

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A regularized trace of an even-order differential operator with bounded operator coefficient given in a finite interval

Fatma Aydin Akguna, Mamed Bayramoglub

^aDepartment of Mathematical Engineering, Yildiz Technical University, Istanbul, Turkey b Institute of Mathematics and Mechanics, NAS of Azerbaijan, Azerbaijan

Abstract. In this study, we obtain a regularized trace formula of an even-order differential operator with a bounded operator coefficient given in a finite interval.

1. Introduction

Let H be separable Hilbert Space with infinite dimension. In Hilbert space $H_1 = L_2(0, \pi, H)$, we consider the operators L_0 and L which are defined by the differential expressions

$$L_0(y) = (-1)^n y^{(2n)}(x)$$

$$L(y) = (-1)^n y^{(2n)}(x) + Q(x)y(x)$$

respectively and same boundary conditions

$$y'(0) = y^{'''}(0) = \dots = y^{(2n-1)}(0) = y(\pi) = y^{''}(\pi) = \dots = y^{(2n-2)}(\pi) = 0.$$

Let the operator function Q(x) satisfies the conditions given below.

1. For all $x \in [0, \pi]$, $Q(x) : H \to H$ is a self adjoint kernel operator. Q(x) has a second order continuous derivative in the interval $[0,\pi]$ according to the norm in space $\sigma_1(H)$. Here $\sigma_1(H): H \to H$ is the space of kernel operators [7],

$$2.||Q|| < \frac{3^{2n}-1}{2^{2n+1}}$$

 $2.\|Q\| < \frac{3^{2n}-1}{2^{2n+1}}$, 3.H has an orthonormal basis $\{\varphi_k\}_{k=1}^{\infty}$ where $\Sigma_{k=1}^{\infty}\|Q(x)\varphi_k\| < \infty$. The inner products in the spaces H_1 and H will be denoted by (.,.) and $(.,.)_H$, respectively. Further, the sum of eigenvalues of a kernel operator A will be denoted by trA and the norm in H will be denoted by $\|.\|_H$ The spectrum of the operator L_0 is the set

$$\sigma(L_0) = \left\{ (m + \frac{1}{2})^{2n} \right\}_{m=0}^{\infty}$$

2020 Mathematics Subject Classification. Primary 34K08; Secondary 34L05, 34L10.

Keywords. Regularized trace; Operator coefficient; Differential operator.

Received: 03 June 2022; Accepted: 25 July 2022

Communicated by Dragan S. Djordjević

Email addresses: fakgun@yildiz.edu.tr (Fatma Aydin Akgun), azadbay@gmail.com (Mamed Bayramoglu)

Each point of this set is an eigenvalue of the operator L_0 with infinite multiplicity. Orthonormal eigenvectors corresponding to the eigenvalue $(m + \frac{1}{2})^{2n}$ are

$$\Psi_{mk}(x) = \sqrt{\frac{1}{\pi}}\cos(m + \frac{1}{2})x\varphi_k, \quad (k = 1, 2, ...).$$
 (1)

Let the resolvents of the operators L_0 and L be R_{λ}^0 and R_{λ} , respectively. Let the operator $Q: H_1 \to H_1$ satisfies the conditions 1-3 given above, then the following can be proved: i) $QR_{\lambda}^0 \in \sigma_1(H_1)$, for all $\lambda \neq \sigma(L_0)$.

ii)The spectrum $\sigma(L)$ of the operator L is a subset of the combination of discrete intervals

$$F_m = \left[(m + \frac{1}{2})^{2n} - \|Q\|, (m + \frac{1}{2})^{2n} + \|Q\| \right] \quad (m = 0, 1, 2, ...),$$

i.e. $\sigma(L) \subset \bigcup_{m=0}^{\infty} F_m$.

iii)Each point of the spectrum of the operator L different from $(m + \frac{1}{2})^{2n}$ belonging to the interval F_m is a discrete eigenvalue of finite multiplicity.

iv)The series

$$\sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n} \right] \quad (m = 0, 1, 2, ...)$$
 (2)

are absolutely convergent where $\{\lambda_{mk}\}_{k=1}^{\infty}$ are the eigenvalues of operator L belonging to the interval F_m . First, [9] obtained the theory of regularized trace of ordinary differential operators. After this study, several mathematicians developed regular trace formulas for several differential operators with scalar coefficients(See [5], [8]-[12], [16]). The lists of the studies related to this subject are given in [13] and [14]. In addition, regularized trace formulas of the differential operators with operator coefficients are investigated in several studies. Some of these studies are [1]-[4],[6] and [15].

This article aims to calculate the regularized trace of the differential operator L with operator coefficient Q(x).

2. Relations between Resolvents and Eigenvalues

For every $\lambda \in \rho(L) = \mathbb{R} \setminus \sigma(L)$,

$$QR_{3}^{0} \in \sigma_{1}(H_{1}).$$

Therefore $(R_{\lambda} - R_{\lambda}^{0}) \in \sigma_{1}(H_{1})$ can be seen from the formula $R_{\lambda} = R_{\lambda}^{0} - R_{\lambda}QR_{\lambda}^{0}$. On the other hand, considering that the series

$$\sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n} \right] \quad (m = 0, 1, 2, ...)$$

is absolutely convergent, we can obtain

$$tr(R_{\lambda} - R_{\lambda}^{0}) = \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \left[\frac{1}{\lambda_{mk} - \lambda} - \frac{1}{(m + \frac{1}{2})^{2n} - \lambda} \right]$$

[6]. If this equation is multiplied by $\frac{\lambda}{2\pi i}$ and integrated over the circle

$$|\lambda| = b_p = \frac{1}{2} \left[(p + \frac{1}{2})^{2n} + (p + \frac{3}{2})^{2n} \right] \quad (p \in \mathbb{N}, p \ge 1)$$

then

$$\frac{1}{2\pi i}\int\limits_{|\lambda|=b_p}\lambda tr(R_\lambda-R_\lambda^0)d\lambda=\frac{1}{2\pi i}\int\limits_{|\lambda|=b_p}\lambda\sum_{m=0}^p\sum_{k=1}^\infty\left[\frac{1}{\lambda_{mk}-\lambda}-\frac{1}{(m+\frac{1}{2})^{2n}-\lambda}\right]d\lambda$$

$$+\frac{1}{2\pi i} \int_{|\lambda|=b_n} \lambda \sum_{m=p+1}^{\infty} \sum_{k=1}^{\infty} \left[\frac{1}{\lambda_{mk} - \lambda} - \frac{1}{(m + \frac{1}{2})^{2n} - \lambda} \right] d\lambda \tag{3}$$

is obtained. For $m \le p$ and $p \ge 1$,

$$(m+\frac{1}{2})^{2n}-\|Q\|\leq \lambda_{mk}\leq (m+\frac{1}{2})^{2n}+\|Q\|<(p+\frac{1}{2})^{2n}+\frac{3^{2n}-1}{2^{2n+1}}<\frac{1}{2}\left[(p+\frac{1}{2})^{2n}+(p+\frac{3}{2})^{2n}\right]=b_p.$$

Since,

$$|\lambda_{mk}| < b_p; m \le p; \quad p \ge 1; k = 1, 2, ...,$$
 (4)

then for $m > p \ge 1$,

$$\lambda_{mk} \geq (m + \frac{1}{2})^{2n} - ||Q|| > (p + \frac{3}{2})^{2n} - \frac{3^{2n} - 1}{2^{2n+1}} > \frac{1}{2} \left[(p + \frac{1}{2})^{2n} + (p + \frac{3}{2})^{2n} \right] = b_p.$$

Therefore

$$\lambda_{mk} > b_p; m > p \ge 1; k = 1, 2, \dots$$
 (5)

From (3), (4) and (5),

$$\frac{1}{2\pi i} \int_{|\lambda| = b_p} \lambda tr(R_{\lambda} - R_{\lambda}^0) d\lambda = \sum_{m=0}^p \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \int_{|\lambda| = b_p} \frac{\lambda}{\lambda - (m + \frac{1}{2})^{2n}} d\lambda - \frac{1}{2\pi i} \int_{|\lambda| = b_p} \frac{\lambda}{\lambda - \lambda_{mk}} d\lambda \right]$$

$$+\sum_{m=p+1}^{\infty}\sum_{n=1}^{\infty}\left[\frac{1}{2\pi i}\int_{|\lambda|=b_p}\frac{\lambda}{\lambda-(m+\frac{1}{2})^{2n}}d\lambda-\frac{1}{2\pi i}\int_{|\lambda|=b_p}\frac{\lambda}{\lambda-\lambda_{mk}}d\lambda\right]=\sum_{m=0}^{p}\sum_{k=1}^{\infty}\left[(m+\frac{1}{2})^{2n}-\lambda_{mk}\right]$$
(6)

is obtained. By using the formula $R_{\lambda} = R_{\lambda}^{0} - R_{\lambda}QR_{\lambda}^{0}$, we get

$$R_{\lambda} - R_{\lambda}^{0} = \sum_{j=1}^{4} (-1)^{j} R_{\lambda}^{0} (Q R_{\lambda}^{0})^{j} - R_{\lambda} (Q R_{\lambda}^{0})^{5}.$$

If this expression is substituted in equation (6), we find

$$\sum_{m=0}^{p} \sum_{k=1}^{\infty} \left[(m + \frac{1}{2})^{2n} - \lambda_{mk} \right] = \sum_{j=1}^{4} \frac{(-1)^{j}}{2\pi i} \int_{|\lambda| = b_{p}} \lambda tr[R_{\lambda}^{0}(QR_{\lambda}^{0})^{j}] d\lambda - \frac{1}{2\pi i} \int_{|\lambda| = b_{p}} \lambda tr[R_{\lambda}(QR_{\lambda}^{0})^{5}] d\lambda.$$
 (7)

Let

$$M_{pj} = \frac{(-1)^{j+1}}{2\pi i} \int_{|\lambda| = b_p} \lambda tr[R_{\lambda}^0(QR_{\lambda}^0)^j] d\lambda, \tag{8}$$

and

$$M_p = \frac{1}{2\pi i} \int_{|\lambda| = b_p} \lambda tr[R_\lambda (QR_\lambda^0)^5] d\lambda. \tag{9}$$

Then the equation (7) can be written as

$$\sum_{m=0}^{p} \sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n} \right] = \sum_{j=1}^{4} M_{pj} + M_{p}.$$
 (10)

Theorem 2.1. *If the operator function* Q(x) *satisfies the 3rd condition, then*

$$M_{pj} = \frac{(-1)^j}{2\pi i j} \int\limits_{|\lambda| = b_p} tr[(QR_{\lambda}^0)^j] d\lambda.$$

Proof. It can be shown that the operator function QR^0_{λ} in the $\rho(L_0)$ region is analytical with respect to the norm in the space $\sigma_1(H_1)$ and

$$tr\left\{\left[(QR_{\lambda}^{0})^{j}\right]'\right\} = jtr\left[(QR_{\lambda}^{0})'(QR_{\lambda}^{0})^{j-1}\right]. \tag{11}$$

Considering that $(QR_{\lambda}^{0})' = Q(R_{\lambda}^{0})^{2}$, the formula (11) can be written as

$$tr\left\{\left[\left(QR_{\lambda}^{0}\right)^{j}\right]'\right\} = jtr\left[R_{\lambda}^{0}\left(QR_{\lambda}^{0}\right)^{j}\right]. \tag{12}$$

From (8) and (12), we have

$$M_{pj} = \frac{(-1)^{j+1}}{2\pi i j} \int_{|\lambda| = b_p} \lambda tr\{[(QR_{\lambda}^0)^j]'\} d\lambda.$$

Hence.

$$M_{pj} = \frac{(-1)^{j+1}}{2\pi i j} \int_{|\lambda| = b_p} tr\{[\lambda (QR_{\lambda}^0)^j]' - (QR_{\lambda}^0)^j\} d\lambda = \frac{(-1)^j}{2\pi i j} \int_{|\lambda| = b_p} tr[(QR_{\lambda}^0)^j] d\lambda + \frac{(-1)^{j+1}}{2\pi i j} \int_{|\lambda| = b_p} tr\{[\lambda (QR_{\lambda}^0)^j]'\} d\lambda.$$
(13)

It can easily be shown that

$$tr\{[\lambda(QR_{\lambda}^{0})^{j}]'\} = \{tr[\lambda(QR_{\lambda}^{0})^{j}]\}'.$$

Thus,

$$\int_{|\lambda|=b_p} tr\{[\lambda(QR_{\lambda}^0)^j]'\}d\lambda = \int_{|\lambda|=b_p} \{tr[\lambda(QR_{\lambda}^0)^j]\}'d\lambda.$$
(14)

The integral on the right side of this equation can be written as

$$\int_{|\lambda|=b_p} \{tr[\lambda(QR_{\lambda}^0)^j]\}' d\lambda = \int_{|\lambda|=b_p, Im\lambda \ge 0} \{tr[\lambda(QR_{\lambda}^0)^j]\}' d\lambda + \int_{|\lambda|=b_p, Im\lambda \le 0} \{tr[\lambda(QR_{\lambda}^0)^j]\}' d\lambda.$$
(15)

Let ε_0 be a constant that satisfies the condition $0 < \varepsilon_0 < b_p - (p + \frac{1}{2})^{2n}$. Considering that the function $tr[\lambda(QR_{\lambda}^0)^j]$ is analytical in its simply connected regions

$$G_1 = {\lambda \in \mathbb{C} : b_v - \varepsilon_0 < |\lambda| < b_v + \varepsilon_0, Im\lambda > -\varepsilon_0},$$

$$G_2 = \{\lambda \in \mathbb{C} : b_p - \varepsilon_0 < |\lambda| < b_p + \varepsilon_0, Im\lambda < \varepsilon_0\},\$$

and

 $\{\lambda \in \mathbb{C} : |\lambda| = b_p, \quad Im\lambda \geq 0\} \subset G_1,$

 $\{\lambda \in \mathbb{C} : |\lambda| = b_p, \quad Im\lambda \leq 0\} \subset G_2,$

from (15), we obtain

$$\int_{|\lambda|=b_p} \{tr[\lambda(QR_{\lambda}^0)^j]\}' d\lambda = tr[-b_p(QR_{-b_p}^0)^j] - tr[b_p(QR_{b_p}^0)^j] + tr[b_p(QR_{b_p}^0)^j] - tr[-b_p(QR_{-b_p}^0)^j] = 0.$$
 (16)

Finally, from (13), (14) and (16), we have

$$M_{pj} = \frac{(-1)^j}{2\pi i j} \int_{|\lambda| = b_p} tr[(QR_{\lambda}^0)^j] d\lambda.$$

3. Regularized Trace Formula

In this section, we will find the formula for the sum of the following series

$$\sum_{m=0}^{\infty} \left\{ \sum_{k=1}^{\infty} \left[\lambda_{mk} - (m+\frac{1}{2})^{2n} \right] - \frac{1}{\pi} \int_{0}^{\pi} tr Q(x) dx \right\}.$$

The sum of this series is called the regular trace of the *L* operator. According to Theorem (2.1)

$$M_{p1} = -\frac{1}{2\pi i} \int_{|\lambda| = b_p} tr(QR_{\lambda}^0) d\lambda. \tag{17}$$

Let $\{\Psi_{mk}\}_{m=0,k=1}^{\infty}$ be the eigenvectors system of the L_0 operator and orthonormal basis of the space H_1 , from (17)

$$M_{p1} = -\frac{1}{2\pi i} \int\limits_{|\lambda| = b_p} \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} (QR_{\lambda}^0 \Psi_{mn}, \Psi_{mn}) d\lambda = -\frac{1}{2\pi i} \int\limits_{|\lambda| = b_p} \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \frac{(Q\Psi_{mk}, \Psi_{mk})}{(m + \frac{1}{2})^{2n} - \lambda} d\lambda$$

$$= \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} (Q\Psi_{mk}, \Psi_{mk}) \frac{1}{2\pi i} \int_{|\lambda| = b_p} \frac{1}{\lambda - (m + \frac{1}{2})^{2n}} d\lambda$$
 (18)

is obtained. Since, for $m \le p$,

$$(m+\frac{1}{2})^{2n} < b_p = \frac{1}{2} \left[(p+\frac{1}{2})^{2n} + (p+\frac{3}{2})^{2n} \right],$$

and for m > p,

$$(m + \frac{1}{2})^{2n} > b_p = \frac{1}{2} \left[(p + \frac{1}{2})^{2n} + \left(p + \frac{3}{2} \right)^{2n} \right]$$

from equation (18) we have

$$M_{p1} = \sum_{m=0}^{p} \sum_{k=1}^{\infty} (Q\Psi_{mk}, \Psi_{mk}) \frac{1}{2\pi i} \int_{|\lambda| = b_n} \frac{1}{\lambda - (m + \frac{1}{2})^{2n}} d\lambda = \sum_{m=0}^{p} \sum_{k=1}^{\infty} (Q\Psi_{mk}, \Psi_{mk}).$$
 (19)

By using (1) and (19), we find

$$M_{p1} = \sum_{m=0}^{p} \sum_{k=1}^{\infty} \int_{0}^{\pi} (Q(x) \sqrt{\frac{2}{\pi}} \cos{(m + \frac{1}{2})} x \varphi_{k}, \sqrt{\frac{2}{\pi}} \cos{(m + \frac{1}{2})} x \varphi_{k})_{H} dx$$

$$= \frac{2}{\pi} \sum_{m=0}^{p} \sum_{k=1}^{\infty} \int_{0}^{\pi} (Q(x)\varphi_{k}, \varphi_{k})_{H} \cos^{2}(m + \frac{1}{2})x dx = \frac{1}{\pi} \sum_{m=0}^{p} \sum_{k=1}^{\infty} \int_{0}^{\pi} (Q(x)\varphi_{k}, \varphi_{k})_{H} (1 + \cos(2m + 1)x) dx$$
 (20)

Since $\sum_{n=1}^{\infty} (Q(x)\varphi_k, \varphi_k)_H = trQ(x)$, from (20), we write

$$M_{p1} = \frac{p+1}{\pi} \int_0^{\pi} tr Q(x) dx + \frac{1}{\pi} \sum_{m=0}^p \int_0^{\pi} tr Q(x) \cos(2m+1)x dx.$$
 (21)

Lemma 3.1. *If the Q(x) operator function satisfies the 2nd and 3rd conditions, then*

$$||R_{\lambda}|| < constp^{(-2n+1)}$$

on the circle $|\lambda| = b_p$.

When 2nd and 3rd conditions are satisfied,

$$\{\lambda_{mk}\}_{k=1}^{\infty} \subset \left[(m + \frac{1}{2})^{2n} - ||Q||, (m + \frac{1}{2})^{2n} + ||Q|| \right] \quad (m = 0, 1, 2...)$$

and

$$|\lambda_{mk} - (m + \frac{1}{2})^{2n}| \le ||Q|| < \frac{3^{2n} - 1}{2^{2n+1}}$$
 $(m = 0, 1, 2, ...; k = 0, 1, 2...).$

Considering these relations, for $m \le p$, we have

$$|\lambda_{mk} - \lambda| = |\lambda - (m + \frac{1}{2})^{2n} - (\lambda_{mk} - (m + \frac{1}{2})^{2n})| \ge |\lambda - (m + \frac{1}{2})^{2n}| - |\lambda_{mk} - (m + \frac{1}{2})^{2n}|$$

$$> |\lambda| - (m + \frac{1}{2})^{2n} - \frac{3^{2n} - 1}{2^{2n+1}} \ge \frac{1}{2} \left[(p + \frac{1}{2})^{2n} + (p + \frac{3}{2})^{2n} \right] - (p + \frac{1}{2})^{2n} - \frac{3^{2n} - 1}{2^{2n+1}}$$

$$= \frac{1}{2} \left[p + \frac{3}{2} \right]^{2n} - (p + \frac{1}{2})^{2n} - \frac{3^{2n} - 1}{2^{2n+1}} > n(p + \frac{1}{2})^{2n-1} - \frac{3^{2n} - 1}{2^{2n+1}}$$

$$> const(p^{2n-1}), \tag{22}$$

and for $m \ge p + 1$, we have

$$|\lambda_{mk} - \lambda| = |(m + \frac{1}{2})^{2n} - \lambda - ((m + \frac{1}{2})^{2n} - \lambda_{mk})| \ge |(m + \frac{1}{2})^{2n} - \lambda| - |(m + \frac{1}{2})^{2n} - \lambda_{mk}| \ge (m + \frac{1}{2})^{2n} - |\lambda| - \frac{3^{2n} - 1}{2^{2n+1}}$$

$$\ge (p + \frac{3}{2})^{2n} - \frac{1}{2} \left[(p + \frac{1}{2})^{2n} + (p + \frac{3}{2})^{2n} \right] - \frac{3^{2n} - 1}{2^{2n+1}} = \frac{1}{2} \left[(p + \frac{3}{2})^{2n} - (p + \frac{1}{2})^{2n} \right] - \frac{3^{2n} - 1}{2^{2n+1}} > const(p^{2n-1}). \tag{23}$$

Moreover,

$$||R_{\lambda}|| = \max_{m = 0, 1, ...} \{|\lambda_{mk} - \lambda|^{-1}\}\$$

$$k = 1, 2, ...$$
(24)

and from (22), (23) and (24), we obtain

$$||R_{\lambda}|| < const(p^{-2n+1}).$$

Lemma 3.2. If the function Q(x) satisfies the 2nd and 3rd conditions,

$$||QR_{\lambda}^{0}||_{\sigma_{1}(H_{1})} < const(p^{2-2n})$$

on the circle $|\lambda| = b_p$.

Proof. For $\lambda \notin \sigma(L_0)$

$$\sum_{m=0}^{\infty} \sum_{k=1}^{\infty} ||QR_{\lambda}^{0}\Psi_{mk}|| = \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} |(m + \frac{1}{2})^{2n} - \lambda|^{-1} ||Q\Psi_{mk}||
= \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} |(m + \frac{1}{2})^{2n} - \lambda|^{-1} [\int_{0}^{\pi} ||Q(x)\sqrt{\frac{2}{\pi}}\cos(m + \frac{1}{2})x\varphi_{k}||_{H}^{2} dx]^{\frac{1}{2}}
= \sqrt{\frac{2}{\pi}} \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} |(m + \frac{1}{2})^{2n} - \lambda|^{-1} [\int_{0}^{\pi} ||Q(x)\varphi_{k}||_{H}^{2} \cos^{2}(m + \frac{1}{2})x dx]^{\frac{1}{2}}
< \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} |(m + \frac{1}{2})^{2n} - \lambda|^{-1} [\int_{0}^{\pi} ||Q(x)\varphi_{k}||_{H}^{2} dx]^{\frac{1}{2}} = \sum_{m=0}^{\infty} |(m + \frac{1}{2})^{2n} - \lambda|^{-1} \sum_{k=1}^{\infty} ||Q(x)\varphi_{k}||$$
(25)

Hence, we find

$$\sum_{m=0}^{\infty} \sum_{k=1}^{\infty} ||QR_{\lambda}^{0} \Psi_{mk}|| < \infty \quad (\lambda \in \sigma(L_{0})).$$

Since $\{\Psi\}_{m=0,k=1}^{\infty}$ is an orthonormal basis of H_1 space,

$$\|QR_{\lambda}^{0}\|_{\sigma_{1}(H_{1})} \leq \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \|QR_{\lambda}^{0}\Psi_{mk}\|$$
(26)

can be written [1]. From (25) and (26)

$$||QR_{\lambda}^{0}||_{\sigma_{1}(H_{1})} \leq \sum_{k=1}^{\infty} ||Q(x)\varphi_{k}|| \sum_{m=0}^{\infty} |(m+\frac{1}{2})^{2n} - \lambda|^{-1}$$
(27)

is obtained. On $|\lambda| = b_p$ circle \square

$$\sum_{m=0}^{\infty} |(m+\frac{1}{2})^{2n} - \lambda|^{-1} = \sum_{m=0}^{p} |(m+\frac{1}{2})^{2n} - \lambda|^{-1} + \sum_{m=p+1}^{\infty} |(m+\frac{1}{2})^{2n} - \lambda|^{-1}$$

$$< \sum_{m=0}^{p} (|\lambda| - (m+\frac{1}{2})^{2n})^{-1} + \sum_{m=p+1}^{\infty} ((m+\frac{1}{2})^{2n} - |\lambda|)^{-1} = \frac{1}{2} \sum_{m=0}^{p} \left((p+\frac{3}{2})^{2n} - (p+\frac{1}{2})^{2n} \right)^{-1} + \sum_{m=p+1}^{\infty} ((m+\frac{1}{2})^{2n} - |\lambda|)^{-1}$$

$$< const \sum_{m=0}^{p} p^{-2n+1} + \sum_{m=p+1}^{\infty} ((m + \frac{1}{2})^{2n} - |\lambda|)^{-1} < const p^{-2n+2} + \sum_{m=p+1}^{\infty} ((m + \frac{1}{2})^{2n} - |\lambda|)^{-1},$$
 (28)

and

$$\sum_{m=p+1}^{\infty} ((m+\frac{1}{2})^{2n} - \lambda)^{-1} = ((p+\frac{3}{2})^{2n} - (p+\frac{1}{2})^{2n})^{-1} + \sum_{m=p+2}^{\infty} ((m+\frac{1}{2})^{2n} - |\lambda|)^{-1}$$

$$< constp^{1-2n} + \sum_{m=p+2}^{\infty} ((m+\frac{1}{2})^{2n} - (p+\frac{3}{2})^{2n})^{-1}.$$
 (29)

Moreover,

$$\sum_{m=p+2}^{\infty} \left((m + \frac{1}{2})^{2n} - (p + \frac{3}{2})^{2n} \right)^{-1} \le \left((p + \frac{5}{2})^{2n} - (p + \frac{3}{2})^{2n} \right)^{-1} + \int_{p+\frac{5}{2}}^{\infty} (x^{2n} - (p + \frac{3}{2})^{2n})^{-1} dx. \tag{30}$$

Let $x^{2n} - (p + \frac{3}{2})^{2n} = t$, then

$$\int\limits_{p+\frac{5}{2}}^{\infty}(x^{2n}-(p+\frac{3}{2})^{2n})^{-1}dx=\frac{1}{2n}\int\limits_{(p+\frac{5}{2})^{2n}-(p+\frac{3}{2})^{2n}}^{\infty}\left[t^{-1}(t+(p+\frac{3}{2})^{2n})^{\frac{1}{2n}-1}\right]dt<\int\limits_{(p+\frac{5}{2})^{2n}-(p+\frac{3}{2})^{2n}}^{\infty}t^{\frac{1}{2n}-2}dt$$

$$< \frac{t^{\frac{1}{2n}-1}}{\frac{1}{2n}-1} \bigg|_{(p+\frac{5}{2})^{2n}-(p+\frac{3}{2})^{2n}}^{\infty} < const(p^{2n-1})^{\frac{1-2n}{2n}} = const(p^{-\frac{(2n-1)^2}{2n}}).$$
 (31)

From (30) and (31), we obtain

$$\sum_{m=n+2}^{\infty} \left(\left(m + \frac{1}{2} \right)^{2n} - \left(p + \frac{3}{2} \right)^{2n} \right)^{-1} < const(p^{1-2n} + p^{-\frac{(2n-1)^2}{2n}})$$
(32)

Moreover, from (28), (29) and (32), we get

$$\sum_{m=0}^{\infty} |(m + \frac{1}{2})^{2n} - \lambda|^{-1} < const(p^{2-2n} + p^{-\frac{(2n-1)^2}{2n}})$$
(33)

and from (27) and (33), we get

$$\|QR_{\lambda}^0\|_{\sigma_1(H_1)} < const(p^{2-2n})$$

Now we will show that $\lim_{p\to\infty} M_{p2} = 0$. According to Theorem 2.1,

$$M_{p2} = \frac{1}{4\pi i} \int\limits_{|\lambda| = b_p} tr[(QR_{\lambda}^0)^2] d\lambda.$$

Since $tr(QR_{\lambda}^{0})^{2} = \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} ((QR_{\lambda}^{0})^{2} \Psi_{mk}, \Psi_{mk})$, then

$$M_{p2} = \frac{1}{4\pi i} \int_{|\lambda| = b_p} \left[\sum_{m=0}^{\infty} \sum_{k=1}^{\infty} ((QR_{\lambda}^0)^2 \Psi_{mk}, \Psi_{mk}) \right] d\lambda.$$
 (34)

Also we have

$$QR_{\lambda}^{0}\Psi_{mk} = \frac{Q\Psi_{mk}}{(m + \frac{1}{2})^{2n} - \lambda}$$

and

$$(QR_{\lambda}^{0})^{2}\Psi_{mk} = \frac{1}{(m + \frac{1}{2})^{2n} - \lambda} QR_{\lambda}^{0} Q\Psi_{mk} = ((m + \frac{1}{2})^{2n} - \lambda)^{-1} QR_{\lambda}^{0} \sum_{m_{1}=0}^{\infty} \sum_{k_{1}=1}^{\infty} (Q\Psi_{mk}, \Psi_{m_{1}k_{1}}) \Psi_{m_{1}k_{1}}$$

$$= ((m + \frac{1}{2})^{2n} - \lambda)^{-1} \sum_{m_1=0}^{\infty} \sum_{k_1=1}^{\infty} \frac{(Q\Psi_{mk}, \Psi_{m_1k_1})}{(m_1 + \frac{1}{2})^{2n} - \lambda} Q\Psi_{m_1k_1}.$$
(35)

By using (34) and (35), we write

$$M_{p2} = \frac{1}{4\pi i} \int_{|\lambda| = b_p} \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \sum_{m_1=0}^{\infty} \sum_{k_1=1}^{\infty} \frac{(Q\Psi_{mk}, \Psi_{m_1k_1})(Q\Psi_{m_1k_1}, \Psi_{mk})}{(\lambda - (m + \frac{1}{2})^{2n})(\lambda - (m_1 + \frac{1}{2})^{2n})} d\lambda.$$
(36)

By taking the following equality into consideration for $(m + \frac{1}{2})^{2n} < b_p$ and $(m_1 + \frac{1}{2})^{2n} < b_p$ $((m + \frac{1}{2})^{2n} > b_p)$,

$$\int_{|\lambda|=b_p} \frac{1}{(\lambda-(m+\frac{1}{2})^{2n})(\lambda-(m_1+\frac{1}{2})^{2n})} d\lambda = \int_{|\lambda|=b_p} \left(\frac{1}{(\lambda-(m+\frac{1}{2})^{2n})} - \frac{1}{(\lambda-(m_1+\frac{1}{2})^{2n})} \right) \frac{1}{(m+\frac{1}{2})^{2n} - (m_1+\frac{1}{2})^{2n}} d\lambda = 0$$

we can write the equation (36) as

$$M_{p2} = \frac{1}{2\pi i} \sum_{m=0}^{p} \sum_{k=1}^{\infty} \sum_{m_1=p+1}^{\infty} \sum_{k_1=1}^{\infty} (Q\Psi_{mk}, \Psi_{m_1k_1})(Q\Psi_{m_1k_1}, \Psi_{mk}) \times \int_{|\lambda|=b_p} \frac{d\lambda}{(\lambda - (m + \frac{1}{2})^{2n})(\lambda - (m_1 + \frac{1}{2})^{2n})}.$$

For $m \le p$ and $m_1 \ge p + 1$,

$$\frac{1}{2\pi i} \int_{|\lambda| = b_p} \frac{d\lambda}{(\lambda - (m + \frac{1}{2})^{2n})(\lambda - (m_1 + \frac{1}{2})^{2n})} = \frac{1}{(m + \frac{1}{2})^{2n} - (m_1 + \frac{1}{2})^{2n}}.$$

Therefore

$$M_{p2} = \frac{1}{2\pi i} \sum_{m=0}^{p} \sum_{k=1}^{\infty} \sum_{m_1=p+1}^{\infty} \sum_{k_1=1}^{\infty} \frac{1}{(m+\frac{1}{2})^{2n} - (m_1+\frac{1}{2})^{2n}} |(Q\Psi_{mk}, \Psi_{m_1k_1})|^2.$$

From here, we get

$$|M_{p2}| \leq \sum_{m_1=p+1}^{\infty} \sum_{k_1=1}^{\infty} \frac{1}{(m_1 + \frac{1}{2})^{2n} - (p + \frac{1}{2})^{2n}} \sum_{m=0}^{\infty} \sum_{k=1}^{\infty} |(Q\Psi_{mk}, \Psi_{m_1k_1})|^2 = \sum_{m_1=p+1}^{\infty} \frac{1}{(m_1 + \frac{1}{2})^{2n} - (p + \frac{1}{2})^{2n}} \sum_{k=1}^{\infty} ||Q\varphi_{m_1k_1}||^2.$$
(37)

If the operator function Q(x) satisfies its 3rd condition, then

$$\sum_{k=1}^{\infty} \|Q\Psi_{mk}\|^2 = \sum_{k=1}^{\infty} \int_0^{\pi} \|Q(x)\sqrt{\frac{2}{\pi}}\cos{(m+\frac{1}{2})x\phi_k}\|_H^2 dx \le \sum_{k=1}^{\infty} \int_0^{\pi} \|Q(x)\phi_k\|_H^2 dx = \sum_{k=1}^{\infty} \|Q(x)\phi_k\|_H^$$

is obtained. From (32), (37) and (38), we have

$$|M_{p2}| < const(p^{1-2n} + p^{-\frac{(2n-1)^2}{2n}}),$$

thus,

$$\lim_{p \to \infty} M_{p2} = 0 \tag{39}$$

is obtained. The equality

$$\lim_{p \to \infty} M_{p3} = 0 \tag{40}$$

can be proved similarly.

Theorem 3.3. *If the operator function satisfies the conditions* 1-3, then

$$\sum_{m=0}^{\infty} \left\{ \sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n} \right] - \frac{1}{\pi} \int_{0}^{\pi} tr Q(x) dx \right\} = \frac{1}{4} \left[tr Q(0) - tr Q(\pi) \right].$$

Proof. By using Theorem 2.1, Lemma 3.1 and Lemma 3.2, we have

$$|M_{p4}| \leq |\int\limits_{|\lambda| = b_p} tr(QR_{\lambda}^0)^4 d\lambda| \leq \int\limits_{|\lambda| = b_p} |tr(QR_{\lambda}^0)^4||d\lambda| \leq \int\limits_{|\lambda| = b_p} ||(QR_{\lambda}^0)^4||_{\sigma_1(H_1)}|d\lambda| \leq \int\limits_{|\lambda| = b_p} ||(QR_{\lambda}^0)^3||||QR_{\lambda}^0||_{\sigma_1(H_1)}|d\lambda|$$

$$\leq \int_{|\lambda|=b_n} p^{3(1-2n)} p^{(2-2n)} |d\lambda| < const(p^{5-8n} p^{2n}) = const(p^{5-6n})$$

$$\tag{41}$$

From (9) and again by using Lemma 3.1 and Lemma 3.2, we get

$$|M_p| = |\int\limits_{|\lambda| = b_p} \lambda tr[R_\lambda(QR_\lambda^0)^5] d\lambda| \leq \int\limits_{|\lambda| = b_p} |\lambda tr[R_\lambda(QR_\lambda^0)^5]| |d\lambda| \leq b_p \int\limits_{|\lambda| = b_p} ||R_\lambda(QR_\lambda^0)^5]| ||\sigma_1(H_1)| d\lambda|$$

$$\leq b_p \int\limits_{|\lambda|=b_p} ||R_{\lambda}||||(QR_{\lambda}^0)^4]||||(QR_{\lambda}^0)||_{\sigma_1(H_1)}|d\lambda| < constb_p \int\limits_{|\lambda|=b_p} p^{5(1-2n)}p^{2-2n}|d\lambda| \leq constp^{4n+5(1-2n)}$$

$$= const(p^{5-6n}) \tag{42}$$

From (41) and (42) we obtain

$$\lim_{p \to \infty} M_{p4} = \lim_{p \to \infty} M_p = 0. \tag{43}$$

From (10) and (21), we get

$$\sum_{m=0}^{p} \sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n}\right] = \frac{p+1}{\pi} \int_{0}^{\pi} trQ(x)dx + \frac{1}{\pi} \sum_{m=0}^{p} \int_{0}^{\pi} trQ(x)\cos(2m+1)xdx + \sum_{j=2}^{4} M_{pj} + M_{p}.$$
 (44)

Also from (39), (40), (43) and (44) we get

$$\sum_{m=0}^{\infty} \left\{ \sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n} \right] - \frac{1}{\pi} \int_{0}^{\pi} tr Q(x) dx \right\} = \frac{1}{\pi} \sum_{m=0}^{\infty} \int_{0}^{\pi} tr Q(x) \cos(2m+1)x dx \tag{45}$$

Using the fact that the operator function Q(x) satisfies the first condition, for the expression on the right side of equation (45), we get

$$\frac{1}{\pi} \sum_{m=0}^{\infty} \int_{0}^{\pi} trQ(x) \cos(2m+1)x dx = \frac{1}{2\pi} \sum_{m=1}^{\infty} \int_{0}^{\pi} trQ(x) \cos mx dx - \frac{1}{2\pi} \sum_{m=1}^{\infty} (-1)^{m} \int_{0}^{\pi} trQ(x) \cos mx dx$$

$$= \frac{1}{4} \sum_{m=1}^{\infty} \left[\frac{2}{\pi} \int_{0}^{\pi} trQ(x) \cos mx dx \right] \cos m0 + \frac{1}{4} \left[\frac{1}{\pi} \int_{0}^{\pi} trQ(x) dx \right] \cos 0 - \frac{1}{4} \sum_{m=1}^{\infty} \left[\frac{2}{\pi} \int_{0}^{\pi} trQ(x) \cos mx dx \right] \cos m\pi dx$$

$$+ \frac{1}{4} \left[\frac{1}{\pi} \int_{0}^{\pi} trQ(x) dx \right] \cos 0\pi = \frac{1}{4} \left[trQ(0) - trQ(\pi) \right] \tag{46}$$

Finally, from (45) and (46), we obtain.

$$\sum_{m=0}^{\infty} \left\{ \sum_{k=1}^{\infty} \left[\lambda_{mk} - (m + \frac{1}{2})^{2n} \right] - \frac{1}{\pi} \int_{0}^{\pi} tr Q(x) dx \right\} = \frac{1}{4} \left[tr Q(0) - tr Q(\pi) \right]. \tag{47}$$

References

- [1] Adiguzelov EE. About the trace of the difference of two Sturm-Liouville operator with operator coefficient.iz AN AZ SSR, seriya fiz-tekn i Mat. Nauk. 1976; 5: 20-24
- [2] Adıguzelov EE, Avcı H, Gul E.The trace formula for Sturm-Liouville operator with operator coefficient. Journal of Math. Physics. 2001; 42(6): 2611-2624
- [3] Adıguzelov EE, Baksi O, Baykal O. On a regularized trace of a differential operator with bounded operator coefficient. Int. Math. Journal.2004; 5(3): 273-286
- [4] Adıguzelov EE, Kanar P. The regularized trace of a second order differential operator with unbounded operator coefficient. Int. Journal of Pure and Appl. Math. 2005; 22(3): 349-365
- [5] Aslanova NM, Bayramoglu M, Aslanov KM. Eigenvalue problem associated with the fourth order differential-operator equation. Rocky Mountain Journal of Mathematics. 2018; 48(6): 1763-1779
- [6] Chalilova RZ. On regularization of the trace of the Sturm-Liouville operator equation. Funks. Analiz, Teoriya Funksiy i ik pril.-Mahackala. 1976; 3(1): 154-161
- [7] Cohberg IC, Krein MG. Introduction to the theory of linear non-self adjoint operators. Translation of Mathematical Monographs (AMS, Providence, RI). 1969; 18
- [8] Dikiy LA. About a formula of Gelfand-Levitan. Usp. Mat. Nauk. 1953; 8(2): 119-123
- [9] Gelfand IM, Levitan BM. On a formula for eigenvalues of a differential operator of second order.Dokl. Akad. Nauk SSSR. 1953; 88(4): 593-596
- [10] Gul E, Ceyhan A. A second regularized trace formula for a fourth order differential operator. Symmetry. 2021; 13(4): 629.
- [11] Halberg CJ, Kramer VA. A generalization of the trace concept. Duke Math. J. 1960; 27(4): 607-618
- [12] Levitan BM. The computation of the regularized trace of Sturm-Liouville operator. Usp. Math. Nauk. 1964; 19: 161-164
- [13] Levitan BM, Sargsyan IS. Sturm-Liouville and Dirac operators. Kluwer, Dordrecht, 1991
- [14] Fulton TC,, Pruess SA. Eigenvalue and eigenfunction asymptotics for regular Sturm-Liouville problems. J. Math. Anal. Appl. 1994; 188:297-340
- [15] Maksudov FG, Bayramoglu M, Adıguzelov EE. On regularized trace of Sturm-Liouville operator on a finite interval with unbounded operator coefficient. Dokl. Akad. Nauk SSR. 1984; 30(1): 169-173
- [16] Sezer Y, Baksi Ö, Karayel S. On Higher Regularized Traces of a Differential Operator with Bounded Operator Coefficient Given in a Finite Interval. Mediterranean Journal of Mathematics. 2021; 18(3): 1-10