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Abstract. In this paper, we study properties and structures of n-power quasinormal operators. In particu-
lar, we show that every n-power quasinormal operator satisfies some local spectral properties. Finally, we
consider the n-power quasinormality of operator matrices.

1. Introduction

Let L(H) be the algebra of all bounded linear operators on a separable complex Hilbert space H . If
T ∈ L(H), we write σ(T) and σap(T) for the spectrum and the approximate point spectrum of T, respectively,
while r(T) denotes the spectral radius of T.

A closed subspaceM ofH is an invariant subspace under the operator A if AM ⊆M. In addition, if both
M andM⊥ are invariant subspaces for A, then we sayM is a reducing subspace for A. The collection of all
subspaces ofH invariant under A is denoted by LatA. A hyperinvariant subspace for A is a closed subspace
M ofH such that SM ⊆ M for every operator S which commutes with A. The collection of all subspaces
ofH hyperinvariant under A is denoted by HLatA.

An operator T in L(H) has the unique polar decomposition T = U|T|, where |T| = (T∗T)
1
2 and U is the

appropriate partial isometry satisfying ker(U) = ker(|T|) = ker(T) and ker(U∗) = ker(T∗). Associated with T is
a related operator |T|

1
2 U|T|

1
2 called the Aluthge transform of T, denoted throughout this paper by T̃. In many

cases, the Aluthge transforms of T have the better properties than T (see [12] for more details). The Duggal
transform of T, denoted by T̃D, is given by T̃D = |T|U.

An operator T ∈ L(H) is said to be normal if T and T∗ commute, quasinormal if T and T∗T commute,
respectively. An operator T ∈ L(H) is said to be a p-hyponormal operator if (T∗T)p

≥ (TT∗)p, where 0 < p < ∞.
Especially, if p = 1, T is called hyponormal.

An operator T ∈ L(H) is called n-power normal if and only if TnT∗ = T∗Tn for some n ∈ N. An operator
T ∈ L(H) is said to be n-power quasinormal if and only if [Tn,T∗]T = 0 for some n ∈Nwhere [A,B] := AB−BA.
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It is clear that every nilpotent operator of order n + 1 is n-power quasinormal. However, every n-power
quasinormal operator is not necessary to be normal, hyponormal, or p-hyponormal (see Example 3.9).

In this paper, we study properties and structures of n-power quasinormal operators. In particular, we
show that every n-power quasinormal operator satisfies some local spectral properties. Finally, we consider
the n-power quasinormality of operator matrices.

2. Preliminaries

An operator T ∈ L(H) has the single valued extension property (i.e., SVEP) at λ0 ∈ C if for every open
neighborhood U of λ0 the only analytic function f : U −→ H which satisfies the equation (T − λ) f (λ) ≡ 0 is
the constant function f ≡ 0 on U. The operator T is said to have the single valued extension property if T
has the single valued extension property at every λ ∈ C. For an operator T ∈ L(H) and for a vector x ∈ H ,
the local resolvent set ρT(x) of T at x is defined as the union of every open subset G of C on which there is
an analytic function f : G → H such that (T − λ) f (λ) ≡ x on G. The local spectrum of T at x is given by
σT(x) = C\ρT(x).We define the local spectral subspace of an operator T ∈ L(H) byHT(F) = {x ∈ H : σT(x) ⊂ F}
for a subset F of C. An operator T ∈ L(H) is said to have Dunford’s property (C) ifHT(F) is closed for each
closed subset F of C. An operator T ∈ L(H) is said to have Bishop’s property (β) if for every open subset G of
C and every sequence { fn} ofH-valued analytic functions on G such that (T − λ) fn(λ) converges uniformly
to 0 in norm on compact subsets of G, we get that fn(λ) converges uniformly to 0 in norm on compact
subsets of G An operator T ∈ L(H) is said to be decomposable if for every open cover {U,V} of C there are
T-invariant subspaces X andY such that

H = X +Y, σ(T|X) ⊂ U, and σ(T|Y) ⊂ V.

It is well known that

Bishop’s property (β)⇒ Dunford’s property (C)⇒ SVEP.

Any of the converse implications does not hold, in general (see [16] for more details).

3. Main results

In this section, we investigate several properties of n-power quasinormal operators. We start with the
following lemma.

Lemma 3.1. If T ∈ L(H) is n-power quasinormal, then Tn is quasinormal. Conversely, if Tn is quasinormal and
ker T∗n ⊂ ker Tn, then T is n-power quasinormal.

Proof. If T is n-power quasinormal, then |T|2 commutes with Tn and (Tn)∗. Hence

[(Tn)∗Tn]Tn = T∗n−1
|T|2Tn−1Tn = T∗n−1Tn−1Tn

|T|2 = · · · · · · = Tn(|T|2)n.

Similarly, we obtain that

Tn[(Tn)∗Tn] = Tn[T∗n−1
|T|2Tn−1] = Tn[T∗n−1Tn−1]|T|2 = · · · · · · = Tn(|T|2)n.

Hence [(Tn)∗Tn]Tn = Tn[(Tn)∗Tn]. Thus Tn is quasinormal.
Conversely, if Tn is quasinormal and ker T∗n ⊂ ker Tn, then it follows that [(Tn)∗Tn

−Tn(Tn)∗]Tn = 0. Hence
Tn is normal on ran Tn. Since TnT = TTn, Fuglede-Putnam theorem implies that TnT∗ = T∗Tn on ran Tn.
Since Tn is quasinormal and ker T∗n ⊂ ker Tn, we have ker T∗n = ker Tn. Moreover, since T∗nTn

− TnT∗n = 0
on ker T∗n = ker Tn, Tn is normal on H = ran Tn ⊕ ker T∗n. By the similar method above, TnT∗ = T∗Tn on
ker T∗n = ker Tn. Hence TnT∗ = T∗Tn on H = ran Tn ⊕ ker T∗n. That implies (TnT∗ − T∗Tn)T = 0. Thus T is
n-power quasinormal.
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Theorem 3.2. Every n-power quasinormal operator T in L(H) has the single-valued extension property.

Proof. Let f : D→H be an analytic function such that

(T − λ) f (λ) = 0 (1)

where D is a disck. Since T−λ is invertible on D \ σ(T), it follows that f (λ) = 0. Hence we may assume that
D ⊂ σ(T). From (1),

0 = (Tn
− λn) f (λ) = (T − λ)1(T, λ)

on D. Choose nonzero λ0 ∈ D. Consider D0 = {λ ∈ C : |λ − λ0| < r} with sufficiently small r in D such that
1
λn exists on Dn

0 . Set k(µ) = f (µ−n) on Dn
0 . Then (Tn

− µ)k(µ) = 0 on Dn
0 . Since Tn is quasinormal by Lemma

3.1, Tn has the single-valued extension property. Hence k(µ) = 0. Therefore, f (λ) = 0 on D0. By the Identity
Theorem, f (λ) = 0 on D. Thus T has the single-valued extension property.

Recall that an operator T ∈ L(H) is said to be nilpotent of order k if Tk = 0 for some positive integer k.

Corollary 3.3. If T ∈ L(H) is n-power quasinormal, then the following statements hold.
(i) σ(T) = ∪x∈HσT(x) and max{|λ| : λ ∈ σT(x)} = lim supn→∞ ∥T

nx∥
1
n .

(ii) If T is quasinilpotent (i.e., σ(T) = {0}), then it is nilpotent of order n.

Proof. (i) Since T has the single-valued extension property by Theorem 3.2, it follows from [16].
(ii) Since Tn is quasinormal from Lemma 3.1, Tn is normaloid, i.e., r(Tn) = ∥Tn

∥ where r(Tn) = sup{|λ| :
λ ∈ σ(Tn)}. Since σ(Tn) = {0}, we have ∥Tn

∥ = 0. Hence T is nilpotent of order n.

The class of n-power quasinormal operators may not have the translation invariant property. For

example, if T ∈ L(H ⊕H) is defined as T =
(
0 S
0 0

)
, then T is 2-power quasinormal. However, (T − λ)2(T −

λ)∗(T−λ)− (T−λ)∗(T−λ)3 = −λ2T2T∗−2λTT∗T+2λ2TT∗−2λ2T∗T+3λT∗T2 , 0. Hence T−λ is not 2-power
quasinormal. In the following theorem, we consider the case when the traslation invariant property holds.

Theorem 3.4. Let T ∈ L(H). Then T − λI is n-power quasinormal for all λ ∈ C if and only if T is normal.

Proof. If T − λI is n-power quasinormal for all λ ∈ C, then

(T − λI)n(T − λI)∗(T − λI) = (T − λI)∗(T − λI)n+1.

Since (T − λI)n =
∑n

j=0(−1) j(n
j
)
λ jTn− j, we get that

(
n∑

j=0

(−1) j
(
n
j

)
λ jTn− j)(T∗T − λT − λT∗ + |λ|2)

= (T∗T − λT − λT∗ + |λ|2)(
n∑

j=0

(−1) j
(
n
j

)
λ jTn− j).

Calculating the above equation, we obtain that

n−1∑
j=0

(−1) j
(
n
j

)
λ j[Tn− jT∗T − T∗Tn− j+1] −

n−1∑
j=0

(−1) j
(
n
j

)
λ j+1[Tn− jT∗ − T∗Tn− j] = 0.
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Set λ = reiθ for every 0 ≤ θ < 2π and r > 0. Dividing both sides by λn, for each positive r

0 =

n−1∑
j=0

(−1) j
(
n
j

)
1

rn− jei(n− j)
(Tn− jT∗T − T∗Tn− j+1)

−

n−1∑
j=0

(−1) j
(
n
j

)
1

rn− j−1ei(n− j−1)
(Tn− jT∗ − T∗Tn− j)

=
1
r

[
n−1∑
j=0

(−1) j
(
n
j

)
1

rn− j−1ei(n− j)
(Tn− jT∗T − T∗Tn− j+1)

−

n−2∑
j=0

(−1) j
(
n
j

)
1

rn− j−1ei(n− j−1)
(Tn− jT∗ − T∗Tn− j)] − (−1) j

(
n
j

)
(TT∗ − T∗T).

Letting r→∞ in above equation, we have TT∗ = T∗T. Thus T is normal.
The converse implication is trivial.

Proposition 3.5. Let T ∈ L(H). Then the following statements hold.
(i) Let {Tk} be a sequence of n-power qusinormal operators in L(H). If Tk → T in norm, then T is n-power
quasinormal.
(ii) T is n-power quasinormal if and only if |T| commutes with Re Tn and Im Tn where Re A = 1

2 {A + A∗} and
Im A = 1

2i {A − A∗}.
(iii) If T is n-power quasinormal and compact, then T is n-power normal.

Proof. (i) Since Tk → T in norm, we get that

∥TnT∗T − T∗Tn+1
∥ ≤ ∥Tn

− Tn
k ∥∥T

∗T∥ + ∥Tk∥
n
∥T∗ − T∗k∥∥T∥

+∥Tk∥
n
∥T∗k∥∥T − Tk∥ + ∥T∗k − T∗∥∥Tn+1

k ∥

+∥T∗∥∥Tn+1
k − Tn+1

∥ → 0

as k→∞. Hence TnT∗T = T∗Tn+1. Thus T is n-power quasinormal.
(ii) If T is n-power quasinormal, then Tn

|T|2 = |T|2Tn. Since Tnp(|T|2) = p(|T|2)Tn for any polynomial
p(t) with p(0) = 0, take pk(t) → t

1
2 . Then Tn

|T| = |T|Tn since the square root |T| of a positive operator
|T|2 is approximated uniformly by polynomials of |T|2. Since |T|T∗n = T∗n|T|, |T|(Re Tn) = (Re Tn)|T| and
|T|(Im Tn) = (Im Tn)|T| hold. Conversely, if |T| commutes with Re Tn and Im Tn, then |T| commutes with Tn.
Thus Tn

|T|2 = |T|2Tn. So T is n-power quasinormal.
(iii) If T is compact, then Tn is compact and quasinormal by Lemma 3.1. Hence Tn is normal by [7,

Corollary 4.10]. Since TnT = TTn, by Fuglede-Putnam TnT∗ = T∗Tn. Thus T is n-power normal.

The following propositions provide several examples for n-power quasinormal operators.

Proposition 3.6. Every nilpotent operator T ∈ L(H) of order n − 1 is n-power quasinormal.

Proof. Since T ∈ L(H) is nilpotent of order n − 1, by Halmos characterization T is unitarily equivalent an

operator matrix S, where S =


0 S12 · · · S1n
0 0 · · · S2n
...

. . .
...

0 0 · · · S(n−1)n
0 · · · 0


. Thus [Sn,S∗]S = 0. Hence S is n-power quasinormal.

Since T is unitarily equivalent to S, T is n-power quasinormal.
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Proposition 3.7. Let W be a unilateral weighted shift defined by Wek = αkek+1 for k = 1, 2, · · · where {ek} is an
orthonormal basis forH . Then the following statements hold.
(i) W is n-power quasinormal if and only if |αk| = |αk+n| for k = 1, 2, · · · . In this case, if W is hyponormal, then
|α1| = |αk| for all k = 1, 2, · · · .
(ii) Wn is quasinormal if and only if |αk| · · · |αk+n−1| = |αk+n| · · · |αk+2n−1| for k = 1, 2, · · · .

Proof. (i) Since WnW∗Wek = |αk|
2αk · · ·αk+n−1ek+n and

W∗Wn+1ek = αk · · ·αk+n−1|αk+n|
2ek+n for k = 1, 2, · · · , |αk| = |αk+n| for k = 1, 2, · · · . The converse implication is

similar. In this case, if W is hyponormal, then {|αk|} is increasing. Hence

|αk| ≤ |αk+1| ≤ · · · ≤ |αk+n| = |αk|

for k = 1, 2, · · · . Thus |α1| = |αk| for all k = 1, 2, · · · .
(ii) Since [(Wn)∗Wn]Wnek = αk · · ·αk+n−1|αk+n|

2
· · · |αk+2n−1|

2ek+n and
Wn[(Wn)∗Wn]ek = |αk|

2
· · · |αk+n−1|

2
· · ·αk · · ·αk+n−1ek+n, Wn is quasinormal if and only if |αk| · · · |αk+n−1| =

|αk+n| · · · |αk+2n−1| for k = 1, 2, · · · .

We observe from Proposition 3.7 that the following implications hold. However, the converse implica-
tions do not hold, in general.

{quasinormality of T} ⇒ {n-power quasinormality of T} ⇒ {quasinormality of Tn
}

Moreover, there exist n-power quasinormal operators which are neither hyponormal nor p-hyponormal, in
general (see Example 3.9).

Proposition 3.8. Let T be any 2 × 2 matrix in L(C2). Then T is n-power quasinormal if and only if T is unitarily
equivalent to one of the following matrices;[

0 b
0 0

]
,

[
0 0
0 c

]
,

[
a 0
0 c

]
, and

[
a b
0 c

]
where

n−1∑
j=0

an−1− jc j = 0.

Proof. Since T is unitarily equivalent to S =
[
a b
0 c

]
, it suffices to consider the n-power quasinormality of S.

It is easy to show that S is n-power quasinormal if and only if the following identities hold.
(i) [an, a]a + (

∑n−1
j=0 an−1− jbc j)ba = 0.

(ii) [an, a]b + (
∑n−1

j=0 an−1− jbc j)(|b|2 + |c|2) − a(
∑n−1

j=0 an−1− jbc j)c = 0.

(iii) cnba − ban+1 = 0.
(iv) cn

|b|2 − an
|b|2 + [cn, c]c − b(

∑n−1
j=0 an−1− jbc j)c = 0.

If a = c = 0, a = b = 0, or b = 0, then (i), (ii), (iii), and (iv) are satisfied. Hence S is n-power quasinormal.
If

∑n−1
j=0 an−1− jc j = 0, then an

− cn = (a − c)
∑n−1

j=0 an−1− jc j = 0. Since (i), (ii), (iii), and (iv) hold, S is also n-power
quasinormal.

Conversely, if S is n-power quasinormal, then from (i), (
∑n−1

j=0 an−1− jc j)|b|2a = 0. Hence a = 0, b = 0, or∑n−1
j=0 an−1− jc j = 0. If

∑n−1
j=0 an−1− jc j = 0, then it is clear. If a = 0, from (ii) and (iv) b = 0 or c = 0. If b = 0, (i),

(ii), (iii), and (iv) hold. Hence we complete the proof.

We observe from Proposition 3.8 that every n-power quasinormal operator is not necessary to be normal
on a finite dimensional space. Hence it is neither hyponormal nor p-hyponormal, in general.

Example 3.9. Let w be a root of zn
− 1 = 0. Then S =

[
1 b
0 w

]
is n-power quasinormal. Indeed, since a = 1,

c = w, and
∑n−1

j=0 w j = 0 in Proposition 3.8, S is n-power quasinormal. Moreover, if b , 0, S is not normal.
Thus if b , 0, S is neither hyponormal nor p-hyponormal, in general.
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Recall that an antilinear map C : H →H is called a conjugation onH if C2 = I and ⟨Cx,Cy⟩ = ⟨y, x⟩ for
all x, y ∈ H . We say that T ∈ L(H) is complex symmetric if there exists a conjugation C such that CTC = T∗.
An operator T ∈ L(H)) is a quasiaffinity if T has trivial kernel and dense range. We next consider complex
symmetric operators which are n-power quasinormal.

Theorem 3.10. If T ∈ L(H) is n-power quasinormal and complex symmetric, then there exists a nilpotent operator
R of order n and an n-power normal operator S such that T = R ⊕ S.

Proof. Assume that CTC = T∗ for some conjugation C and TnT∗T = T∗Tn+1. Then

CT∗nTCT = TnCTCT = TnT∗T = T∗Tn+1

= CTCTn+1 = CTT∗nCT.

Hence
T∗nTT∗C = T∗nTCT = TT∗nCT = TT∗n+1C.

Thus T∗nTT∗ = TT∗n+1, i.e., T∗ is n-power quasinormal. Since both T and T∗ are n-power quasinormal, both
Tn and (Tn)∗ are quasinormal from Lemma 3.1. Since [(Tn)∗Tn

− Tn(Tn)∗]Tn = 0, (Tn)∗Tn
− Tn(Tn)∗ = 0 on

ran Tn. Since both Tn and (Tn)∗ are quasinormal, it is clear that ker Tn = ker (Tn)∗. Hence (Tn)∗Tn
−Tn(Tn)∗ = 0

on ker (Tn)∗. Thus Tn is normal. By [11, Theorem 3.1], there exists a nilpotent operatos R of order n and an
operator S which is quasisimilar to a normal operator N with σ(S) = σ(N) such that T = R ⊕ S. Let X be a
quasiaffinity such that SnX = XNn. By [8, Theorem 7], Sn is normal. Hence T = R ⊕ S where R is nilpotent
operator of order n and S is n-power normal.

Recall that an operator T ∈ L(H) has finite ascent if there exists an n ∈N such that ker Tn = ker Tn+1.

Corollary 3.11. If T ∈ L(H) is n-power quasinormal and complex symmetric, the following statements hold.
(i) ker Tn = ker Tn+k for all positive integer k. Hence T has finite ascent.
(ii) Both T and T∗ have the single-valued extension property.

Proof. (i) If T ∈ L(H) is n-power quasinormal and complex symmetric, then T = R ⊕ S where Rn = 0 and Sn

is normal from Theorem 3.10. Now it suffices to show that ker Tn+1
⊂ ker Tn. If Tn+1x = 0, then

0 = Tn+1x =
(
0 0
0 Sn+1

) (
x1
x2

)
=

(
0

Sn+1x2

)
.

Hence Sn+1x2 = 0, i.e., Sx2 ∈ ker Sn = ker S∗n. Therefore, S∗nSx2 = 0. Since SnS = SSn, by Fuglede-Putnam
Theorem S∗nS = SS∗n. Moreover, since S∗SS∗nx2 = S∗S∗nSx2 = 0, it follows that ∥SS∗nx2∥

2 = 0. Hence
SnS∗nx2 = 0, and so ∥S∗nx2∥

2 = 0. Then x2 ∈ ker S∗n = ker Sn. Thus x ∈ ker Tn.
(ii) If T ∈ L(H) is n-power quasinormal and complex symmetric, then both Tn and (Tn)∗ are quasinormal

by Lemma 3.1. Hence both Tn and (Tn)∗ have the single-valued extension property by Theorem 3.2.

Theorem 3.12. Let T ∈ L(H) be n-power quasinormal. If ran T = ran Tn+1, then T has the following matrix
representation,

T =
[
T1 0
0 T3

]
: ran T ⊕ ker T∗ → ran T ⊕ ker T∗

where T1 = T|ranT is n-power normal and T3 is nilpotent of order n, and σ(T) = σ(T1) ∪ {0}.
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Proof. Since [T∗,Tn]T = 0, we get that [T∗,Tn] = 0 on ran T. If T has dense range in H , then T is n-power

normal. Otherwise, ran T , H and ran T ∈ Lat T. Hence T has the matrix representation, T =
[
T1 T2
0 T3

]
on

ran T ⊕ ker T∗. If y ∈ ranT, then there is a sequence {yk} in ranT such that yk → y. Since ran T = ran Tn+1,
we get yk ∈ ran T = ran Tn+1. Then there is a sequence {xk} ∈ H such that yk = Tn+1xk. T∗yk = T∗Tn+1xk =

TnT∗Txk ∈ ran Tn = ran T. Therefore T∗yk ∈ ran T, and so T∗y ∈ ran T. Thus T∗(ran T) ⊂ ran T and ran T
reduces T. Since T∗Tn+1 = TnT∗T and ran T is a reducing subspace for T, T1 = T|ran T is n-power normal. Let
P be the orthogonal projection onto ran T. For any z =

(z1
z2

)
∈ H = ran T ⊕ ker T∗, (I − P)z ∈ ker T∗ and

⟨Tn
3 z2, z2⟩ = ⟨Tn(I − P)z, (I − P)z⟩

= ⟨(I − P)z,T∗n(I − P)z⟩
= 0.

Then T3 is nilpotent of order n and σ(T) = σ(T1) ∪ {0}.

Corollary 3.13. Let T ∈ L(H) be n-power quasinormal. If ran T is a reducing subspace of T, then T|ran T is
n-power normal and T|ker T∗ is nilpotent.

Proof. As in the proof of Theorem 3.12, we get the results.

Corollary 3.14. Let T ∈ L(H) be n-power quasinormal. If ran T = ran Tn+1, then σ(T) = σap(T).

Proof. From Theorem 3.12, T = T1 ⊕ T3 where T1 is n-power normal and T3 is nilpotent of order n. Since T1
is n-power normal, Tn

1 is normal as in the proof of Corollary 3.11. Hence T1 has the single-valued extension
property by Theorem 3.2. Since T3 has also the single-valued extension property, T has the single-valued
extension property. Since T∗ = T∗1 ⊕T∗3 where T∗1 is n-power normal and T∗3 is nilpotent of order n, T∗ has the
single-valued extension property. Hence the proof follows from [2, Corollary 2.45].

We next consider the operator transforms of an n-power quasinormal operator.

Theorem 3.15. Let T = U|T| be the polar decomposition of an n-power qusinormal operator T ∈ L(H). Then the
following statements hold.
(i) If TnU∗ = U∗Tn, then the Aluthge transform T̃ of T is n-power quasinormal.
(ii) The Duggal transform T̃D of T is also n-power quasinormal.

Proof. (i) If T is n-power quasinormal, then Tn
|T|2 = |T|2Tn. Since Tnp(|T|2) = p(|T|2)Tn for any polynormial

p(t) with p(0) = 0, take pk(t) → t
1
2 . Then Tn

|T| = |T|Tn since the square root |T| of a positive operator |T|2 is
approximated uniformly by polynomials of |T|2. Since TnU∗ = U∗Tn and Tn

|T| = |T|Tn,

T̃n(T̃∗T̃) − (T̃∗T̃)T̃n = |T|
1
2 [TnU∗|T|U −U∗|T|TnU]|T|

1
2 = 0.

Hence T̃ is n-power quasinormal.
(ii) Since Tn

|T|2 = |T|2Tn, we get that

(T̃D)n((T̃D)∗T̃D) − ((T̃D)∗T̃D)(T̃D)n = U∗[Tn
|T|2 − |T|2Tn]U = 0. (2)

Hence T̃D is also n-power quasinormal.
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Corollary 3.16. Let T = U|T| be the polar decomposition of an n-power quasinormal operator T ∈ L(H). If U is
unitary, then T is n-power quasinormal if and only if T̃D is.

Proof. Since U is unitary, the proof follows from (2).

Recall that given x, y ∈ H , we define x ⊗ y mappingH into itself by (x ⊗ y)h = ⟨h, y⟩x. We next consider
the case of rank one operators.

Theorem 3.17. Let T be a rank one operator defined by T = x ⊗ y. Then the following statements are equivalent.
(i) T is n-power quasinormal.
(ii) Tn is normal.
(iii) Tn is quasinormal.
(iv) x = ⟨x,y⟩

∥y∥2 y holds.

Proof. If ⟨x, y⟩ = 0, it is trivial. So we may assume that ⟨x, y⟩ , 0.
(i)⇔(ii) If (i) holds, then Tn is normal by Lemma 3.1. Conversely, if (ii) holds, TnT∗ = T∗Tn by Fuglede-

Putnam theorem since TnT = TTn. Thus TnT∗T = T∗Tn+1.
(i)⇔(iv) Since Tn = ⟨x, y⟩n−1x ⊗ y and T∗T = ∥x∥2y ⊗ y,

Tn(T∗T) = ⟨x, y⟩n−1
∥x∥2∥y∥2x ⊗ y and (T∗T)Tn = ⟨x, y⟩n∥x∥2y ⊗ y.

Then T is n-power quasinormal if and only if

⟨x, y⟩n−1
∥x∥2∥y∥2x ⊗ y = ⟨x, y⟩n∥x∥2y ⊗ y.

Hence T is n-power quasinormal if and only if ∥y∥2x ⊗ y = ⟨x, y⟩y ⊗ y if and only if ∥y∥2x = γ⟨x, y⟩y and
y = γy for some nonzero γ ∈ C. Since γ = 1, T is n-power quasinormal if and only if x = ⟨x,y⟩

∥y∥2 y holds.
(iii)⇔(iv) Since Tn = ⟨x, y⟩n−1x ⊗ y and (Tn)∗ = ⟨y, x⟩n−1y ⊗ x,

(Tn)∗Tn = |⟨x, y⟩|2(n−1)
∥x∥2y ⊗ y.

Then

[(Tn)∗Tn]Tn = |⟨x, y⟩|2(n−1)
⟨x, y⟩n∥x∥2y ⊗ y

and

Tn[(Tn)∗Tn] = |⟨x, y⟩|2(n−1)
⟨x, y⟩n−1

∥x∥2∥y∥2x ⊗ y.

Hence Tn is quasinormal if and only if

|⟨x, y⟩|2(n−1)
⟨x, y⟩n∥x∥2y ⊗ y = |⟨x, y⟩|2(n−1)

⟨x, y⟩n−1
∥x∥2∥y∥2x ⊗ y.

Hence Tn is quasinormal if and only if ∥y∥2x ⊗ y = ⟨x, y⟩y ⊗ y if and only if ∥y∥2x = γ⟨x, y⟩y and y = γy for
some nonzero γ ∈ C. Since γ = 1, Tn is quasinormal if and only if x = ⟨x,y⟩

∥y∥2 y holds.

We next consider the n-power quasinormality of operator matrices.

Lemma 3.18. Let T ∈ L(H ⊕H) be defined as T =
[
A B
0 C

]
. Then T is n-power quasinormal if and only if the

following identities hold.
(i) [An,A∗]A + ZB∗A = 0.
(ii) [An,A∗]B + Z(B∗B + C∗C) − A∗ZC = 0.
(iii) CnB∗A − B∗An+1 = 0.
(iv) CnB∗B − B∗AnB + [Cn,C∗]C − B∗ZC = 0

where Z =
∑n−1

j=0 An−1− jBC j.
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Proof. Set Z =
∑n−1

j=0 An−1− jBC j. Then

Tn =

[
An ∑n−1

j=0 An−1− jBC j

0 Cn

]
=

[
An Z
0 Cn

]
.

Since T is n-power quasinormal, an easy calculation shows that

TnT∗ =
[
AnA∗ + ZB∗ ZC∗

CnB∗ CnC∗

]
and T∗Tn =

[
A∗An A∗Z
B∗An B∗Z + C∗Cn

]
.

Hence we get that

0 = [Tn,T∗]T

=

[
[An,A∗] + ZB∗ ZC∗ − A∗Z
CnB∗ − B∗An [Cn,C∗] − B∗Z

] [
A B
0 C

]
=

[
R1 R2
R3 R4

]
where R1, R2, R3, and R4 satisfy the following identities;
R1 = [An,A∗]A + ZB∗A,
R2 = [An,A∗]B + Z(B∗B + C∗C) − A∗ZC,
R3 = CnB∗A − B∗An+1, and
R4 = CnB∗B − B∗AnB + [Cn,C∗]C − B∗ZC
where Z =

∑n−1
j=0 An−1− jBC j. So we complete the proof.

Proposition 3.19. Let T ∈ L(H ⊕H) be defined as T =
[
A B
0 C

]
. Then the following statements hold.

(i) If Q is unitarily equivalent to
[
0 B
0 0

]
, then Q is n-power quasinormal.

(ii) When B = 0, T is n-power quasinormal if and only if both A and C are n-power quasinormal.
(iii) If

∑n−1
j=0 An−1− jBC j = 0 and ker (An)∗ ⊂ ker An, then An is normal. In addition, if T is hyponormal and n = 2,

then A is normal.
(iv) If

∑n−1
j=0 An−1− jBC j = 0 and A = B, then A and C have the single valued extension property.

Proof. (i) If Q is unitarily equivalent to
[
0 B
0 0

]
, then there exists a unitary operator U such that U∗QU =[

0 B
0 0

]
. Since

[
0 B
0 0

]
is n-power quasinormal by Lemma 3.18 with A = B = 0, we get that

QnQ∗Q = (UTU∗)n(UTU∗)∗(UTU∗)
= (UTnU∗)(UT∗U∗)(UTU∗)
= UTnT∗TU∗

= U(T∗Tn+1)U∗

= U(U∗QU)∗(U∗QU)n+1U∗

= Q∗Qn+1.

Hence Q is n-power quasinormal.
(ii) If B = 0, then Z =

∑n−1
j=0 An−1− jBC j = 0 in Lemma 3.18. Hence the proof follows from Lemma 3.18.

(iii) If
∑n−1

j=0 An−1− jBC j = 0, then A is n-power quasinormal from Lemma 3.18 and hence An is quasinormal

from Lemma 3.1. Then [An, (An)∗]An = 0, i.e., [An, (An)∗] = 0 on ran An. Since An is quasinormal, it is clear



E. Ko, M.-J. Lee / Filomat 37:11 (2023), 3371–3381 3380

that ker An
⊂ ker (An)∗. Thus ker An = ker (An)∗. Then [An, (An)∗] = 0 on ker (An)∗. Hence An is normal. In

addition, if T is hyponormal and n = 2, then

0 ≤ T∗T − TT∗ =
[
A∗A − AA∗ − BB∗ A∗B − BC∗

B∗A − CB∗ B∗B + C∗C + CC∗

]
.

Hence A∗A − AA∗ − BB∗ ≥ 0 from [19]. Thus A is hyponormal. Since A2 is normal and A is hyponormal,

A(A∗A)A∗ ≥ A(AA∗)A∗ = A∗(A∗A)A ≥ A∗(AA∗)A.

Hence
(AA∗)2

≥ (A∗A)2.

By Löwner’s theorem (see [17]), AA∗ ≥ A∗A. Hence A is normal.
(iv) If

∑n−1
j=0 An−1− jBC j = 0 and A = B, then A and C are n-power quasinormal from Lemma 3.18. Hence

A and C are nth roots of quasinormal operators from Lemma 3.1. Since An and Cn have the single valued
extension property from Theorem 3.2.

Recall that T ∈ L(H) is said to be binormal if T∗T and TT∗ commute. In the following examples, we
observe that there are no inclusion relationships between the binormality and the n-power quasinormality.

Proposition 3.20. Let T be any 2× 2 matrix in L(C2). Assume that T is n-power quasinormal. Then T is binormal

if and only if it is unitarily equivalent to
[
a b
0 c

]
for a , 0 and b , 0 where

∑n−1
j=0 an−1− jc j = 0, (|a|2 − |c|2)(a − c) +

|b|2(|a|2 + |c|2) = 0, and ac ∈ R.

Proof. Since T is n-power quasinormal, we get from Proposition 3.8 that T is unitarily equivalent to one of
the following matrices;[

0 b
0 0

]
,

[
0 0
0 c

]
,

[
a 0
0 c

]
, and

[
a b
0 c

]
where

n−1∑
j=0

an−1− jc j = 0.

Since the first, second, third cases are binormal, it suffice to check the fourth case with a , 0, b , 0, and
c , 0. Moreover, it is an elementary calculation that T∗T and TT∗ commute if and only if (|a|2 − |c|2)(a − c) +
|b|2(|a|2 + |c|2) = 0, and ac ∈ R. Thus we complete the proof.

Example 3.21. Let T be a 2×2 matrix inL(C2) defined as T =
[
2 1
0 −1 +

√
3i

]
. Then T is 3-power quasinormal,

but is not binormal. Indeed, since
∑2

j=0 22− j(−1 +
√

3i) j = 0, T is 3-power quasinormal from Proposition
3.8. However, T is not binormal from Proposition 3.20. On the other hand, if T is a 2 × 2 matrix in L(C2)

defined as T =
[
1 2
0 −1

]
, then T is binormal, but is not n-power quasinormal for any odd number n from

Propositions 3.8 and 3.20.
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[17] K. Löwner, Uber monotone matrix functionen, Math. Z. 38(1983), 507-514.
[18] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34(1971), 653-664.
[19] J. L. Smul’jan, An operator Hellinger integral, Mat. Sb. 91(1959), 381-430. (Russian)


