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Available at: http://www.pmf.ni.ac.rs/filomat

Regularity theory for quasilinear elliptic equations of p-Schrödinger
type with certain potentials
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Abstract. In this paper we study the regularity theory in Orlicz spaces for the following divergence
quasilinear elliptic equations of p-Schrödinger type with certain potentials in the whole space Rn under
some proper conditions

−div
(
|∇u|p−2

∇u
)
+ V(x) |u|p−2 u = −div

(
|f|p−2 f

)
.

Especially when p = 2, the above equation can be reduced to the classical linear divergence elliptic
Schrödinger equation

−∆u + V(x)u = −div f.
Moreover, we would like to remark that the results in this work generalize the results of our previous paper
[50].

1. Introduction

The Calderón-Zygmund type estimates (Lp-type estimates), whose main purpose is to obtain Lp bounds
in Sobolev spaces for a variety of operators and solutions of equations, have been proved to be a power tool
in many aspects of harmonic analysis and partial differential equations. As we know, every differentiable
function in the classical function spaces is required to have derivative at any point of the domain. However,
this condition is very harsh in partial differential equations. Sobolev spaces, which consist of some kinds
of functions with weak derivatives are commonly used in many fields of mathematics, have turned out to
be one of the most powerful tools in analysis created in the 20th century. The definitions and properties
of Sobolev spaces can be found in numerous monographs and textbooks (see [2]). Subsequently, Orlicz
spaces [2, 13, 30] which were introduced by Orlicz [38] have been studied as the most natural generalization
of Sobolev spaces as a result of the need in various practical problems to use wider spaces of functions
than Sobolev spaces. The theory of Orlicz spaces plays a fairly important role in a wide variety of fields
of mathematics including partial differential equations, Fourier analysis, geometry, probability theory,
stochastic analysis, and insurance and financial mathematics (see [40]).

The aim of this paper is to study the regularity in Orlicz spaces for the following divergence quasilinear
elliptic equations of p-Schrödinger type

−div
(
|∇u|p−2

∇u
)
+ V(x) |u|p−2 u = −div

(
|f|p−2 f

)
in Rn, n ≥ 2, (1)
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where p > 1, x = (x1, ..., xn) ∈ Rn, the nonnegative potential V > 0 a.e., V ∈ L∞loc(R
n) and

sup
Br

|V(x)| ≤ C
∫

Br

V(x) dx for any ball Br ⊂ R
n, (2)

where ∫
Br

V(x) dx =
1
|Br|

∫
Br

V(x) dx.

In other words, this means that V ∈ A∞ (see [43], Pages 194-197). Generally speaking, we say that V belongs
to the class of the reverse Hölder weights Aq for some 1 < q < ∞ if V ∈ Lq

loc(R
n), V > 0 a.e. and(∫

Br

Vq(x) dx
)1/q

≤ C
∫

Br

V(x) dx. (3)

If q = ∞, then the left hand side (3) is replaced by the essential supremum in (2). It is easy to check that
V ∈ Aq for every q > 1 if V ∈ A∞.

Especially when p = 2, (1) is reduced to the classical linear divergence elliptic Schrödinger equation

−∆u + V(x)u = −div f. (4)

As is well known, the Schrödinger equation is one of the most fundamental equations of physics for
describing the spatial and temporal behavior of quantum-mechanical systems, which was proposed by
Austrian physicist Erwin Schrödinger in 1926. The Schrödinger equation is widely used within physics
and takes several different forms depending on the physical situation. In certain physical situations it may
be appropriate to incorporate some kind of randomness into the equation. There are the time dependent
equation used for describing progressive waves and the time independent form of this equation used for
describing standing waves. The Schrödinger time-independent equation can be solved analytically for a
few simple systems. Solutions to the Schrödinger equation describe not only subatomic particles, atoms,
and molecules, but also macroscopic systems, possibly even the whole universe. Due to its deeper modern
physical and mathematical significance, Lp-type estimates for (4) have been paid considerable attention in
recent decades. We refer the readers to Refs. [39, 41, 42, 45, 49, 53] and the references therein for Calderón-
Zygmund type estimates of the elliptic Schrödinger operator L = −∆ + V(x), where V(x) is a nonnegative
potential. Moreover, there are also many investigations [16, 26, 44] on the Lp estimates for the parabolic
Schrödinger equation ut − ∆u + Vu = f .

In the last years, the nonlinear Schrödinger equations (NLSEs) have been widely investigated by several
authors, which are models for different physical phenomena: the propagation in birefringent optical
fibers, Kerr-like photorefractive media in optics and Bose-Einstein condensates. There are many famous
NLSEs such as derivative NLSE, Kundu Mukherjee Naskar model, Fokas-Lenells equation, Biswas-Arshed
equation and so on. When V(x) ≡ 0, the elliptic PDE of p-Schrödinger type (1) can be simplified to the
classical elliptic PDE of p-Laplacian type

−div
(
|∇u|p−2

∇u
)
= −div

(
|f|p−2 f

)
. (5)

There have been a wide research activities (see [4, 8, 12, 17, 27, 29, 36]) on the study on Lp-type regularity
for weak solutions to (5) and the general case with the different coefficients and domains. Meanwhile,
some authors [5, 14, 15, 34, 35, 52] also investigated regularity estimates in Orlicz and Lorentz spaces for
weak solutions of the elliptic PDEs of p-Laplacian type. Moreover, many authors [7, 9–11, 18, 19, 23, 25]
also studied various kinds of regularity estimates for weak solutions to (5) and the general case. For the
better part of a decade, some scholars [22, 31, 46] began to study the corresponding regularity estimates
including Lipschitz regularity and Lp-type estimates for weak solutions of the elliptic equations with p-
growth of Schrödinger type. Just recently, some authors [3, 48] considered the Schrödinger-Kirchhoff type
operator involving the fractional p-Laplacian L = (−∆)s

pu+V(x)|u|p−2u. On the other hand, the authors have
investigated the global regularity estimates in Sobolev and Orlicz spaces for weak solutions of elliptic PDE



F. Yao / Filomat 37:10 (2023), 3105–3117 3107

of p-Laplacian type (5) in the whole space Rn (see [20, 51]) and the general p(x)-Laplacian case in the whole
space (see [21]).

Actually, we [47] have obtained the regularity estimates in Orlicz spaces for the Poisson equation
−∆u = f in the whole space Rn, in which we proved that∫

Rn
ϕ

(∣∣∣D2u
∣∣∣) dx ≤ C

∫
Rn
ϕ

(∣∣∣ f ∣∣∣) dx, (6)

where C is a positive constant independent of u and f . Indeed, if ϕ(t) = tp, the above estimate is reduced to
the classical Lp estimate. Meanwhile, we also verify that the global ∆2 ∩∇2 condition on the Orlicz function
ϕ is optimal. Here we want to mention that ϕ(t) = tp ln(1+ t) for p > 1 satisfies the global ∆2 ∩∇2 condition.
Furthermore, we [50] also proved the above regularity estimates in Orlicz spaces∫

Rn
ϕ

(∣∣∣D2u
∣∣∣) dx +

∫
Rn
ϕ (|Vu|) dx ≤ C

∫
Rn
ϕ

(∣∣∣ f ∣∣∣) dx (7)

for the Schrödinger equation (1) in Rn when V satisfies the condition (2) and ϕ ∈ ∆2 ∩ ∇2. In this work
we will extend the result in [50] in the context of the nonlinear elliptic p-Schrödinger equation (1) in Rn.
Similarly to the previous paper [50], we assume that V ∈ A∞ due to the technical difficulties. We remark
that the major difficulties are the nonlinearity of the equation itself, the inhomogeneity of Orlicz function
ϕ(t) and the unboundedness of the domain.

As usual, the solutions of (1) are taken in a weak sense. For the sake of contrast and better understanding,
we first recall the definition of the weak solution of the classical elliptic PDE of p-Laplacian type (5) in Rn

(see [20, 27]). More precisely, we say that u ∈ Dp (Rn) is a weak solution of (5) in Rn with f ∈ Lp(Rn) if for
each φ ∈ C∞0 (Rn),we have ∫

Rn
|∇u|p−2

∇u · ∇φ dx =
∫
Rn
|f|p−2 f · ∇φ dx,

where Dp (Rn) :=
{

u ∈ Lp
loc(R

n)
∣∣∣ ∇u ∈ Lp(Rn)

}
. We now state the definition of weak solutions in this paper.

Definition 1.1. Assume that f ∈ Lp(Rn). A function u ∈ Dp
V (Rn) is a weak solution of (1) if for each φ ∈ C∞0 (Rn),

we have ∫
Rn
|∇u|p−2

∇u · ∇φ + V(x) |u|p−2 u · φ dx =
∫
Rn
|f|p−2 f · ∇φ dx,

where Dp
V (Rn) :=

{
u ∈ Lp

loc(R
n)

∣∣∣ ∇u ∈ Lp(Rn) and V|u|p ∈ L1(Rn)
}
.

Now let us state the main result of this work.

Theorem 1.2. Assume that ϕ ∈ ∆2 ∩ ∇2 (see Definition 2.1) and V ∈ A∞. If u is the weak solution of the nonlinear
elliptic p-Schrödinger type equation (1), then we have∫

Rn
ϕ

(
[Φ (u,V)]p) dx ≤ C

∫
Rn
ϕ (|f|p) dx, (8)

where

Φ (u,V) := |∇u| + V
1
p |u| . (9)

Here we notice that when ϕ(t) = tq, the result in the above theorem can be simplified to be the classical
Lp-type estimates. We would like to stress that our approach is very much influenced by [1, 37]. In [1]
Acerbi and Mingione found a new covering/iteration approach (see [37] for its origin) involving the large-M-
inequality principle (here M = 1

δ in (11)) to overcome the difficulty in the scaling-invariant problem for the
parabolic p-Laplacian equations. Remarkably enough, the above method takes advantage of a stopping time
argument and Vitali’s covering lemma without using the Calderón-Zygmund decomposition and maximal
functions, which were usually used to get the Lp-type regularity estimates for all kinds of linear/nonlinear
elliptic problems. As a matter of fact, this approach has been widely used in Lp-type regularity theory for
various kinds of nonlinear elliptic and parabolic equations.
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2. Proof of the main result

This section is devoted to the proof of the main result stated in Theorem 1.2. We shall give some
definitions and lemmas, which will be used later. For convenience of the readers, we first recall some
definitions and conclusions on the properties of the general Orlicz spaces.

Definition 2.1. A convex function ϕ : [0,+∞) −→ [0,+∞) is said to be a Young function if

lim
t→0+

ϕ(t)
t
= lim

t→+∞

t
ϕ(t)

= 0 and ϕ(0) = 0.

A Young function ϕ is said to satisfy the global ∆2 condition, denoted by ϕ ∈ ∆2, if

ϕ(2t) ≤ Kϕ(t) for every t > 0 and some constant K > 0.

Moreover, a Young function ϕ is said to satisfy the global ∇2 condition, denoted by ϕ ∈ ∇2, if

ϕ(t) ≤
ϕ(at)

2a
for every t > 0 and some constant a > 1.

Remark 2.2. The two simple examples for functions satisfying the ∆2 ∩ ∇2 condition are

ϕ1(t) = tp and ϕ2(t) = tp ln(1 + t) for p > 1.

Actually, another interesting example is related to (p, q)-growth condition given by appropriate gluing of the monomials
in Page 600 of [6] and Page 314 of [32]. We remark that

ϕ3(t) = t ln(1 + t) < ∇2 and ϕ4(t) = et < ∆2.

Actually, ϕ ∈ ∆2 ∩ ∇2 if and only if there exist constants A2 ≥ A1 > 0 and α1 ≥ α2 > 1 such that

A1

( s
t

)α2

≤
ϕ(s)
ϕ(t)

≤ A2

( s
t

)α1

for any 0 < t ≤ s. (10)

Definition 2.3. Let ϕ be a Young function. Then the Orlicz class Kϕ(Ω) is the set of all measurable functions
1 : Ω→ R satisfying ∫

Ω

ϕ(|1|) dx < ∞.

The Orlicz space Lϕ(Ω) is the linear hull of Kϕ(Ω).

Lemma 2.4. Let ϕ be a Young function with ϕ ∈ △2 ∩ ∇2 and 1 ∈ Lϕ(Ω). Then we have

1. Kϕ(Ω) = Lϕ(Ω) and C∞0 (Ω) is dense in Lϕ(Ω).

2.
∫
Ω

ϕ(|1|) dx =
∫
∞

0
|{x ∈ Ω : |1| > µ}| d

[
ϕ(µ)

]
.

Proof. The result (1) can follow from [2]. Moreover, we see that∫
Ω

ϕ(|1|) dx =
∫
Ω

∫
|1|

0
d
[
ϕ(µ)

]
dx =

∫
Ω

∫
∞

0
χ{x∈Ω:|1|>µ} d

[
ϕ(µ)

]
dx,

where χQ is the characteristic function of the set Q in Rn. Then by Fubini’s theorem, we can easily obtain
the result.

Moreover, we have the following integral inequality.
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Lemma 2.5. If ϕ ∈ △2 ∩ ∇2 and 1 ∈ Lϕ(Rn), then for any b1, b2 > 0 we have∫
∞

0

1
µ

{∫
{x∈Rn:|1|>b1µ}

|1|dx
}

d
[
ϕ(b2µ)

]
≤ C(b1, b2, ϕ)

∫
Rn
ϕ(|1|) dx.

Proof. We interchange the order of integration and use integration by parts to deduce that

I :=
∫
∞

0

1
µ

{∫
{x∈Rn:|1|>b1µ}

|1|dx
}

d
[
ϕ(b2µ)

]
=

∫
Rn
|1|


∫
|1|/b1

0

d
[
ϕ(b2µ)

]
µ

 dx

≤

∫
Rn
|1|

{
ϕ(b2|1|/b1)

(|1|/b1)
+

∫
|1|/b1

0

ϕ(b2µ)
µ2 dµ

}
dx.

Thus, it follows from (10) that

I ≤ C
∫
Rn
ϕ(|1|) dx + C

∫
Rn
ϕ(b2|1|/b1)|1|1−α2

{∫
|1|/b1

0

1
µ2−α2

dµ
}

dx

≤ C
∫
Rn
ϕ(|1|) dx,

which finishes our proof.

Now we give the important iteration-covering procedure, which was first introduced by [1, 37]. Now
we define

λp
0 :=

∫
Rn

[Φ (u,V)]p dx +
1
δ

∫
Rn
|f|p dx, (11)

where Φ (u,V) is defined in (9) and δ ∈ (0, 1) is a small enough constant which will be determined later. Set

uλ :=
u
λ0λ

and fλ :=
f
λ0λ

for any λ > 0. (12)

Then uλ is still the solution of (1) with fλ replacing f. Moreover, we write

J [uλ, fλ,V,B] :=
∫

B
[Φ (uλ,V)]p dx +

1
δ

∫
B
|fλ|p dx for any domain B ⊂ Rn

and the level set
E(uλ,V, 1) :=

{
x ∈ Rn : Φ (uλ,V) > 1

}
.

Next, we will decompose the level set E(uλ,V, 1) into a family of disjoint small domains.

Lemma 2.6. For anyλ > 0, there exists a family of disjoint balls
{
Bρi (xi)

}
i≥1

with xi ∈ E(uλ,V, 1) andρi = ρ(xi, λ) > 0
such that

J
[
uλ, fλ,V,Bρi (xi)

]
= 1, (13)

J
[
uλ, fλ,V,Bρ(xi)

]
< 1 for any ρ > ρi (14)

and

E(uλ,V, 1) ⊂
⋃
i≥1

B5ρi (xi) ∪ negligible set. (15)
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Proof. Fix any x ∈ Rn and ρ ≥ ρ0 = ρ0 (λ) > 0 with λp
|Bρ0
| = 1. Then it follows from (11) and (12) that

J
[
uλ, fλ,V,Bρ(x)

]
=

∫
Bρ(x)

[Φ (uλ,V)]p dx +
1
δ

∫
Bρ(x)
|fλ|p dx

≤
1

|Bρ(x)|

[∫
Rn

[Φ (uλ,V)]p dx +
1
δ

∫
Rn
|fλ|p dx

]
≤

1
|Bρ(x)|λp ≤ 1,

which implies that

sup
x∈Rn

sup
ρ≥ρ0

J
[
uλ, fλ,V,Bρ(x)

]
≤ 1. (16)

Thus, by using Lebesgue’s differentiation theorem, for a.e. x ∈ E(uλ,V, 1) we know that

lim
ρ→0

J
[
uλ, fλ,V,Bρ(x)

]
> 1,

which implies that there exists some ρ > 0 such that

J
[
uλ, fλ,V,Bρ(x)

]
> 1.

So, from (16) one can select a radius ρx ∈
(
0, ρ0

]
such that

ρx = max
{
ρ ∈

(
0, ρ0

]
: J

[
uλ, fλ,V,Bρ(x)

]
= 1

}
,

J
[
uλ, fλ,V,Bρx (x)

]
= 1 and J

[
uλ, fλ,V,Bρ(x)

]
< 1 for any ρ > ρx.

Therefore, we apply Vitali’s covering lemma to find a family of disjoint balls
{
Bρi (xi)

}
i≥1

such that (13)-(15)
hold.

Lemma 2.7. Under the same assumed conditions as those in the above lemma, we have

|Bρi (xi)| ≤ 3
∫
{x∈Bρi (xi): [Φ(uλ,V)]p> 1

3 }

[Φ (uλ,V)]p dx +
3
δ

∫
{x∈Bρi (xi): |fλ |p> δ3 }

|fλ|p dx. (17)

Proof. From (13) in the lemma above we see

|Bρi (xi)| =
∫

Bρi (xi)
[Φ (uλ,V)]p dx +

1
δ

∫
Bρi (xi)

|fλ|p dx.

Therefore, by splitting the two integrals above as follows we have

|Bρi (xi)| ≤
∫
{x∈Bρi (xi): [Φ(uλ,V)]p> 1

3 }

[Φ (uλ,V)]p dx +
1
3
|Bρi (xi)| +

1
δ

∫
{x∈Bρi (xi): |fλ |p> δ3 }

|fλ|p dx +
1
3
|Bρi (xi)|.

Thus we can finish the proof.

Since V ∈ A∞, we know that V ∈ At for every t > 1. And then we’ll recall the following type of
reverse-Hölder inequality.
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Lemma 2.8 ([43], Page 195). Assume that V ∈ A∞. Then we have∫
B
1 dx ≤

(
C

V(B)

∫
B

V1t dx
) 1

t

for every t > 1, any nonnegative integrable function 1 and all balls B, where

V(B) =
∫

B
V(x) dx.

Subsequently, we recall the local bounded property for weak solutions of the reference equation

−div
(
|∇h|p−2

∇h
)
+ V(x) |h|p−2 h = 0, (18)

whose proof is totally similar to the proof of Lemma 3.5 in [31]. Here we used Theorem 7.3 in [28] for any
θ > 0.

Lemma 2.9. Assume that V ∈ A∞. If h(x) is a weak solution of (18), then for every θ > 0 there exists a positive
constant C = C(θ) such that

sup
Br

|h| ≤ C
(∫

B2r

|h|θ dx
) 1
θ

. (19)

Moreover, we shall prove the following local Lipschitz regularity of weak solutions to the reference
equation (18).

Lemma 2.10. Assume that V ∈ A∞. If h(x) is a weak solution of (18), then there exists a positive constant C,
depending on n, such that

sup
Br

|h|p ≤
C

V(B2r)

∫
B2r

V|h|p dx.

Proof. Using Lemma 2.8 and Lemma 2.9 with θ = p
t , we find that

sup
Br

|h|p ≤ C
(∫

B2r

[|h|p]
1
t dx

)t

≤
C

V(B2r)

∫
B2r

V|h|p dx.

Therefore, this completes our proof.

Next, we shall derive comparison results between h and the weak solution u of (1).

Lemma 2.11. Let 1 < p < +∞. For any ϵ > 0, there exists a small positive constant δ = δ(ϵ,n, p) such that if u is
the weak solution of (1),(∫

B2r

[Φ (uλ,V)]p dx
) 1

p

< 1 and
(∫

B2r

|fλ|p dx
) 1

p

< δ, (20)

then we have∫
B2r

[Φ (h,V)]p dx ≤
∫

B2r

[Φ (uλ,V)]p dx (21)

and (∫
B2r

[Φ (uλ − h,V)]p dx
) 1

p

< ϵ, (22)

where h is the weak solution of (18) in B2r with h = uλ on ∂B2r.



F. Yao / Filomat 37:10 (2023), 3105–3117 3112

Proof. If u and h are the weak solutions of (1) in Ω and (18) in B2r with h = uλ on ∂B2r respectively, then by
selecting the test function φ = uλ − h in Definition 1.1 we find that∫

B2r

|∇h|p−2
∇h · ∇(uλ − h) + V(x) |h|p−2 h · (uλ − h) dx = 0 (23)

and ∫
B2r

|∇uλ|p−2
∇uλ · ∇(uλ − h) + V(x) |uλ|p−2 uλ · (uλ − h) dx =

∫
B2r

|fλ|p−2 fλ · ∇(uλ − h) dx. (24)

Using (23) and Young’s inequality, we deduce that∫
B2r

[Φ (h,V)]p dx =

∫
B2r

|∇h|p + V(x) |h|p dx

≤ C
∫

B2r

|∇uλ|p + V(x) |uλ|p dx =
∫

B2r

[Φ (uλ,V)]p dx, (25)

which implies that (21) is true. Moreover, after a direct calculation we use (23)-(24) to show the resulting
expression as

I1 + I2 = I3, (26)

where

I1 :=
∫

B2r

(
|∇uλ|p−2

∇uλ − |∇h|p−2
∇h

)
· ∇ (uλ − h) dx,

I2 :=
∫

B2r

V(x)
(
|uλ|p−2uλ − |h|p−2h

)
· (uλ − h) dx,

I3 :=
∫

B2r

|fλ|p−2 fλ · ∇(uλ − h) dx.

Estimate of I1. We divide it into two cases:
Case 1. p ≥ 2. Using the elementary inequality

(|ξ|p−2ξ − |η|p−2η) · (ξ − η) ≥ C|ξ − η|p

for every ξ, η ∈ Rn with C = C(p), we have

I1 ≥ C
∫

B2r

|∇(uλ − h)|p dx.

Case 2. 1 < p < 2. From the following elementary inequality

C|ξ − η|p ≤ (|ξ|p−2ξ − |η|p−2η) · (ξ − η) + τ|η|p

for every ξ, η ∈ Rn and any small constant τ > 0 with C = C(p, τ), we have

I1 + τ

∫
B2r

|∇uλ|p dx ≥ C
∫

B2r

|∇(uλ − h)|p dx.

Estimate of I2. Similarly to the proofs of I1, for any p > 1 we have

I2 + τ

∫
B2r

V(x)|uλ|p dx ≥ C
∫

B2r

V(x) |uλ − h|p dx.

Estimate of I3. Now we apply Young’s inequality to conclude that

I3 ≤ τ

∫
B2r

|∇(uλ − h)|p dx + C(τ)
∫

B2r

|fλ|p dx.
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Finally, we combine all the estimates of Ii (1 ≤ i ≤ 3) and choose τ > 0 small enough to see that∫
B2r

[Φ (uλ − h,V)]p dx =

∫
B2r

|∇(uλ − h)|p + V(x) |uλ − h|p dx

≤ C
∫

B2r

|fλ|p dx + τ
∫

B2r

|∇uλ|p + V(x)|uλ|p dx

= C
∫

B2r

|fλ|p dx + τ
∫

B2r

[Φ (uλ,V)]p dx

≤ Cδp + Cτ ≤ ϵp,

where we have used (20) and (25), and selected δ, τ small enough satisfying the last inequality. Therefore,
we finish the proof of this lemma.

Now we shall finish the proof of the main result: Theorem 1.2.

Proof. Fix i ≥ 1. In view of Lemma 2.6, we obtain∫
B10ρi (xi)

[Φ (uλ,V)]p dx ≤ 1 and
∫

B10ρi (xi)
|fλ|p dx ≤ δp. (27)

Let h be the weak solution of (18) in B10ρi (xi) with h = uλ on ∂B10ρi (xi). Then it follows from (27) and Lemma
2.11 that∫

B10ρi (xi)
V|h|p dx ≤ C

∫
B10ρi (xi)

V |uλ − h|p dx + C
∫

B10ρi (xi)
V |uλ|p dx

≤ C
∫

B10ρi (xi)
[Φ (uλ − h,V)]p dx + C

∫
B10ρi (xi)

[Φ (uλ,V)]p dx

≤ C.

Then from the above inequality and Lemma 2.10 we find that

sup
B6ρi (xi)

V|h|p ≤ C sup
B6ρi (xi)

V
[
V(B10ρi (xi))

]−1
∫

B10ρi (xi)
V|h|p dx

≤ C sup
B10ρi (xi)

V

∫
B10ρi (xi)

V dx

−1

,

which follows from the fact that V ∈ A∞ that

sup
B6ρi (xi)

V|h|p ≤ N1 for some constant N1 > 1. (28)

Using the above inequality (28) and then recalling [24, 33], we get the following local Lipschitz regularity

sup
B5ρi (xi)

|∇h|p ≤ C


∫

B6ρi (xi)
|∇h|p dx


1
p

,
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which implies that

sup
B5ρi (xi)

|∇h|p ≤ C


∫

B10ρi (xi)
|∇h|p dx


1
p

≤ C


∫

B10ρi (xi)
[Φ (uλ,V)]p dx


1
p

≤ N2 for some constant N2 > 1, (29)

where we have used (21) and (27). Thus, (28) and (29) imply that

sup
B5ρi (xi)

[Φ (h,V)]p
≤ N1 +N2 =: N3. (30)

Choosing µ = [λλ0]p, where λ0 is defined in (11), we deduce from (12) and (30) that∣∣∣∣{x ∈ B5ρi (xi) : [Φ (u,V)]p > 2pN3µ
}∣∣∣∣

=
∣∣∣∣{x ∈ B5ρi (xi) : [Φ (uλ,V)]p > 2pN3

}∣∣∣∣
≤

∣∣∣∣{x ∈ B5ρi (xi) : [Φ (uλ − h,V)]p > N3

}∣∣∣∣ + ∣∣∣∣{x ∈ B5ρi (xi) : [Φ (h,V)]p > N3

}∣∣∣∣
=

∣∣∣∣{x ∈ B5ρi (xi) : [Φ (uλ − h,V)]p > N3

}∣∣∣∣
≤

1
N3

∫
B5ρi (xi)

[Φ (uλ − h,V)]p dx,

where we have used the inequality

(a + b)p
≤ 2p−1 (ap + bp) for any a, b > 0.

So, we use (27) and Lemma 2.11 to prove that∣∣∣∣{x ∈ B5ρi (xi) : [Φ (u,V)]p > 2pN3µ
}∣∣∣∣ ≤ Cϵp|Bρi (xi)|.

Therefore, from Lemma 2.7 we see that∣∣∣∣{x ∈ B5ρi (xi) : [Φ (u,V)]p > 2pN3µ
}∣∣∣∣

≤
Cϵp

µ

∫
{x∈Bρi (xi): [Φ(u,V)]p>

µ
3 }

[Φ (u,V)]p dx +
1
δ

∫
{
x∈Bρi (xi): |f|p>

δµ
3

} |f|p dx

 .
Then recalling the fact that the balls {Bρi (xi)} are disjoint and⋃

i≥1

B5ρi (xi) ∪ negligible set ⊃ E(uλ,V, 1) for any λ > 0,

we have ∣∣∣{x ∈ Rn : [Φ (u,V)]p > 2pN3µ
}∣∣∣

≤

∑
i

∣∣∣∣{x ∈ B5ρi (xi) : [Φ (u,V)]p > 2pN3µ
}∣∣∣∣

≤
Cϵp

µ

∫
{x∈Rn: [Φ(u,V)]p>

µ
3 }

[Φ (u,V)]p dx +
1
δ

∫
{
x∈Rn: |f|p> δµ3

} |f|p dx

 . (31)
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Now we make use of Lemma 2.4 (2) and the above inequality (31) to compute∫
Rn
ϕ

(
[Φ (u,V)]p) dx =

∫
∞

0

∣∣∣{x ∈ Rn : [Φ (u,V)]p > 2pN3µ}
∣∣∣ d

[
ϕ

(
2pN3µ

)]
≤ Cϵp

∫
∞

0

1
µ


∫
{x∈Rn: [Φ(u,V)]p>

µ
3 }

[Φ (u,V)]p dx

 d
[
ϕ

(
2pN3µ

)]
+Cϵp

∫
∞

0

1
µ


∫

{
x∈Rn: |f|p> δµ3

} |f|p dx

 d
[
ϕ

(
2pN3µ

)]
.

Furthermore, Lemma 2.5 implies that∫
Rn
ϕ

(
[Φ (u,V)]p) dx ≤ C1ϵ

p
∫
Rn
ϕ

(
[Φ (u,V)]p) dx + C2ϵ

p
∫
Rn
ϕ

(
|f|p

)
dx,

where C1 = C1(n, ϕ) and C2 = C2(n, ϕ, δ, ϵ). Here we may as well assume that [Φ (u,V)]p
∈ Lϕ(Rn) via a

similar approximation argument in §3.1 of [47]. Finally, by choosing a suitable ϵ > 0 such that C1ϵp ≤ 1/2
we obtain ∫

Rn
ϕ

(
[Φ (u,V)]p) dx ≤ C

∫
Rn
ϕ

(
|f|p

)
dx,

which completes the proof.
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