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Transmutation of conformable Sturm-Liouville operator with exactly
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Abstract. In this paper, we proved transformation operator for fractional Sturm-Liouville operator, using
conformable derivative approach, which is different from classical Sturm-Liouville operator. Especially,
we obtained a Hyperbolic partial differential equation and some suitable conditions for nucleus function
K(x, t). Finally, we obtained a Fredholm integral equation. The proof is validated by taking α = 1 which
returns the original problem.

1. Introduction

The scattering of high energy electrons from a two center potential is of considerable interest in nuclear
and molecular physics. The Schroedinger equation for the problem is separable in spheroidal coordinates
and the scattering cross-section can be given in terms of spheroidal phase shifts. Schroedinger equation for
a free particle is in the form

d2ψ(x)
dx2 =

2m(V(x) − E)
ℏ2 ψ(x)

can be interpreted by saying that the left side, the rate of change of slope, is the curvature. Where, E is energy,
V is potential function, m is mass of particle and ℏ planck constant. Then, the curvature of the function is
proportional to (V(x) − E)ψ(x). It means that if V(x) < E and ψ(x) positive, then ψ(x) negatively curving.
Also, ψ(x) negative, then ψ(x) positively curving. The simplest case of potential is a constant potential
V(x) = V0 < E. In this case the wave function ψ(x) = A.Sin(kx + δ) for a δ constants and k = 2m

ℏ2 (E − V0).
Mathematically, they refers to the eigenfunctions and eigenvalus, respectively [17].
As it is known, the Schroedinger equation takes place in the literature as the Sturm-Liouville equation
mathematically. In this study, we will first establish a relationship between Schroedinger problems with
two different potential functions and their solutions. This relationship will lead us to a partial differential
equation. Of course, it is useful to state here that we will do all these in the case of conformable derivative.

Let us consider two Sturm-Liouville operators A = −
d2

dx2 + q(x) and B = −
d2

dx2 + r(x), for q(x) and r(x) are

squared integrable functions and known as potentials in the theory . The transformation operator is one
of the ways to solve inverse Sturm-Liouville operator. First of all, a relation was established between two

2020 Mathematics Subject Classification. Primary 34B24; Secondary 34C20
Keywords. Fractional differentiation, Transformation operator, Sturm-Liouville operator.
Received: 31 May 2022; Accepted: 18 July 2022
Communicated by Dragan S. Djordjević
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Sturm-Liouville problems with two different potentials by using integral equation. Then a very important
formula was obtained between the potential function and the nucleus function. Many studies in details
on this subject can be reach at [4],[8–12],[14], [19],[21],[23]. Using the above-mentioned relationship as a
source of motivation, we tried to obtain similar results for the fractional Sturm-Liouville problem and we
have seen that these results are possible to achieve.

We considered the case where E1 and E2 are considered as subspaces of a topological linear space E,
such that h1 and h2 are finite, for h1 ∈ E1 and h2 ∈ E2. Also, A and B are two differential operators from E
to E under the conditions that u′(0) = h1u(0) and u′(0) = h2u(0) . These conditions based the foundation of
ordinary transformation operator for the problem which is expressed as in the theorem below:

Theorem 1.1. Defining the transformation operator between of A and B as [17],

Xu(x) = u(x) +
∫ x

0
K(x, t)u(t)dt (1)

Then the kernel in operator (1) is a solution to the Hyperbolic equation;

∂2

∂x2 K(x, t) − q(x)K(x, t) =
∂2

∂t2 K(x, t) − r(x)K(x, t) (2)

and satisfies the conditions,

K(x, x) = h2 − h1 +
1
2

∫ x

0
[q(s) − r(s)]ds (3)

[
∂K(x, t)
∂t

− h1K(x, t)
]∣∣∣∣∣∣

t=0

= 0. (4)

Inversely, if the nucleus function K(x, t) is a solution of the problem (2) - (4), then the operator X defined by (1) is a
transformation operator for A and B.

The concept of fractional differential equation is an extension of the classical differential equation. It
gives the chance of taking the α-order derivative of a function, for 0 < α ≤ 1. This fact has been proved to be
very effective as it gives many chances of calculating and computing on some phenomenon that can’t be by
the classical differentiation and integration [1–3],[5–7],[13],[15], [16],[18],[20],[24–26]. The concept of opera-
tor is highly considered due to its vitality in almost all parts of mathematics, this lead us to investigate and
present the possibility of providing transformation operator for the conformable fractional Sturm-lioville
operator and it was achieved through the ordinary case of the problem. The proof is provided below in
details with all the supporting facts and theorems to ease understanding. These definitions and Theorems
were given by some authors [1], [5], [13],[22].

Definition 1.2. Let consider the function 1 : [0,∞)→ R . Then, the αth order derivative of 1 is given as

Dα
x1(x) = lim

h→0

1(x + hx1−α) − 1(x))
h

, (5)

for all x > 0, α ∈ (0, 1].

Definition 1.3. For a function 1, the integral of 1 of order α given as

Iα1(x) =
∫ x

0
1(t)dαt =

∫ x

0
tα−11(t)dt (6)

for all x > 0.
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Lemma 1.4. Let us assume that 1 : [a,∞)→ R is differentiable. Then, we have for x > a (a is any real number)

Dα
x Iα1(x) = 1(x).

Lemma 1.5. Assume that 1 : (a, b)→ R is differentiable. Then, for x > a,(a and b are any real numbers)

Dα
x Iα1(x) = 1(x) − 1(a).

Theorem 1.6. Let 1, h are two differentiable functions. Then∫ b

a
1(x)Dα

x (h(x))(x)dαx = 1h
∣∣∣b
a −

∫ b

a
h(x)Dα

x (1(x))dαx. (7)

Lemma 1.7. The α−Leibniz integral rule is given in the form

Dα
x

[∫ b(x)

a(x)
1(x, t)dαt

]
= Dα

x b(x)1(x, b(x))b(x)α−1
−Dα

x a(x)1(x, a(x))a(x)α−1 +

∫ b

a
Dα

x (1(x, t))dαt. (8)

for a(x) ≤ t ≤ b(x) while a(x) and b(x) are both α−differentiable for x0 ≤ x ≤ x1.

2. The proposed transformation operator

In this section, the presence of the transformation operator is given and also, a Hyperbolic type par-
tial differential equation and some conditions is obtained from the hyperbolic partial equation including
α−derivative for the kernel K(x, t) function. It is worth mentioning here that the method we used is similar
to that of the classical problem. However, the results obtained will be different and more general. We
considered E as a space which consisted of all real valued functions u(x) for x ≥ 0 . Let the two fractional
Sturm-liouville operators be expressed using the conformable derivative as follows;

A = −Dα
x Dα

x + q(x) and B = −Dα
x Dα

x + r(x) (9)

here q(x) and r(x), (0 ≤ x < ∞) are continuous functions. Let E1 and E2 be subspaces of functions in E
satisfying the boundary condition;

Dα
x u(0) = h1u(0) (10)

and

Dα
x u(0) = h2u(0) (11)

here h1 and h2 are any constants, then based on these, our proposed conformable fractional operator is
expressed by the theorem below;

Theorem 2.1. The transformation operator, X = XA,B from E1 to E2 is defined

Xu(x) = u(x) +
∫ x

0
K(x, t)u(t)dαt (12)

the Kernel in operator (12) is a solution to the fractional differential equation;

Dα
x (Dα

x K(x, t)) − q(x)K(x, t) = Dα
t (Dα

t K(x, t)) − r(x)K(x, t) (13)

and satisfies conditions,

K(x, x) = h2 − h1 +

∫ x

0

[q(s) − r(s)]
1 + sα−1 dαs (14)

[Dα
t K(x, t) − h1K(x, t)]

∣∣∣
t=0
= 0 (15)

Inversely, the operator X which is given in (12) is a transformation operator for A, B, on condition that K(x, t) is a
solution of (13) - (15).
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This is the statement of the proposed assertion and by using the facts in theorems, definitions, and
lemmas above, the proof is provided as follows;

Proof. Differentiating equation (12) fractionally with respect to x gives;

Dα
x (Xu(x)) = Dα

x u(x) +Dα
x [
∫ x

0
K(x, t)u(t)dαt]

= x1−α f ′(x) +Dα
x (x).K(x, x)u(x).xα−1

−Dα
x (0).K(x, 0)u(0).(0)α−1 +

∫ x

0
Dα

x K(x, t)u(t)dαt

That is,

Dα
x (Xu(x)) = x1−αu′(x) + K(x, x)u(x) +

∫ x

0
Dα

x K(x, t)u(t)dαt (16)

Since, (Xu(x)) ∈ E2 and u(x) ∈ E1, then taking as x = 0 in (16), we obtained,

Dα
x (Xu(x))|x=0 = h2(Xu(x))|x=0 = h2(u(0)) = Dα

x u(0) + K(0, 0)u(0)
= h1u(0) + K(0, 0)u(0) = [h1 + K(0, 0)]u(0)

(17)

which implies that K(0, 0) = h2 − h1. By differentiating equation (16) we get,

Dα
x [Dα

x (Xu(x))] = Dα
x [Dα

x u(x)] + [Dα
x K(x, x)]u(x) + K(x, x)[Dα

x u(x)] +Dα
x [Dα

x K(x, x)u(x)xα−1](x)α−1

−Dα
0 [Dα

0 K(x, 0) f (0)(0)α−1]xα−1 +

∫ x

0
Dα

x [Dα
x K(x, t)u(t)]dαt

= Dα
x [Dα

x u(x)] + [Dα
x K(x, x)]u(x) + K(x, x)[Dα

x u(x)]

+Dα
x [Dα

x K(x, x)u(x)xα−1](x)α−1 +

∫ x

0
Dα

x [Dα
x K(x, t)u(t)]dαt

(18)

therefore we have,

A(Xu(x)) = −Dα
x Dα

x (Xu(x)) + q(x)(Xu(x))

= −Dα
x Dα

x u(x) − [Dα
x K(x, x)]u(x) − K(x, x)[Dα

x u(x)] −Dα
x K(x, x)u(x)xα−1 + q(x)(u(x))

−

∫ x

0
[Dα

x Dα
x K(x, t) − q(x)K(x, t)]u(t)dαt

(19)

Bu(x) under the operator X is expressed as;

Bu(x) = [−Dα
x Dα

x + r(x)]u(x) = −Dα
x Dα

x u(x) + r(x)u(x) (20)

then,

X[Bu(x)] = (Bu(x)) +
∫ x

0
K(x, t)[Bu(t)]dαt

= −Dα
x Dα

x u(x) + r(x)u(x) −
∫ x

0
K(x, t)[−Dα

t Dα
t u(t) + r(t)]u(t)]dαt

= −Dα
x Dα

x u(x) + r(x)u(x) + [Dα
t K(x, x)]u(x) − K[x, x]Dα

t u(x) + K[x, 0]Dα
t u(0)

− [Dα
t K(x, 0)]u(0) −

∫ x

0
Dα

t Dα
t [K(x, t) − r(x)K(x, t)]u(t)dαt

(21)

Since, A(Xu) = X(Bu), then equating (19) and (21) gives;

Dα
x Dα

x K(x, t) − q(x)K(x, t) = Dα
t Dα

t K(x, t) − r(x)K(x, t) (22)
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and also, the conditions;

[Dα
t K(x, t) − h1K(x, t)]|t=0 = 0, (23)

and

Dα
x K(x, x)[1 + xα−1] = q(x) − r(x) (24)

which is equivalent to,

K(x, x) =
∫ x

0

[q(s) − r(s)]
1 + sα−1 dαs + K(0, 0), f or K(0, 0) = h2 − h1 (25)

are obtained.

This gives the proof of the proposed assertion and it is clear that the original problem is obtainable by
taking α = 1. Briefly, the proof is that, if the transformation operator X is in the form (12), then K(x, t) is a
solution of Hyperbolic problems (13) to (15).Coversely this assertion is also true. To complete the remainder
of proof, the solvability of problem (13) to (15) is shown below;
First assume that the functions q(x) and r(x) are differentiable. Let the variables ξ = x+ t and η = x− t.Then,

Q(ξ, η) = K
(
ξ + η

2
,
ξ − η

2

)
Equations (13) to (15) in terms of ξ and η can be expressed as;

Dα
ξ(Dα

ηQ(ξ, η)) =
1
4

[
q
(
ξ + η

2

)
− r

(
ξ + η

2

)]
Q (26)

and satisfies the conditions,

Q(ξ, 0) = h2 − h1 +

∫ ξ
2

0

[q(s) − r(s)]
1 + sα−1 dαs (27)

and

[Dα
ξQt1−α

−Dα
ηQt1−α

− h1Q]
∣∣∣
ξ=η
= 0 (28)

Integrating equation (26) according to variable η from 0 to η gives,

Dα
ξQ −Dα

ξQ
∣∣∣
η=0
=

1
4

∫ η

0

[
q
(
ξ + η

2

)
− r

(
ξ + η

2

)]
Q(ξ, λ)dαλ (29)

It follows from condition (28) that,

Dα
ξQ

∣∣∣
η=0
=

[
q
(
ξ
2

)
− r

(
ξ
2

)]
2(1 + ( ξ2 )α−1)

(
ξ
2

)α−1

therefore,

Dα
ξQ =

1
4

∫ η

0

[
q
(
ξ + η

2

)
− r

(
ξ + η

2

)]
Qdαλ +

[
q
(
ξ
2

)
− r

(
ξ
2

)]
2(1 + ( ξ2 )α−1)

(
ξ
2

)α−1
(30)

Integrating equation (30) with respect to variable ξ from η to ξ gives,

Q(ξ, η) =
1
4

∫ ξ

η
dαβ

∫ η

0

[
q
(
β + η

2

)
− r

(
β + η

2

)]
Q(β, λ)dαλ +

∫ ξ

η

[
q
(
ξ
2

)
− r

(
ξ
2

)]
2(1 + ( ξ2 )α−1)

(
ξ
2

)α−1

dαλ +Q(η, η) (31)
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Now, to calculate Q(η, η), it follows from (28) and (30) that

2Dα
ξQt1−α

∣∣∣
ξ=η
=

[
Dα
ξQt1−α +Dα

ηAt1−α + h1Q
]∣∣∣∣
ξ=η

=
1
2

∫ η

0

[
q
(
η + λ

2

)
− r

(
η + λ

2

)]
Q(η, λ)dαλ +

[
q
(
η
2

)
− r

(
η
2

)]
(1 + ( η2 )α−1)

(η
2

)α−1 (32)

then the last equation gives;

Dα
ξ[e(h2+h1)ηQ(η, η)] = e(h2+h1)η


[
q
(
η
2

)
− r

(
η
2

)]
(1 + ( η2 )α−1)

(η
2

)α−1


+ e(h2+h1)η

[
1
2

∫ η

0

[
q
(
η + λ

2

)
− r

(
η + λ

2

)]
Q(η, λ)dαλ

] (33)

Integrating this equation from 0 from η and considering the equation (27) leads to,

Q(η, η) = −(h2 + h1)e−(h2+h1)η

+ e−(h2+h1)η
∫ η

0
e(h2+h1)β

[
1
2

∫ η

0

[
q
(
β + λ

2

)
− r

(
β + λ

2

)]
Q(β, λ)dαλ

]
dαβ

+ e−(h2+h1)η
∫ η

0
e(h2+h1)β


[
q
(
β
2

)
− r

(
β
2

)]
(1 + ( β2 )α−1)

(
β

2

)α−1
 dαβ

(34)

Thus equation Q(ξ, η) must satisfy the integral equation

Q(ξ, η) =
1
4

∫ β

η
dαβ

∫ η

0

[
q
(
β + λ

2

)
− r

(
β + λ

2

)]
Q(β, λ)dαλ +

∫ ξ

0


[
q
(
λ
2

)
− r

(
λ
2

)]
2(1 + (λ2 )α−1)

(
λ
2

)α−1
 dαλ

+ e−(h2+h1)η

(
−(h2 + h1) +

∫ η

0
e(h2+h1)β

[
1
2

∫ β

0

[
q
(
β + λ

2

)
− r

(
β + λ

2

)]
Q(β, λ)dαλ

]
dαβ

+

∫ η

0
e(h2+h1)β


[
q
(
β
2

)
− r

(
β
2

)]
(1 + ( β2 )α−1)

(
β

2

)α−1 dαβ


(35)

And also, if function Q(ξ, η) satisfies the integral equation (35) with q(x) and r(x) each differentiable once, it
can be verified easily that (35) is a solution of problems (26) to (27).
This completed the proof and the desired result is obtained. The equivalent of equation (35) in the ordinary
case is a voltera-type integral equation, also, in this case (35) behave the same. From the fact that continuous
function can be approximated by smooth function, the assumption that the functions q(x) and r(x) are each
differentiable will not affect the approximation. Then, extrapolation to the limit function K(x, t) formed, is
the kernel of the transformation operator.

Corollary 2.2. If A = −Dα
x Dα

x + q(x) : and : B = −Dα
x Dα

x we obtain two problems as;

A f = µ f ,
Dα

x f (0) = 0
(36)

and

B f = µ f ,
Dα

x f (0) = 0
(37)
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and the solution of the problems (36) and (37) are u(x) and cos
√
µ

α xα. In this case, we can write the transformation
operator as

X
(
cos
√
µ

α
xα

)
= cos

√
µ

α
xα +

∫ x

0
K(x, t) cos

√
µ

α
tαdαt. (38)

Then we can obtain a partial differential equation for K(x, t).

3. Data Availability Statement

Data usage is not applicable to this article as no data were created or analysed in this study. The
study is directly on transmuting Sturm-Liouville operator into conformable fractional sense and stating the
potential.

4. Conclusion

New results for the conformable fractional Sturm-Liouville problems are proposed. The method to
obtain the main results is based on the transformation operator for Sturm-Liouville operator including
ordinary derivative. A Hyperbolic type partial differential equation and related conditions are obtained
for Nucleus function K(x, t). Finally, this problem is reduced to a Volterra integral equation. When we
think in terms of the solution of the inverse problem in the Sturm liouville theory, the transformation
operator has an important place. Especially the relation between the potential function and the kernel
in the form of K(x, x) =

∫ x

0 [q(s) − r(s)]ds has an important place. A similar relationship is presented as

K(x, x) =
∫ x

0
[q(s)−r(s)]

1+sα−1 dαs in the α−derivative Sturm Liouville problem. It is clear that K depends on the
potential function but not the spectral parameter(λ), one can give a reconstruction algorithm for the inverse
conformable Sturm-Liouville case.
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