇒

(
m a
b n

)
Laurent⇐⇒

(
n b
a m

)
Laurent.

If A =
(
a m
n b

)
is either Laurent or bilateral Hankel, then (cf [15, Lemma 1]) each of a, b,m,n will be either

Toeplitz or Hankel:

Theorem 2.3. There is implication

2.12 A =
(
a m
n b

)
Laurent =⇒ a, b Toeplitz and m,n Hankel.

Dually

2.13 A =
(
a m
n b

)
bilateral Hankel =⇒ m,n Toeplitz and a, b Hankel.

Proof. By multiplication of 2×2 matrices, necessary and sufficient for (2.11) are the following four conditions:

2.14 au − ua = (1 − uv)n;

2.15 mv − um = (1 − uv)b − a(1 − uv);

2.16 nu − vn = 0;

2.17 vb − bv = n(1 − uv).

Multiplying (2.14) on the left by v, and (2.17) on the right by u, shows that a and b are both Toeplitz. (2.16)
says that n is Hankel, and finally multiplying (2.15) left and right by v and u says that m is “hyper Hankel”
in the sense (1.22). This establishes (2.11), which is converted to (2.12) by Theorem 2.2

Now we consider the reverse implications of Theorem 2.3.

Corollary 2.4. (i) A =
(
a m
n b

)
is Laurent if and only if a, b Toeplitz and m,n Hankel and

vbδ1 = nδ1, va∗δ1 = n∗δ1, λaδ1 = λb∗δ1 = δ1, (λ ∈ C).

(ii) A =
(
a m
n b

)
is bilateral Hankel if and only if m,n Toeplitz and a, b Hankel and

vnδ1 = bδ1, vm∗δ1 = b∗δ1, λmδ1 = λn∗δ1 = δ1, (λ ∈ C).
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Proof. By Theorem 2.3, it suffices to show the converse implication. Suppose that a, b are Toeplitz (i.e.,
vau = a, vbu = b) and m,n are Hankel (i.e., vn = nu, vm = mu), and

vbδ1 = nδ1, va∗δ1 = n∗δ1, λaδ1 = λb∗δ1 = δ1, (λ ∈ C).

Then (2.16) always holds. Since vbδ1 = nδ1, it follows that

vb − bv − n(1 − uv) = vb − vbuv − n(1 − uv) = vb(1 − uv) − n(1 − uv)
= (vb − n)(1 − uv) = (vb − n)δ1 ⊗ δ1 = 0.

Thus (2.17) holds. Moreover, since vm = mu implies v[mv − um]u = vmvu − vumu = vm −mu = 0, it follows
that mv = um and so

mv − um − (1 − uv)b + a(1 − uv) = −(1 − uv)b + a(1 − uv) = −(δ1 ⊗ b∗δ1) + aδ1 ⊗ δ1

= −(δ1 ⊗
1

λ
δ1) +

1
λ
δ1 ⊗ δ1 = 0

because the last equality follows from λaδ1 = λb∗δ1 = δ1, (|λ| = 1). Thus (2.15) holds. On the other hand,
since va∗δ1 = n∗δ1, we have

au − ua − (1 − uv)n = au − uvau − (1 − uv)n = (1 − uv)au − (1 − uv)n
= (1 − uv)(au − n) = (δ1 ⊗ (au − n)∗δ1)
= (δ1 ⊗ (va∗ − n∗)δ1) = 0

and (2.14) holds.
(ii) The proof follows from (2.11) and similar arguments of (i).

The “compression process” which converts the Laurent operator A to the Toeplitz operator a is effected by
the projection

2.18 P =
(
1 0
0 0

)
:

2.19 A =
(
a m
n b

)
=⇒ PAP =

(
a 0
0 0

)
.

Corollary 2.5. Let A =
(
a m
n b

)
on X2 where a, b,m,n are nonzero. Then the following statements hold;

(i) If m,n are Hankel, a is an analytic Toeplitz, and b = a∗ where aδ1 = λδ1 for some λ ∈ C, then A is not Laurent.
(ii) If a, b are Hankel, m is an analytic Toeplitz, and n = m∗ where mδ1 = λδ1 for some λ ∈ C, then A is not bilateral
Hankel.

Proof. (i) If m,n are Hankel, a is analytic Toeplitz, and b = a∗ with aδ1 = λδ1 for some λ ∈ C, then

a(1 − uv) − (1 − uv)b = a(1 − uv) − (1 − uv)a∗ = (aδ1 ⊗ δ1) − (δ1 ⊗ aδ1) = 0

and au = ua, but (1 − uv)n , 0. Hence, by (2.17) from the proof of Theorem 2.3, A is not Laurent.
(ii) Theorem 2.2 converts (i) into (ii). Notice that (1 − uv)(X) = Cδ1 is one dimensional, so that

(a − λ)(1 − uv) = 0⇐⇒ aδ1 = λδ1 .
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Example 2.6. (i) Let A =
(
a m
n a

)
where n is Hankel, a is Toeplitz, and for all λ ∈ C,

2.19 aδ1 , λδ1 or a∗δ1 , λδ1.

Note that [1, Theorem 1.2.28] implies

2.20 a(1 − uv) = (1 − uv)a = aδ1 ⊗ δ1 = δ1 ⊗ a∗δ1

is the negation of (2.19). It follows that a(1 − uv) − (1 − uv)a , 0. By the hypothesis, we know from (2.15) that m is
not Hankel, and hence that A is not Laurent.

(ii) Let A =
(

a m
m b

)
where b is Hankel, m is Toeplitz, and for all λ ∈ C,

2.21 mδ1 , λδ1 or m∗δ1 , λδ1.

Since

2.22 m(1 − uv) − (1 − uv)m = mδ1 ⊗ δ1 − δ1 ⊗m∗δ1 , 0

it follows that a is not Hankel from (2.17). Therefore, A is not bilateral Hankel.

There are converses to Theorem 2.3:

Theorem 2.7. (i) If a = vau is a Toeplitz operator, there exist b,m, and n for which

A =
(
a m
n b

)
is Laurent.

(ii) If a is a Hankel operator, there exist b,m, and n for which

A =
(
a m
n b

)
is bilateral Hankel.

Proof. (i) Recalling the notation of (1.16) and (1.17), we have inductively

U j =

(
u j w j
0 v j

)
and V j =

(
v j 0
w j u j

)

where w j =
∑ j−1

i=0 u j−1−iw1vi for j ≥ 1. Indeed, if U =
(
u w1
0 v

)
, then (1.17) implies

U2 =

(
u w1
0 v

) (
u w1
0 v

)
=

(
u2 uw1 + w1v
0 v2

)
=

(
u2 w2
0 v2

)
.

If U j =

(
u j ∑ j−1

i=0 u j−1−iw1vi

0 v j

)
=

(
u j w j
0 v j

)
holds, then

U j+1 =

(
u j w j
0 v j

) (
u w1
0 v

)
=

(
u j+1 u jw1 + w jv

0 v j+1

)
=

(
u j+1 ∑ j

i=0 u j−iw1vi

0 v j+1

)
=

(
u j+1 w j+1

0 v j+1

)
.
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Thus, if a = vau is given by expansion (1.16), we can find b,m, and n for which(
a m
n b

)
= α0I +

∞∑
j=1

α jU j +

∞∑
j=1

α− jV j,

that is, (
a m
n b

)
=

(
α0 +

∑
∞

j=1 α ju j +
∑
∞

j=1 α− jv j ∑
∞

j=1 α jw j∑
∞

j=1 α− jw j α0 +
∑
∞

j=1 α jv j +
∑
∞

j=1 α− ju j

)
.

Therefore, since UV = VU = I, it follows that

AU −UA

= (α0I +
∞∑
j=1

α jU j +

∞∑
j=1

α− jV j)U −U(α0I +
∞∑
j=1

α jU j +

∞∑
j=1

α− jV j)

=

∞∑
j=1

α− jV j−1
−

∞∑
j=1

α− jV j−1 = 0,

which means that A is Laurent.
(ii) If m is a Hankel operator with an expansion of the form (1.17), we can find a, b, and n for which

2.23
(
a m
n b

)
=

∞∑
j=1

β jU j,

that is, (
a m
n b

)
=

(∑
∞

j=1 β ju j ∑
∞

j=1 β jw j

0
∑
∞

j=1 β jv j

)
.

If instead a is a Hankel operator, then (2.23) applies to the matrix AE =
(
m a
b n

)
. Then AE is clearly Laurent.

Hence A is bilateral Hankel from Theorem 2.2.

Remark 2.8. In Theorem 2.7, if m is a Hankel operator with an expansion of the form (1.17), we can find a, b and n
for which (

a m
n b

)
=

∞∑
j=1

β jU j,

that is, (
a m
n b

)
=

(∑
∞

j=1 β ju j ∑
∞

j=1 β jw j

0
∑
∞

j=1 β jv j

)
.

But, since UV = VU = I, in this case, we know that

UA − AV = U(
∞∑
j=1

β jU j) − (
∞∑
j=1

β jU j)V

=

∞∑
j=1

β jU j+1
−

∞∑
j=1

β jU j−1

=

∞∑
j=1

β j(U j+1
−U j−1) , 0.

Hence A is not bilateral Hankel.

When a is an analytic Toeplitz operator, then it is part of a Laurent operator A =
(
a m
n b

)
with n = 0,

while conversely a is analytic when n = 0 and a is co-analytic when m = 0.
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3. Normality and positivity

Recall the Fourier series isomorphism

3.1 x 7→ x∼ : ℓ2 ≡ ℓ2(Z) −→ L2 ≡ L2(S),

where S ⊆ C is the unit circle, and then introduce the ”symbol” φ ∈ L∞(S) of the Laurent operator Lφ acting
on L2(S). This reveals that the algebra of Laurent operators is indistinguishable from the C* algebra L∞, and
of course, with the help of Fuglede’s theorem [7], coincides with its own commutant among the bounded
operators on L2. The bilateral Hankel operators are not closed under multiplication, but form a two-sided
module over the Laurent operators; the set of all sums of Laurent and bilateral Hankel operators is however
[13] again a C* algebra. The Toeplitz operator

3.2 Tφ = P ◦ Lφ : f 7→ P(φ · f )

with symbol φ is the truncation of the Laurent operator Lφ : f 7→ φ · f : we write

3.3 H2(S) = PL2(S),

and P : L2 → L2 is given by setting, for arbitrary w ∈ ℓ2(Z),

3.4 P(
∞∑

n=−∞

wneinθ) =
∞∑

n=0

wneinθ.

Observe that

3.5
(
a m
n b

)∗
=

(
a∗ n∗

m∗ b∗

)
.

A is described as self-adjoint whenever A∗ = A, normal if A∗A = AA∗, and unitary if A∗A = AA∗ = I. We
remark that it is necessary and sufficient, for A ∈ L(X) to be self-adjoint that it have real numerical range

3.6 {⟨Ax; x⟩ : ∥x∥ = 1} ⊆ R.

We shall further further describe A ∈ L(X) as positive, written A ≥ 0, if it is self-adjoint with positive
numerical range:

3.7 A ≥ 0⇐⇒ {⟨Ax; x⟩ : ∥x∥ ≤ 1} ⊆ [0,∞) ⊆ R.

Finally, A is said to be hyponormal if A∗A − AA∗ ≥ 0.

Lemma 3.1. Let A =
(
a m
n b

)
on X2. Then the following statements hold.

(i) For [R,S] := RS − SR, we have

3.8 [A∗,A] =
(
a∗a + n∗n − aa∗ −mm∗ a∗m + n∗b − an∗ −mb∗

m∗a + b∗n − na∗ − bm∗ m∗m + b∗b − nn∗ − bb∗

)
(ii) A is normal if and only if 

a∗a + n∗n − aa∗ −mm∗ = 0,
a∗m + n∗b − an∗ −mb∗ = 0,
m∗m + b∗b − nn∗ − bb∗ = 0.
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(iii) A is positive if and only if, for all x, y ∈ X,
a ≥ 0,
b ≥ 0,
n = m∗,
|⟨my, x⟩|2 ≤ ⟨ax, x⟩ · ⟨by, y⟩.

(iv) A is hyponormal if and only if , for all x, y ∈ X,

a∗a + n∗n − aa∗ −mm∗ ≥ 0,
m∗m + b∗b − nn∗ − bb∗ ≥ 0,
|⟨(a∗m + n∗b − an∗ −mb∗)y, x⟩|2

≤ ⟨(a∗a + n∗n − aa∗ −mm∗)x, x⟩ · ⟨(m∗m + b∗b − nn∗ − bb∗)y, y⟩.

Proof. (i) Let A =
(
a m
n b

)
. Then A∗ =

(
a∗ n∗

m∗ b∗

)
so that

A∗A =
(

a∗a + n∗n a∗m + n∗b
m∗a + b∗n m∗m + b∗b

)
and

AA∗ =
(
aa∗ +mm∗ an∗ +mb∗

na∗ + bm∗ nn∗ + bb∗

)
.

Therefore the equation (3.8) holds.
(ii) The proof follows from the equation (3.8).
(iii) The proof follows from (3.8) and [5, Lemma 1.4].

To decide whether or not the Laurent operator

A =
(
a m
b n

)
� Lφ

is self-adjoint, normal, or hyponormal, we introduce, for each φ ∈ L∞ ([12]) the subset

3.9 △(φ) = {k ∈ H∞ : ∥k∥∞ ≤ 1 and φ − kφ ∈ H∞} for φ ∈ L∞ .

Using Lemma 3.1, we obtain the following results.

Proposition 3.2. Let A =
(
a m
n b

)
be Laurent. Then the following statements hold.

(i) A is self-adjoint if and only if a∼ and b∼ are real-valued functions almost everywhere and m∼ − (n∗)∼ ∈ eiθH2.
(ii) If a∼ and b∼ are linear combination of a real-valued function and the identity, and m and n are scalar multiples of
self-adjoint operators, an = nb, ma = bm, and n∗n = mm∗, then A is normal.
(iii) If a∼ and b∼ belong to the set ∆(φ) of (3.9) and m and n are scalar multiples of self-adjoint operators, an = nb,
ma = bm, and n∗n = mm∗, then A is hyponormal.

Proof. Suppose that A =
(
a m
n b

)
is Laurent. Then it follows from Theorem 2.3 that a, b are Toeplitz, and m,n

are Hankel.
(i) Since A is self-adjoint, a = a∗, b = b∗, and m = n∗. Hence by [1, Theorems 3.2.15 and 4.1.4], a∼ and b∼

are real-valued functions almost everywhere and m∼ − (n∗)∼ ∈ eiθH2 ⊆ L2 where

H2 := { f ∈ L2 : ⟨ f , en⟩ = 0, for n < 0} .
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The reverse implication holds by a similar way.
(ii) Since a∼ and b∼ are linear combination of a real-valued function and the identity and m and n are

scalar multiples of self-adjoint Hankel operators, it follows that a and b are normal and m and n are normal
by [3] (or [1, Corollary 3.2.16]) and [1, Corollary 4.4.9], respectively. If m,n are normal, an = nb and ma = bm,
then by the Fuglede-Putnam theorem, then n∗b = an∗ and a∗m = mb∗ and so a∗m + n∗b = an∗ +mb∗. These, in
turn, give that A∗A = AA∗ by Lemma 3.1. Hence A is normal.

(iii) Since a∼ and b∼ belong to the subset ∆(φ) of (3.9), it follows that a and b are hyponormal from [6,
Theorem 1] (or [14]). By the similar method of the proof of (ii), we know that A is hyponormal.

Corollary 3.3. Let A =
(
a m
n b

)
be bilateral Hankel. Then the following statements hold.

(i) A is self-adjoint if and only if m∼ and n∼ are real-valued functions almost everywhere and a∼ − (b∗)∼ ∈ eiθH2.
(ii) If m∼ and n∼ are linear combination of a real-valued function and the identity, and a and b are scalar multiples of
self-adjoint operators, mb = bn, am = na, and b∗b = aa∗, then A is normal.
(iii) If m∼ and n∼ belong to a subset ∆(φ)(, ∅) of (3.9) and a and b are scalar multiples of self-adjoint operators,
mb = bn, am = na, and b∗b = aa∗, then A is hyponormal.

Proof. Let A =
(
a m
n b

)
be bilateral Hankel. Then AE =

(
m a
b n

)
is Laurent by Theorem 2.2. Hence these

results follow from Proposition 3.2.

Proposition 3.4. Let A =
(
0 m
n 0

)
be Laurent on X2. Then the following properties hold.

(i) If A is hyponormal and n is a unitary operator, then m is a hyponormal Hankel operator. In this case, m is normal.
(ii) If A is normal and n is a unitary operator, then m is a unitary Hankel operator.

Proof. Suppose that A =
(
0 m
n 0

)
is Laurent. By Theorem 2.3, we obtain that m,n are Hankel.

(i) If A is hyponormal and n is a unitary operator, then by Lemma 3.1, n∗n − mm∗ = 1 − mm∗ ≥ 0 and
m∗m − nn∗ = m∗m − 1 ≥ 0. Thus m∗m ≥ mm∗. Hence m is a hyponormal Hankel operator. So m is normal by
[1, Theorem 4.4.11].

(ii) If A is normal and n is a unitary operator, then by Lemma 3.1, n∗n − mm∗ = 1 − mm∗ = 0 and
m∗m − nn∗ = m∗m − 1 = 0. Thus m∗m = mm∗ = 1. Hence m is a unitary Hankel operator.

Corollary 3.5. Let A =
(
a 0
0 b

)
be bilateral Hankel on X2. Then the following properties hold.

(i) If A is hyponormal and b is a unitary operator, then a is a hyponormal Hankel operator. In this case, a is normal.
(ii) If A is normal and b is a unitary operator, then a is a unitary Hankel operator.

Proof. If A =
(
a 0
0 b

)
is bilateral Hankel, then AE =

(
0 a
b 0

)
is Laurent by Theorem 2.2. Hence these results

follow from Proposition 3.4.

Proposition 3.6. Let A =
(
a m
0 b

)
be Laurent and hyponormal on X2. If m is hyponormal with ma = bm, and a∼ is

linear combination of a real-valued function and the identity, then b is a hyponormal Toeplitz operator.

Proof. By Theorem 2.3, a, b are Toeplitz, and m is Hankel. Since m is a hyponormal Hankel operator, it
follows that m is normal from [1, Theorem 4.4.11]. Moreover, since ma = bm, it follows from Fuglede-
Putnam theorem that m∗a = bm∗. By Lemma 3.1, A is hyponormal if and only ifa∗a − aa∗ −mm∗ ≥ 0,

m∗m + b∗b − bb∗ ≥ 0.

Since a is normal, it follows that m = 0. Hence b is a hyponormal Toeplitz operator.
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4. Spectral Theory

For a bounded linear operator T on a Banach space X, or more generally a Banach algebra element, we
write σ(T), τ(T) and π(T) for the spectrum, approximate point spectrum and point spectrum, respectively.
Notice that the spectrum σ(T) and approximate point spectrum τ(T) are compact and nonempty, although
not necessarily the point spectrum π(T)(see [7] or [9]). For example

4.1 T = Lφ =⇒ σ(T) = τ(T) = σ(φ) = φess(S),

coincides with the essential range of the symbol:

4.2 A ∈ L(ℓ2) � Lφ ∈ L(L2) =⇒ symbol(A) = φ ∈ L∞.

For example

4.3 symbol(U) = z : λ 7→ λ ; symbol(V) = z∗ : λ 7→ λ.

The spectrum of the sum of a Laurent and a bilateral Hankel operator is (Walsh [15], Murphy [13]) interesting,
and given by the spectrum of a 2 × 2 matrix of symbol functions:

4.4 A � Lφ,B � Lψ =⇒ σ(A + BE) = σ
(
φ ψ
ψ∨ φ∨

)
.

We are tempted to write

4.5 symbol(A + BE) =
(
φ ψ
ψ∨ φ∨

)
,

where

4.6 λ ∈ S =⇒ φ∨(λ) = φ(−λ).

Thus the sum A + BE of a Laurent and a bilateral Hankel operator has in effect ([Harte, Hernandez [10]) an
adjugate and a determinant:

4.7 adj(A + BE) = EAE − BE ∈ L(ℓ2) ; det(A + BE) = AEAE − BEBE ∈ L∞.

The spectrum of the Laurent operator A � Lφ is given by its symbol as in (4.2), while for a bilateral Hankel
operator we have

4.8 σ((BE)2) = σ(LψLψ∨ ) = σ(ψψ∨).

The spectrum of the sum of a Laurent and a bilateral Hankel is the same as that of its (vector valued) symbol:

4.9 λ < σ(A + BE)⇐⇒ det(A + BE − λI) ∈ L∞(S)−1.

The spectral theory of Toeplitz operators is much more complicated than that of Laurent operators, and
we can say nothing about sums of Toeplitz and Hankel operators.

The Coburn alternative (see [7, Proposition 7.24] or [1, Theorem 3.3.10]) says that for a Toeplitz operator
a whose symbol is a nonzero function in L∞, π(a) = ∅ or π(a∗) = ∅. It is also true [2, Theorem 5] that the
spectrum, and the Fredholm essential spectrum, of a Toeplitz operator coincide, and are a connected subset
of C:

4.10 σ(Tφ) = σess(Tφ).
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Theorem 4.1. If A =
(
a m
n b

)
is Laurent where ab = mn, bn = nb, and n is invertible, then the following statements

hold;
(i) σ(A) \ {0} is connected. Moreover, if ess ran (a + b)∼ is convex, then σ(A) \ {0} =ess ran (a + b)∼.
(ii) If π(a∗) , ∅ and π(a∗ + b∗) , ∅, then π(A) = {0}.

Proof. (i) Suppose A =
(
a m
n b

)
is Laurent where ab = mn, bn = nb, and n is invertible. Then a, b are Toeplitz

from Theorem 2.3 and so a+b is also Toeplitz. We first show σ(A)\ {0} = σ(a+b)\ {0}. By (4.9), cf [8], Problem
71 that A − λ is invertible if and only if (a − λ)(b − λ) − mn is invertible. Since ab = mn, it follows that A is
not invertible if and only if a + b − λ is not invertible. Therefore σ(A) \ {0} = σ(a + b) \ {0} from [2, Theorem
5]. Hence σ(A) \ {0} is connected. The last statement holds from [1, Corollary 3.3.7].

(ii) We first claim that if A =
(
a m
n b

)
is Laurent where ab = mn, bn = nb, and n is invertible, then

τ(A) \ {0} ⊂ τ(a) ∪ τ(a + b). Indeed, if λ ∈ τ(A) \ {0}, then there exists a sequence {xk ⊕ yk} ⊂ X ⊕ X with
∥xk∥

2 + ∥yk∥
2 = 1 for all k such that

lim
k→∞
∥(A − λ)(xk ⊕ yk)∥ = 0,

which yields that

4.11

limk→∞ ∥(a − λ)xk +myk∥ = 0
limk→∞ ∥nxk + (b − λ)yk∥ = 0.

Multiply the first equation of (4.11) with n and the second equation of (4.11) with a, respectively, we have

4.12

limk→∞ ∥(an − λn)xk +mnyk∥ = 0
limk→∞ ∥anxk + (ab − λa)yk∥ = 0.

Since ab = mn and λ is nonzero, we have limk→∞ ∥ayk−nxk∥ = 0 from (4.12). Combining this with the second
equation of (4.11), we get that

lim
k→∞
∥(a + b − λ)yk∥ = 0.

If limk→∞ ∥yk∥ , 0, then λ ∈ τ(a+ b).Otherwise, i.e., limk→∞ ∥yk∥ = 0, we obtain from (4.11) that limk→∞ ∥(a−
λ)xk∥ = 0. If limk→∞ ∥xk∥ , 0, then λ ∈ τ(a). Therefore τ(A) \ {0} ⊂ τ(a) ∪ τ(a + b).

By Coburn Alternative in [7], we know that a and a+ b are injective whose symbols are nonzero function
in L∞. Then π(a) and π(a + b) are empty sets. Since π(A) \ {0} ⊂ π(a) ∪ π(a + b) = ∅ by the previous note, it
follows that π(A) = {0}.

Corollary 4.2. If A =
(
a m
n b

)
is bilateral Hankel with ab = mn, bn = nb, and n is invertible, then the following

statements hold;
(i) σ(A) \ {0} is connected. Moreover, if ess ran (m + n)∼ is convex, then σ(A) \ {0} =ess ran (m + n)∼.
(ii) If π(m∗) , ∅ and π(m∗ + n∗) , ∅, then π(A) = {0}.

Proof. Suppose that A is bilateral Hankel. Then AE =
(
m a
b n

)
is Laurent by Theorem 2.2. Hence these

results follow from Theorem 4.1.

Proposition 4.3. If A =
(
a m
0 b

)
is Laurent, then the following properties hold;

(i) If σ(a) ∩ σ(b) , ∅, then σ(A) is connected.
(ii) τ(A) ⊂ τ(a) ∪ τ(b) ⊂ σ(a) ∪ σ(b).
(iii) If π(a∗) , ∅ and π(b∗) , ∅, then A is injective.
(iv) If a∗ and b are analytic, and b is invertible, then A is invertible if and only if ab is an invertible Toeplitz operator.



R. Harte et al. / Filomat 37:10 (2023), 3091–3104 3104

Proof. Suppose A =
(
a m
0 b

)
is Laurent. Then a, b are Toeplitz from Theorem 2.3.

(i) Since a, b are Toeplitz, it follows from [2, Theorem 5] that σ(a) and σ(b) are connected. Moreover, since
σ(a)∩ σ(b) , ∅, σ(A) ⊂ σ(a)∪ σ(b), and the closure of a connected subset is connected, we conclude that σ(A)
is connected.

(ii) The proof is clear.
(iii) By Coburn Alternative in [7], we know that a and b are injective whose symbols are nonzero functions

in L∞. Then π(a) and π(b) are empty sets. Since π(A) ⊂ π(a) ∪ π(b) = ∅, it follows that π(A) = ∅. Hence A is
injective.

(iv) If b is invertible, then we know from [8] that A is invertible if and only if ab is invertible. Since a∗

and b are analytic, it follows from [3, Theorem 8] that ab is a Toeplitz operator. Hence this result holds.

Corollary 4.4. Let A =
(
a m
0 b

)
be Laurent. If a and b have the single-valued extension property, then Weyl’s theorem

holds for A.

Proof. If A =
(
a m
0 b

)
is Laurent, then a, b are Toeplitz from Theorem 2.3. Since a and b satisfy Weyl’s theorem

and are isoloid by [4, Theorem 4.1], and have the single-valued extension property, it follows from [11,
Corollary 11] that Weyl’s theorem holds for A.
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