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Abstract. In this paper, aiming at the shortcomings of the definition of LRG-Galois connections in [51], we
give a new definition of (strong) LRG-Galois connections, and we also introduce the notions of (L,N)-fuzzy
betweenness relations. By using a strong LRG-Galois connection in our sense, it is shown that the category of
(L,N)-fuzzy betweenness spaces and the category of (L,M)-fuzzy convex spaces are isomorphic. Moreover,
it is proved that the lattice of (L,M)-fuzzy convex structures and the lattice of (L,N)-fuzzy betweenness
relations are complete lattice isomorphic.

1. Introduction

Abstract convexity theory [30, 32] is one of the important branches of mathematics, it deals with set-
theoretic structures which satisfies axioms similar to that usual convex sets fulfill. It plays an important
role in various branches of mathematics. There are many different mathematical research fields that can
be applied to axiomatic convexity, such as lattices, topological spaces, metric spaces and graphs (see, for
example, [8, 13, 29, 31, 33, 34, 37, 44]).

Rosa [23, 24] first generalized convex structure to I-convex structure. Also, introduced fuzzy topology
fuzzy convexity spaces and the notion of fuzzy local convexity. Subsequently, many scholars generalize
convex structures to other fuzzy context from different viewpoints. Generally speaking, there are three
approaches to extensions of convex structures to the fuzzy context, they are called L-convex structures(see,
for example, [7, 9, 12, 15–17, 53]), M-fuzzifying convex structures (see, for example, [10, 14, 27, 36, 41, 42,
44, 51]) and (L,M)-fuzzy convex structures(see, for example, [25, 28]), respectively. Recently, there has been
significant research on fuzzy convex structures (see, for example, [2, 11, 18–21, 26, 38–40, 43, 47–49, 52]).
It should be stressed here that the notion of (L,M)-fuzzy convex structures was first introduced by Shi
and Xiu in [28], and the concept of the product of (L,M)-fuzzy convex structures was presented and their
fundamental properties were discussed. In particular, it was shown that that both L-convex structures and
M-fuzzifying convex structures can be regarded as special cases of (L,M)-fuzzy convex structures.

When studying the relationship between convex structures and other structures, An order-reversing
involution on lattice M plays an important role. An order-reversing involution can be regarded as a
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kind of generalization of complement. By using an order-reversing involution, Shi and Li [27] given
the isomorphism between M-fuzzifying convex spaces and M-fuzzifying betweenness spaces. Yang and
Pang[45] showed L-betweenness relations are categorically isomorphic to restricted L-hull operators and
L-remotehood systems, respectively. Pang[21] introduced two types of fuzzy hull operators, which are
called (L,M)-fuzzy hull operators and (L,M)-fuzzy restricted hull operators, respectively. It was shown
that they can be used to characterize (L,M)-fuzzy convex structures. But an order-reversing involution
can only transform each other on the same lattice. In view of this, Zhang[51] introduced a connection
combined with the wedge-below relation, by using this tool, it was shown that the category of M-fuzzifying
betweenness spaces and the category of M-fuzzifying convex spaces are isomorphic. It’s worth mentioning
that M-fuzzifying convex structures is a special kind of (L,M)-fuzzy convex structures. And there is a close
relationship between M-fuzzifying betweenness space and M-fuzzifying hull spaces. This inspires us to
define and study betweenness spaces in (L,N) (resp., (L,M))-fuzzy setting. We know that a pair mappings

M
f
⇄
1

N in [51] is called an LRG-Galois connection, if it satisfies the following conditions: For any x ∈ M

and y ∈ N,
(SG) f (x) ≥ y⇐⇒ 1(y) ≥ x.
(LRG) f (x) ◁op y⇐⇒ 1(y) ◁ x.
The idea of LRG-Galois connections proposed by Zhang is very good, because they can transform each

other on two completely distributive lattices. However, if a pair mappings M
f
⇄
1

N satisfies (LRG), then,

for each A ⊆ M, f (
∧

A) =
∨

f (A) need not be ture, and there is no f (1M) = 0N in general. Noticing this,
in the current paper, we will redefine the concept of (strong) LRG-Galois connections on two completely
distributive lattices to ensure that they have the function similar to order-reversing involutions.

This paper is organized as follows. In Section 2, we recall some necessary concepts which will be used

in this paper. In Section 3, we will give a counterexamples to show that if a pair mappings M
f
⇄
1

N satisfies

(LRG), then f need not be an
∧
−
∨

mapping and there is no f (1M) = 0N in general, then we will give a new
defnition of (strong) LRG-Galois connections. In Section 4, as a generalization of L-betweenness spaces and
N-fuzzifying betweenness spaces, we will introduce the concept of (L,N)-fuzzy betweenness spaces, then
we will use a (strong) LRG-Galois connection to discuss the categorical relationship between (L,M)-fuzzy
convex spaces and (L,N)-fuzzy betweenness spaces. Meanwhile, we also discuss the lattice relationship
between (L,M)-fuzzy convex structures and (L,N)-fuzzy betweenness relations.

2. Preliminaries

Let X be a non-empty set, M (resp. N) be a complete lattice and 0M (resp. 0N) and 1M (resp. 1N) denote
the least and the greatest elements in M, respectively. If a pair of mappings f : M −→ N and 1 : N −→ M (

M
f
⇄
1

N for short) satisfies f (x) ≥ y if and only if 1(y) ≥ x for any x ∈ M and y ∈ N, then the pair mappings

M
f
⇄
1

N is called a connection between M and N (see[51]). We say that a is wedge below b in M, denoted

by a ◁ b, if for every subset C ⊆ M,
∨

C ⩾ b implies c ⩾ a for some c ∈ C (see [6]). A complete lattice M
is completely distributive lattice if and only if b =

∨
{a ∈ M | a ◁ b}. β(b) is the greatest minimal family of

b. Further, the relation ◁op in M is defined as follows: b ◁op a iff for every subset D ⊆ M, b ⩾
∧

D implies
a ⩾ d for some d ∈ D. α(b) = {a ∈ M | b ◁op a} is the greatest maximal family of b. When M is a completely
distributive lattice, each element b in M has the greatest minimal family (resp. the greatest maximal family),
and b =

∨
β(b) =

∧
α(b) for each b ∈M(see [35]).

Let L be a complete lattice, we say that a is way below b in L, denoted by a ≪ b, if for all directed
subsets E ⊆ L,

∨
E ⩾ b implies e ⩾ a for some e ∈ E. A complete lattice L is said to be continuous, if

for all c ∈ L, ⇓ c is directed and c =
∨
⇓ c, where ⇓ c = {a ∈ L | a ≪ c} (see [4]). An L-fuzzy subset of

X in [5] is a mapping C : X −→ L and the family LX denoted the set of all fuzzy subsets of a given X.
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The operators on L can be translated onto LX in a pointwise way. The greatest and the least elements in
LX are denoted by 1X and 0X, respectively. For each λ ∈ L, let λ denote the constant L-fuzzy subset of
X with the value λ. xλ is defined by xλ(y) = λ if y = x and xλ(y) = 0 otherwise, is called a fuzzy point.
The set of all fuzzy points in LX is denoted by J(LX). We say {Bi}i∈I is a directed subset of LX, in symbols

{Bi}i∈I
dir
⊆ LX if for each B1,B2 ∈ {Bi}i∈I, there exists B3 ∈ {Bi}i∈I such that B1,B2 ≤ B3. We usually use the

symbol
∨d

i∈I Bi to represent the supremum of a directed subset {Bi}i∈I of LX. Let L(X) denote the family of all
finite L-subsets of X, i.e., L(X) = {B ∈ LX

| B is a finite L-subset of X}, where B is finite means the support set
of B, SuppB = {x ∈ X | B(x) , 0L} is finite (see [21]). Some concepts related to category theorey can be found
in [1].

Definition 2.1. ([27]) A pair (X,B) is called an M-fuzzifying betweeenness space, whereB : X×2(X)
−→M

satisfies the following conditions:
(MB1) For each x ∈ X, B(x, ∅) = 0M.
(MB2) If A ∈ 2(X) and x ∈ A, then B(x,A) = 1M.
(MB3)For each A,B ∈ 2(X) and x ∈ X, B(x,A) ≥ B(x,B) ∧

∧
y∈BB(y,A).

Where 2(X) be the family of all finite subsets of X, i.e., A ∈ 2(X) indicates that A is finite.

Definition 2.2. ([45]) A pair (X,B) is called an L-betweenness space, where B ⊆ L(X)
× J(LX) satisfies the

following conditions:
(LB1) For each xλ ∈ J(LX), (0X, xλ) < B.
(LB2) If xλ ≤ A, then (A, xλ) ∈ B.
(LB3) For each A,B ∈ L(X) and xλ ∈ J(LX), if (A, xλ) ∈ B and (B, yµ) ∈ B for all yµ ≤ A, then (B, xλ) ∈ B.
(LB4) (A, xλ) ∈ B if and only if ∀µ≪ λ, there exists B≪ A such that (B, xµ) ∈ B.
(LB5) (A, x∨

i∈I
λi ) ∈ B if and only if ∀i ∈ I, (A, xλi ) ∈ B.

Definition 2.3. ([3]) A mapping C : LX
−→M is called an (L,M)-fuzzy closure system on X if it satisfies the

following axioms:
(LMC1) C(0X) = C(1X) = 1M.
(LMC2) If {A j : j ∈ J} ⊆ LX is nonempty, then C(

∧
j∈J A j) ≥

∧
j∈J C(A j).

If C : LX
−→ M is an (L,M)-fuzzy closure system on X, then the pair (X,C) is called an (L,M)-fuzzy closure

space.

Definition 2.4. ([20, 21, 25, 28]) A closure system C is called an (L,M)-fuzzy convex structure, if one of the
following conditions hold (the second then following as a consequence)

(LMC3) If {A j : j ∈ J} ⊆ LX is nonempty and totally ordered by inclusion, then C(
∨

j∈J A j) ≥
∧

j∈J C(A j).

(LMC3) ⋆ If {Ak : k ∈ K} ⊆ LX is directed, then C(
∨d

k∈KAk) ≥
∧

k∈K C(Ak).
The pair (X,C) is called an (L,M)-fuzzy convex space. A mapping h : X −→ Y from an (L,M)-fuzzy convex
space (X,C) to another (L,M)-fuzzy convex space (Y,D) is said to be (L,M)-fuzzy convexity preserving
function ((L,M)-CP in short) if C(h←(B)) ≥ D(B) for all B ∈ LY. The category of all (L,M)-fuzzy convex
spaces as objects and all (L,M)-CPs as morphisms is denoted by (L,M)-FC. Obviously, (L,M)-fuzzy convex
space can degenerate to M-fuzzifying convex space and L-convex space by restricting L = {0, 1}, and
M = {0, 1}.

Definition 2.5. ([21]) A pair (X,H) is called an (L,M)-fuzzy restricted hull space, whereH : L(X)
−→MJ(LX)

satisfies the following conditions:
(LMRH1)H(0X)(xλ) = 0M.

(LMRH2)H(F)(xλ) = 1M for each xλ ≤ F.
(LMRH3)H(F)(yµ) ≥ H(G)(yµ) ∧

∧
xλ≤GH(F)(xλ).

(LMRH4)H(F)(xλ) =
∧
µ≪λ

∨
G≪FH(G)(xµ).
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(LMRH5)H(F)(x∨
i∈I
λi ) =

∧
i∈IH(F)(xλi ).

A mapping h : X −→ Y from an (L,M)-fuzzy restricted hull space (X,H1) to another (L,M)-fuzzy
restricted hull space (Y,H2) is said to be (L,M)-restricted hull-preserving mapping ((L,M)-RHP in short)
if H2(h→(U))(h(x)λ) ≥ H1(U)(xλ) for each U ∈ L(X) and each xλ ∈ J(LX). The category of all (L,M)-fuzzy
restricted hull spaces as objects and all (L,M)-RHPs as morphisms is denoted by (L,M)-FRH.

Definition 2.6. ([22, 46]) Let h : X −→ Y. Then the image h→(A) of A ∈ LX and the preimage h←(B) of B ∈ LY

are defined by: h→(A)(y) =
∨
{A(x) : x ∈ X, h(x) = y} and h←(B) = B ◦ h, respectively. It can be verified that

the pair (h→, h←) is a Galois connection on (LX,≤) and (LY,≤).

Lemma 2.7. ([21]) (L,M)-FC is isomorphic to (L,M)-FGH.

In the following sections, if not emphasized, we always assume that both M and N are completely
distributive lattices, and L is a continuous lattice.

3. A new definition of LRG-Galois connections

In [51], if a pair of mappings M
f
⇄
1

N is a connection and it satisfies the following condition:

(LRG) f (x) ◁op y⇐⇒ 1(y) ◁ x for any x ∈M and y ∈ N.

Then the pair mappings M
f
⇄
1

N is called an LRG-Galois connection.

Remark 3.1. If a pair of mappings M
f
⇄
1

N satisfies (LRG), then f need not be an
∧
−
∨

mapping and there

is no f (1M) = 0N in general, i.e., Corollary 3.4 in [51] need not be true. For example, let M = {0M, p, q, 1M} be a
diamond-type lattice (see Fig.1), and let N = {0N, a, b, c, d, 1N} (see Fig.2). Define two mappings f : M −→ N
and 1 : N −→M as follows:

f (x) =



a, if x = 1M,

b, if x = p,

c, if x = q,

1N, otherwise,

1(y) =



0M, if y = d,

0M, if y = 1N,

q, if y = c,

p, if y = b,

1M, otherwise.

Notice that 0M ̸◁ 0M ◁ p ◁ p (q ◁ q) ◁ 1M ̸◁ 1M, and 0N ◁op 0N ◁op a ̸◁op a ◁op b ◁op b (c ◁op c) ◁op

d ◁op d ◁op 1N ̸◁op 1N. We can verify that f (x) ◁op y ⇐⇒ 1(y) ◁ x for any x ∈ M and y ∈ N. However,

f (p ∧ q) , f (p) ∨ f (q), and f (1M) , 0N, i.e., the pair mappings M
f
⇄
1

N satisfies (LRG). But f need not be an∧
−
∨

mapping and there is no f (1M) = 0N.

@�
�@

• •
•

•

1M

0M

p q

Fig.1 The structure of M

@�
�@

• •
•

•

•

•

1N

d

a

0N

b c

Fig.2 The structure of N
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In order to give a reasonable definition with respect to LRG-Galois connections, let us recall that an
order-reversing involution ′ on M is a map (−)′ : M −→M such that for any c, d ∈M, the following conditions
hold: (1) c ≤ d implies d′ ≤ c′. (2) c′′ = c. The following properties hold for any subset {di : i ∈ J} ∈ M: (1)(∨

i∈J di

)′
=
∧

i∈J d′i . (2)
(∧

i∈J di

)′
=
∨

i∈J d′i . In particular, c′ ≥ d⇐⇒ d′ ≥ c, 1′ = 0 and 0′ = 1.
Notice that the properties of the order-reversing involution mentioned above, we redefine an LRG-Galois

connection as follows.

Definition 3.2. A pair mappings M
f
⇄
1

N is called an LRG-Galois connection, if M
f
⇄
1

N satisfies the

following conditions: for any x ∈M and y ∈ N,
(SC) (Connection) f (x) ≥ y⇐⇒ 1(y) ≥ x.
(LG) (◁op connection on the left ) f (x) ◁op y⇐⇒ 1(y) ◁ x.
(RG) (◁op connection on the right) f (x) ◁ y⇐⇒ 1(y) ◁op x.
(MJ) (

∧
−
∨

mapping) f (
∧

A) =
∨

f (A) for any A ⊆M.

If a pair mappings M
f
⇄
1

N is an LRG-Galois connection in our sense, and f is a bijection between M and N,

then we say that the pair mappings M
f
⇄
1

N is a strong LRG-Galois connection.

Remark 3.3. By (SC), we obtain f ◦ 1 ≥ idN and 1 ◦ f ≥ idM. By (LG), we obtain f is an antitone mapping,
f (0M) = 1N, and f (

∨
A) =

∧
f (A) for any A ⊆M(see [51]). Similarly, by (RG), we obtain 1 is also an antitone

mapping, 1(0N) = 1M and 1(
∨

B) =
∧
1(B) for any B ⊆ N.

Here we provide an example of an LRG-Galois connection in our sense.

Example 3.4. Let M = {0M, c, d, e, 1M} (see Fig.3), and let N = {0N, a, b, 1N} be a diamond-type lattice (see

Fig.4). Define a pair mappings M
f
⇄
1

N as follows:

f (x) =



a, if x = c,

b, if x = d,

1N, if x = 0M,

0N, otherwise,

1(y) =



1M, if y = 0N,

c, if y = a,

d, if y = b,

0M, otherwise.

Then we can verify that the pair mappings M
f
⇄
1

N is an LRG-Galois connection as defined in Definition

3.2.

@�
�@

• •
•

•

•

1M

e

0M

c d

Fig.3 The structure of M

@�
�@

• •
•

•

1N

0N

a b

Fig.4 The structure of N



H. Zhao et al. / Filomat 37:11 (2023), 3559–3573 3564

4. (L,N)-fuzzy betweenness relations

In this section, if not emphasized, we always assume that a pair mappings M
f
⇄
1

N is an LRG-Galois

connection as defined in Definition 3.2.

Definition 4.1. A mapping B : J(LX) × L(X)
−→ N is called an (L,N)-fuzzy betweenness relation on X if it

satisfies the following conditions:
(LNB1) B(xλ, 0X) = 0N.

(LNB2) B(xλ,F) = 1N for each xλ ≤ F.
(LNB3)

B(xλ,G) ∧
∧
yµ≤G

B(yµ,F) ≤ B(xλ,F).

(LNB4)
B(xλ,F) =

∧
µ≪λ

∨
G≪F

B(xµ,G).

(LNB5)
B(x∨

i∈I
λi ,F) =

∧
i∈I

B(xλi ,F).

The pair (X,B) is called an (L,N)-fuzzy betweenness space. A mapping h : X −→ Y from an (L,N)-
fuzzy betweenness space (X,B1) to another (L,N)-fuzzy betweenness space (Y,B2) is said to be (L,N)-fuzzy
betweenness-preserving mapping ((L,N)-BP in short) if B1(xλ,A) ≤ B2(h(x)λ, h→(A)) for each A ∈ L(X)

and each xλ ∈ J(LX). The category of all (L,N)-fuzzy betweenness spaces as objects and all (L,N)-BPs as
morphisms is denoted by (L,N)-FB.

Remark 4.2. Obviously, if L = {0, 1} and N = M, then (L,N)-fuzzy betweenness spaces can degenerate to
M-fuzzifying betweenness spaces. If N = {0, 1}, then (L,N)-fuzzy betweenness spaces can degenerate to
L-betweenness spaces. And, if N =M, then (L,M)-FRH is isomorphic to (L,M)-FB.

Theorem 4.3. Let (X,B) be an (L,N)-fuzzy betweenness space. Define CB : LX
−→M by

∀A ∈ LX, CB(A) =
∧

xλ≰A

∧
B≪A

1(B(xλ,B)).

Then (X,CB) is an (L,M)-fuzzy convex space.

Proof. It suffices to verify that CB satisfies (LMC1), (LMC2) and (LMC3)⋆. Indeed,
(LMC1)

CB(0X) =
∧

xλ≰0X

∧
B≪0X

1(B(xλ,B)) =
∧

xλ≰0X

1
( ∨

B≪0X

B(xλ,B)
)
=
∧

xλ≰0X

1(0N) = 1M,

and
CB(1X) =

∧
xλ≰1X

∧
B≪1X

1(B(xλ,B)) =
∧

B≪1X

1
( ∨

xλ≰1X

B(xλ,B)
)
=
∧

B≪1X

1(
∨
∅) = 1M.

(LMC2) If {A j : j ∈ J} ⊆ LX is nonempty. Let α ∈M and CB(
∧

j∈J A j) ◁op α, then

1
( ∨

xλ≰
∧
j∈J

A j

∨
B≪
∧
j∈J

A j

B(xλ,B)
)
=
∧

xλ≰
∧
j∈J

A j

∧
B≪
∧
j∈J

A j

1(B(xλ,B)) ◁op α.
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By (RG), we have

f (α) ◁
∨

xλ≰
∧
j∈J

A j

∨
B≪
∧
j∈J

A j

B(xλ,B).

There exists xλ ∈ J(LX) and B0 ∈ L(X) such that xλ ≰
∧

j∈J A j,B0 ≪
∧

j∈J A j, and f (a) ◁ B(xλ,B0). Further,
there exists j0 ∈ J such that xλ ≰ A j0 ,B0 ≪ A j0 , and 1(B(xλ,B0)) ◁op α. So, we have∧

j∈J

CB(A j) =
∧
j∈J

∧
yµ≰A j

∧
C≪A j

1(B(yµ,C)) ≤
∧

yµ≰A j0

∧
C≪A j0

1(B(yµ,C)) ≤ 1(B(xλ,B0)) ◁op α.

It follows that
∧

j∈J CB(A j) ◁op α. Hence, we obtain

CB(
∧
j∈J

A j) ≥
∧
j∈J

CB(A j)

as desired.
(LMC3) ⋆ If {Ak : k ∈ K} ⊆ LX is directed. Let α ∈M and CB(

∨d
k∈KAk) ◁op α, then

1
( ∨

xλ≰
∨d

k∈K Ak

∨
B≪
∨d

k∈K Ak

B(xλ,B)
)
=

∧
xλ≰
∨d

k∈K Ak

∧
B≪
∨d

k∈K Ak

1(B(xλ,B)) ◁op α.

By (RG), we have

f (a) ◁
∨

xλ≰
∨d

k∈KAk

∨
B≪
∨d

k∈KAk

B(xλ,B).

There exists xλ ∈ J(LX) and B0 ∈ L(X) such that

xλ ≰
d∨

k∈K

Ak,B0 ≪

d∨
k∈K

Ak and f (a) ◁ B(xλ,B0).

Further, there exists k0 ∈ K such that B0 ≪ Ak0 and 1(B(xλ,B0)) ◁op α. And, if xλ ≰
∨d

k∈KAk, then xλ ≰ Ak for
each k ∈ K. So, we have∧

k∈K

CB(Ak) =
∧
k∈K

∧
yµ≰Ak

∧
C≪Ak

1(B(yµ,C)) ≤
∧

yµ≰Ak0

∧
C≪Ak0

1(B(yµ,C)) ≤ 1(B(xλ,B0)) ◁op α.

It follows that
∧

k∈K CB(Ak) ◁op α. Hence, we obtain

CB(
d∨

k∈K

Ak) ≥
∧
k∈K

CB(Ak)

as desired.

Theorem 4.4. Let (X,C) be an (L,M)-fuzzy convex space. Define BC : J(LX) × L(X)
−→ N by

∀F ∈ L(X), ∀xλ ∈ J(LX), BC(xλ,F) =
∧

xλ≰G≥F

f (C(G)).

Then (X,BC) is an (L,N)-fuzzy betweenness space.
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Proof. It suffices to verify that BC satisfies (LNB1)-(LNB5). Indeed,
(LNB1) By (MJ), we have

BC(xλ, 0X) =
∧

xλ≰G≥0X

f (C(G)) ≤ f (C(0X)) = 0N.

(LNB2) For each xλ ≤ F,we have

BC(xλ,F) =
∧

xλ≰G≥F

f (C(G)) =
∧
∅ = 1N.

(LNB3) Let α ∈ N, and
α ◁ BC(xλ,G) ∧

∧
yµ≤G

BC(yµ,F),

then α ≤ BC(xλ,G), and α ≤ BC(yµ,F) for each yµ ≤ G. Let

D0 =
∨
{zw ∈ J(LX) | α ≤ BC(zw,F)},

then G ≤ D0, and
α ≤ BC(xλ,G) =

∧
xλ≰H≥G

f (C(H)) ≤
∧

xλ≰H≥D0

f (C(D0)) = BC(xλ,D0).

This implies that α ≤ BC(xλ,D0). By the definition of BC, we have

BC(xλ,F) =
∧

xλ≰G≥F

f (C(G)) = f
( ∨

xλ≰G≥F

C(G)
)
= f

( ∨
xλ≰G≥F

∧
zδ≰G

C(G)
)

≥ f
( ∨

xλ≰G≥F

∧
zδ≰G

∨
zδ≰H≥G

C(H)
)

=
∧

xλ≰G≥F

f
(∧

zδ≰G

∨
zδ≰H≥G

C(H)
)

≥

∧
xλ≰G≥F

f
( ∨

xλ≰H≥G

C(G)
)

≥ f
( ∨

xλ≰H≥F

C(H)
)

= BC(xλ,F).

Hence,
BC(xλ,F) =

∧
xλ≰G≥F

f
(∧

zδ≰G

∨
zδ≰H≥G

C(H)
)
.

Now, we only need to show that α ≤ BC(xλ,F). If not, there exists G0 ∈ L(X) such that xλ ≰ G0 ≥ F, and

α ≰ f
( ∧

zδ≰G0

∨
zδ≰H≥G0

C(H)
)
≥

∨
zδ≰G0

f
( ∨

zδ≰H≥G0

C(H)
)
.

Hence,

α ≰
∨

zδ≰G0

f
( ∨

zδ≰H≥G0

C(H)
)
=
∨

zδ≰G0

BC(zδ,G0). (1)

It implies that α ≰ BC(zδ,G0) for each zδ ≰G0, i.e., if zδ ∈ {xγ ∈ J(LX) | α ≤ BC(xγ,G0)}, then zδ ∈ {xγ ∈ J(LX) |
xγ ≤G0}. Let H0 =

∨
{xγ ∈ J(LX) | α ≤ BC(xγ,G0)}, then xλ ≰ G0 ≥ H0 ≥ D0. By (1), we have

α ≰
∨

zδ≰G0

f
( ∨

zδ≰H≥G0

C(H)
)
≥ f
( ∨

xλ≰H≥D0

C(H)
)
= BC(xλ,D0).
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So, we have α ≰ BC(xλ,D0).Which is a contradiction. Therefore, α ≤ BC(xλ,F). Hence,

BC(xλ,G) ∧
∧
yµ≤G

BC(yµ,F) ≤ BC(xλ,F).

(LNB4) Let β ∈ N and BC(xλ,F) ◁op β. By (LG), we have

f
( ∨

xλ≰G≥F

C(G))
)
◁op β⇐⇒ 1(β) ◁

∨
xλ≰G≥F

C(G)),

there exists G0 ∈ LX such that
∨
µ≪λ xµ = xλ ≰ G0 ≥ F and 1(β) ◁ C(G0). Further, there exists µ0 ≪ λ such

that xµ0 ≰ G0 ≥ F, and 1(β) ◁ C(G0). Notice that∨
µ≪λ

∧
G≪F

∨
xµ≰H≥G

C(H) ≥
∨
µ≪λ

∨
xµ≰H≥F

C(H) ≥
∨

xµ0≰H≥F

C(H) ≥ C(G0).

So, we have
1(β) ◁

∨
µ≪λ

∧
G≪F

∨
xµ≰H≥G

C(H).

By (LG), we have ∧
µ≪λ

f
( ∧

G≪F

∨
xµ≰H≥G

C(H)
)
= f
( ∨
µ≪λ

∧
G≪F

∨
xµ≰H≥G

C(H)
)
◁op β.

Notice that ∧
µ≪λ

∨
G≪F

BC(xµ,G) =
∧
µ≪λ

∨
G≪F

f
( ∨

xµ≰H≥G

C(H)
)
≤

∧
µ≪λ

f
( ∧

G≪F

∨
xµ≰H≥G

C(H)
)
.

So, we have ∧
µ≪λ

∨
G≪F

BC(xµ,G) ◁op β.

Hence,
BC(xλ,F) ≥

∧
µ≪λ

∨
G≪F

BC(xµ,G).

Conversely, let β ∈ N and
∧
µ≪λ

∨
G≪FBC(xµ,G) ◁op β, then∧
µ≪λ

∨
G≪F

∧
xµ≰H≥G

f
(
C(H)

)
◁op β.

So, we have
f
( ∨
µ≪λ

∧
G≪F

∨
xµ≰H≥G

C(H)
)
◁op β⇐⇒ 1(β) ◁

∨
µ≪λ

∧
G≪F

∨
xµ≰H≥G

C(H).

Notice that ∨
µ≪λ

∧
G≪F

∨
xµ≰H≥G

C(H) ≤
∨

xλ≰H≥F

C(H).

Thus, we obtain 1(β) ◁
∨

xλ≰H≥F C(H). By (LG), we have

BC(xλ,F) = f
( ∨

xλ≰H≥F

C(H)
)
◁op β.

Hence,
BC(xλ,F) ≤

∧
µ≪λ

∨
G≪F

BC(xµ,G).
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(LNB5) Let β ∈ N and BC(x∨
i∈I
λi ,F) ◁op β. By (LG), we have

f
( ∨

x∨
i∈I
λi≰G≥F

C(G))
)
◁op β ⇐⇒ 1(β) ◁

∨
x∨

i∈I
λi≰G≥F

C(G)) =
∨
i∈I

∨
xλi≰G≥F

C(G)

⇐⇒ f
(∨

i∈I

∨
xλi≰G≥F

C(G)
)
=
∧
i∈I

BC(xλi ,F) ◁op β.

Hence, BC(x∨
i∈I
λi ,F) =

∧
i∈I BC(xλi ,F).

Proposition 4.5. (1) If h : (X,CX) −→ (Y,CY) is an (L,M)-CP, then 1 : (X,BCX ) −→ (Y,BCY ) is an (L,N)-BP.
(2) If h : (X,BX) −→ (Y,BY) is an (L,N)-BP, then h : (X,CBX ) −→ (Y,CBY ) is an (L,M)-CP.

Proof. The proof is straightforward. So, we omit it.

Theorem 4.6. If (X,C) is an (L,M)-fuzzy convex space, and (X,B) an (L,N)-fuzzy betweenness space. Then,
(1) ∀A ∈ LX, CBC (A) ≥ C(A).
(2) ∀F ∈ L(X),∀xλ ∈ J(LX), BCB (xλ,F) ≥ B(xλ,F).

Proof. For (1), ∀A ∈ LX. By (SC), we have

CBC (A) =
∧

xλ≰A

∧
B≪A

1(BC(xλ,B))

=
∧

xλ≰A

∧
B≪A

1
( ∧

xλ≰G≥B

f
(
C(G))

))
=
∧

xλ≰A

∧
B≪A

1
(

f
( ∨

xλ≰G≥B

C(G))
))

≥

∧
xλ≰A

∧
B≪A

∨
xλ≰G≥B

C(G))

=
∧
B≪A

∧
xλ≰A

∨
xλ≰G≥B

C(G))

≥

∧
B≪A

∧
xλ≰A

∨
xλ≰G≥A

C(G))

≥

∧
B≪A

∧
xλ≰A

C(A) = C(A).

For (2), ∀F ∈ L(X),∀xλ ∈ J(LX),we have

BCB (xλ,F) =
∧

xλ≰G≥F

f (CB(G))

= f
( ∨

xλ≰G≥F

∧
yµ≰G

∧
H≪G

1(B(yµ,H))
)

= f
( ∨

xλ≰G≥F

∧
H≪G

∧
yµ≰G

1(B(yµ,H))
)

= f
( ∨
ω≪λ

∨
xω≰G≥F

∧
H≪G

∧
yµ≰G

1(B(yµ,H))
)
.

Let α ∈ N and BCB (xλ,F) ◁op α, then

f
( ∨
ω≪λ

∨
xω≰G≥F

∧
H≪G

∧
yµ≰G

1(B(yµ,H))
)
◁op α.
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By (LG), we obtain

1(α) ◁
∨
ω≪λ

∨
xω≰G≥F

∧
H≪G

∧
yµ≰G

1(B(yµ,H))

≤

∨
ω≪λ

∨
xω≰G≥F

∧
H≪G

1(B(xω,H))

≤

∨
ω≪λ

∨
xω≰G≥F

∧
H≪F

1(B(xω,H))

=
∨
ω≪λ

∧
H≪F

1(B(xω,H))

=
∨
ω≪λ

1
( ∨

H≪F

B(xω,H)
)
,

there exists ω0 ≪ λ such that 1(α) ◁ 1
(∨

H≪FB(xω0 ,H)
)
,which is equivalent to that

f
(
1
( ∨

H≪F

B(xω0 ,H)
))
◁op α.

Notice that
B(xλ,F) =

∧
µ≪λ

∨
H≪F

B(xµ,H) ≤
∨
H≪F

B(xω0 ,H) ≤ f
(
1
( ∨

H≪F

B(xω0 ,H)
))
.

So, we have B(xλ,F) ◁op α. It follows that BCB (xλ,F) ≥ B(xλ,F).

By Theorem 4.3 and Proposition 4.5, we obtain a concrete functor Θ : (L,N)-FB−→ (L,M)-FC by

Θ : (X,B) 7→ (X,CB) and h 7→ h.

Similarly, by Theorem 4.4 and Proposition 4.5, we obtain a concrete functor Ψ : (L,M)-FC−→ (L,N)-FB
by

Ψ : (X,C) 7→ (X,BC) and h 7→ h.

Next, let us prove that if a pair mappings M
f
⇄
1

N is a strong LRG-Galois connection, then Θ andΨ are

isomorphic functors.

Theorem 4.7. If a pair mappings M
f
⇄
1

N is a strong LRG-Galois connection, then (L,M)-FC is isomorphic to

(L,N)-FB.

Proof. We only need show that the following results: if (X,C) is an (L,M)-fuzzy convex space, and (X,B) an
(L,N)-fuzzy betweenness space. Then,

(1) ∀A ∈ LX, CBC (A) ≤ C(A).
(2) ∀F ∈ L(X),∀xλ ∈ J(LX), BCB (xλ,F) ≤ B(xλ,F).
Indeed, for (1), since

∀A ∈ LX, C(A) ≤
∧

xλ≰A

∨
xλ≰G≥A

C(G) =
∨

h∈
∏

xλ≰A
Dxλ

∧
xλ≰A

C(h(xλ)) ≤
∨

h∈
∏

xλ≰A
Dxλ

C(
∧

xλ≰A

h(xλ)) = C(A),
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where Dxλ = {G ∈ LX
| xλ ≰ G ≥ A}. This implies that C(A) =

∧
xλ≰A
∨

xλ≰G≥A C(G). By (MJ), we have

CBC (A) =
∧

xλ≰A

∨
xλ≰G≥A

CBC (G)

=
∧

xλ≰A

∨
xλ≰G≥A

∧
yω≰G

∧
H≪G

1(BC(yω,H))

=
∧

xλ≰A

∨
xλ≰G≥A

∧
yω≰G

∧
H≪G

1
( ∧

yω≰W≥H

f
(
C(W)

))
=
∧

xλ≰A

∨
xλ≰G≥A

∧
yω≰G

∧
H≪G

∨
yω≰W≥H

C(W)

=
∧

xλ≰A

∨
µ≪λ

∨
xµ≰G≥A

∧
yω≰G

∧
H≪G

∨
yω≰W≥H

C(W)

≤

∧
xλ≰A

∨
µ≪λ

∨
xµ≰G≥A

∧
H≪G

∨
xµ≰W≥H

C(W)

≤

∧
xλ≰A

∨
µ≪λ

∨
xµ≰G≥A

∧
H≪A

∨
xµ≰W≥H

C(W)

=
∧

xλ≰A

∨
µ≪λ

∧
H≪A

∨
xµ≰W≥H

C(W)

=
∧

xλ≰A

1
( ∧
µ≪λ

∨
H≪A

∧
xµ≰W≥H

f
(
C(W)

))
=
∧

xλ≰A

1
( ∧
µ≪λ

∨
H≪A

BC(xµ,H)
)

= 1
( ∨

xλ≰A

BC(xλ,A)
)

= 1
(

f
( ∧

xλ≰A

∨
xλ≰G≥A

C(G)
))

=
∧

xλ≰A

∨
xλ≰G≥A

C(G)

= C(A).

For (2), by (MJ), we have

BCB (xλ,F) =
∧

xλ≰G≥F

f (CB(G))

=
∧

xλ≰G≥F

f
( ∧

zω≰G

∧
H≪G

1(B(zω,H))
)

=
∧

xλ≰G≥F

∨
zω≰G

∨
H≪G

f
(
1(B(zω,H))

)
=

∧
xλ≰G≥F

∨
zω≰G

∨
H≪G

B(zω,H).

Let a ∈ N, and a ◁ BCB (xλ,F), then for each G ∈ {G ∈ LX
| xλ ≰ G ≥ F}, there exists zω ∈ J(LX) and

H ∈ LX, such that zω ≰ G, H ≪ G and a ≤ B(zω,H). Now, we only need to show that a ≤ B(xλ,F).
If not, let G0 =

∨
{yµ ∈ J(LX) | B(yµ,F) ≥ a}, then by (LNB2) and (LNB5), we have xλ ≰ G0 ≥ F, i.e.,

G0 ∈ {G ∈ LX
| xλ ≰ G ≥ F}. So, there exists (z0)ω ∈ J(LX) and H0 ∈ LX, such that (z0)ω ≰ G0, H0 ≪ G0

and a ≤ B((z0)ω,H0). By (LNB3) and (LNB5), we obtain a ≤ B((z0)ω,H0)∧
∧

yµ≤H0
B(yµ,F) ≤ B((z0)ω,F). This
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implies that (z0)ω ≤ G0. Which is a contradiction. Hence, a ≤ B(xλ,F). By the arbitrariness of a, we obtain
BCB (xλ,F) ≤ B(xλ,F) as desired.

Now, let (L,M)-FCS(X) be the family of all (L,M)-fuzzy convex structures on X, define a relation ≤ on
(L,M)-FCS(X) as follows: C1 ≤ C2 if and only if C1(A) ≤ C2(A) for all A ∈ LX, then we easily verify that
((L,M)-FCS(X),≤) is a poset. Further, define C1 : LX

−→ M as follows: ∀A ∈ LX, C1(A) = 1M, then C1 is
the greatest element in ((L,M)-FCS(X),≤), and ∀{C j} j∈J ⊆ (L,M)-FCS(X), we easily show that C : LX

−→ M
defined by C(A) =

∧
j∈J C j(A) is the infimum of {C j} j∈J. So, ((L,M)-FCS(X),≤) is a complete lattice (see [50]).

Similarly, let (L,N)-FB(X) be the family of all (L,N)-fuzzy betweenness relations on X, define a relation ≤
on (L,N)-FB(X) as follows: B1 ≤ B2 if and only if B1(xλ,A) ≥ B2(xλ,A) for all A ∈ L(X) and xλ ∈ J(LX), then
we easily verify that ((L,N)-FB(X),≤) is also a poset.

Theorem 4.8. Suppose a pair mappings M
f
⇄
1

N is a strong LRG-Galois connection. Define a mapping F : ((L,M)-

FCS(X),≤) −→ ((L,N)-FB(X),≤) as follows: ∀F ∈ L(X), ∀xλ ∈ J(LX),

F(C)(xλ,F) = BC(xλ,F) =
∧

xλ≰G≥F

f (C(G)),

and define a mapping G : ((L,N)-FB(X),≤) −→ ((L,M)-FCS(X),≤) as follows:

∀A ∈ LX,G(B)(A) = CB(A) =
∧

xλ≰A

∧
B≪A

1(B(xλ,B)).

Then,
(1) F is a bijection. And, both F and F−1 are order preserving mappings.
(2) ((L,M)-FCS(X),≤) and ((L,N)-FB(X),≤) are complete lattice isomorphic.

Proof. (1) By Theorem 4.7, we easily obtain F is a bijection. And, both F and F−1 are order preserving
mappings.

(2) For all F ∈ L(X) and xλ ∈ J(LX). If xλ ≤ F, then F(C1)(xλ,F) = BC1 (xλ,F) = 1N; if xλ ≰ F, then

F(C1)(xλ,F) = BC1 (xλ,F) =
∧

xλ≰G≥F

f (C1(G)) ≤ f (C1(F)) = f (1M) = 0N.

So, we easily obtain F(C1) is the greatest element in ((L,N)-FB(X),≤). Now, we only need to prove that
it’s closed for non-empty intersection operation in ((L,N)-FB(X),≤). Indeed, for any B ⊆ (L,N)-FB(X)
and B , ∅, since F is a bijection, there exists C ⊆ (L,M)-FCS(X) such that F(C) = B. Thus, we obtain∧
B =

∧
F(C). Now, we will prove that

∧
F(C) = F(

∧
C). Notice that ((L,M)-FCS(X),≤) is a complete

lattice. So,
∧
C ∈ (L,M)-FCS(X), and F(

∧
C) ∈ (L,N)-FB(X). By (1), we have F(

∧
C) ≤

∧
C∈C F(C) =

∧
F(C).

It implies thatF(
∧
C) is a lower bound of {F(C)}C∈C.LetB⋆ is another element of (L,N)-FB(X) andB⋆ ≤ F(C)

for each C ∈ C. By (1), for each C ∈ C, we have G(B⋆) ≤ G(F(C)) = C. It follows that G(B⋆) ≤
∧
C. Further,

by (1), we haveB⋆ = F(G(B⋆)) ≤ F(
∧
C). So, we have

∧
B =
∧
F(C) =

∧
C∈C F(C) = F(

∧
C).Hence, F(

∧
C)

is the infimum of B, i.e., it’s closed for non-empty intersection operation in ((L,N)-FB(X),≤). It follows that
((L,N)-FB(X),≤) is a complete lattice. Further, ((L,M)-FCS(X),≤) and ((L,N)-FB(X),≤) are complete lattice
isomorphic.

5. Conclusion

In this study, we gave a reasonable definition with respect to (strong) LRG-Galois connections. With the
help of this tool, it is proved not only that (L,M)-fuzzy convex spaces and (L,N)-fuzzy betweenness spaces
are categorically isomorphic, but also that (L,M)-fuzzy convex structures and (L,N)-fuzzy betweenness
relations are complete lattice isomorphic. This tool can effectively transform on two completely distributive
lattices, and has the function of order-reversing involutions. This provides a new idea for us to study the
relationship between convex structures and other structures in the future.
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