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Tauberian theorems for Cesaro summability in neutrosophic normed
spaces
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Abstract. In this paper, we introduce the concepts of Cesiro summability and Tauberian theorem in
neutrosophic normed spaces. We study that Cesdro summability in neutrosophic norm space does not
imply ordinary convergence, and we give an example in support of our statement. We define slowly oscil-
lating sequences in neutrosophic normed spaces and prove that Cesiro summability of slowly oscillating
sequences implies ordinary convergence in neutrosophic normed spaces. Finally, we define g—bounded

sequence with respect to the neutrosophic norm and also show how it relates to oscillating sequence in
neutrosophic normed spaces.

1. Introduction

In 1965, Iranian mathematician Zadeh [27] created the notion of fuzzy set, which deals with real-world
situations. Following that, Attanassov investigated fuzzy set and developed the intuitionistic fuzzy set [2]
which expanded fuzzy set theory. Smarandache[21] expanded on intuitionistic fuzzy sets by proposing
neutrosophic sets. The generalization of intuitionistic fuzzy set is the neutrosophic set. Murat Kirigki and
Necip Simsek defined neutrosophic metric space[12], neutrosophic normed space[13] and presented the
characterization of these concepts. Nowadays, many authors have done phenomenal work on the applica-
tion of various science and engineering concepts by using the inexactness of neutrosophic norm.

Cesaro summability method [7] assigns values to some infinite sums that are not necessarily convergent
in the usual sense. Cesiro summability of a sequence is defined as the limit (n — o) of the arithmetic mean
of first n partial sums of the sequence. A sequence (c,) is called Cesiro summable to ¢, if

n

.1
fim ) s =e

i=1

Here, s;’s are partial sums of the sequence (¢,) and ¢ is called Cesaro sum of the series )., ¢,. For more
information on different kind of summability method, one can refer to [1], [6] [7].

2020 Mathematics Subject Classification. Primary 40E05; Secondary 40G05

Keywords. Neutrosophic normed space (NNS); Cesiro summability; Tauberian theorems; Slowly oscillating sequences; g-
boundedness.

Received: 04 June 2022; Accepted: 29 September 2022
Communicated by Eberhard Malkowsky

Email addresses: vakhanmaths@gmail.com (Vakeel A. Khan), faisalmohd114@gmail.com (Mohd Faisal)



V. A. Khan, M. Faisal / Filomat 37:11 (2023), 3411-3426 3412

As we know that Tauberian theorems with respect to various summability methods are the most
satisfying proof of the converse part of Abel’s theorems [25]. Numerous number of authors are constantly
working in the field of Tauberian theory to find out the Tauberian theorem with respect to the most extended
norm. For example, Talo and Basar[23] establish the necessary and sufficient Tauberian condition for the
A" summability method, Moricz[17] gives some conditions under which a statistically convergent sequence
follows from the statistical summability (C, 1) of sequence, Slepenchuk[22] introduces Tauberian conditions
for absolute summability method. Jena et al.[10] used the generalized Tauberian condition with the notion
of general convergence and statistical convergence of (L, 1,1) (i.e., logarithmic mean) summability to prove
inclusion theorems. Parida et al. [19], [20] used Cesiro summability by de la Vallée Poussin mean to define
slow oscillation and obtain a Tauberian theorem for n'" real sequence and proved statistical Tauberian
theorem via Cesaro integrability mean based on post quantum calculus, respectively. Jena et al. [11],[20]
established Tauberian theorems with respect to method of double Cesiro summability and also used the
same summability to gave some results on Tauberian theorems for double sequence of fuzzy numbers,
respectively. For more information about Tauberian condition for different summabilities, one can refer to
[3], [4], [5], [14], [18], [24], [26].

Now we will recall some useful facts related to our main results.

Definition 1.1. [16] If a binary operation T : [0,1] X [0, 1] — [0, 1] meets the following requirements, it is called
a continuous t — norm:

(@) T, %) = T, ) and (1, T, 1)) = T(T, ), u), for all 1,x,u € [0,1],

(b) T is continuous,

(c) T(,1) =1, Y 1€][0,1],

(d)i1<uand x <qg= T(,x) < T(u,q), foreach 1, x, u, q € [0, 1].

Definition 1.2. [16] If a binary operation §) : [0,1] X [0, 1] — [0, 1] meets the following requirements, it is called
continuous t — conorm if:

(@821, %) = §20c,1) and §(1, £, 1)) = §(§20, ), u), for all 1,3, u € [0,1],
(b) §2 is continuous,

(c) §2(,0) =1, Y1 €]0,1],

(d) 1 <uand x <q= 1, x) < $u,q) for each 1, x, u, g € [0, 1].

Definition 1.3. [13] Let S, T, and §Q be linear space, continuous t — norm and continuous t-conorm respectively. A
four tuple of the form {S,F(v,.), G(v,.), H(v,.) : v € S}, is called neutrosophic normed space, where F, G, and H are
fuzzy sets on S X R* which satisfy the following conditions: Forallv,y € S, and p,q € R*,

(1)) 0<F,p)<1,0<G(v,p)<1,0<H(,p) <1, forallp e R,
(i)) F(v,p) + G(v,p) + H(v,p) < 3, forall p € R*,
(iil) F(v,p) =1 (forp > 0) ifand only ifv =0,
(iv) Flav,p) = F(v, &), fora 0
©) T(F(,p), F(y,9)) <F@+y,p+9),
(vi) F(v,.) is continuous non-decreasing function,
(vii) limye F(v,p) =1,
(viii) G(v,p) =0 (for p > 0) if and only if v = 0,

(ix) G(av,p) = G(v, %l)for a#0,

®) SAGW,p), Gy, 9) = G +y,p+9)
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(xi) G(v,.) is continuous non-increasing function,
(xit) limyeo G(v,p) =0,
(xiil) H(v,p) = 0 (for p > 0) if and only if v = 0,

(xiv) H(av,p) = H(v, I%I) ifa#0,

(x0) Q(H(,p), H(y,9)) 2 HE +y,p +4),
(xvi) H(v,.) is continuous non-increasing function,
(xvii) lim,_,o H(v,p) = 0,
(xviii) Ifp <0 then F(v,p) =0,G(v,p) = 1,and H(v,p) = 1.

Then N = (F, G, H) is called neutrosophic norm. Throughout the paper we will use usual -norm and usual
t-conorm i.e; V(t, o) = min{z, o} and (7, o) = max{z, o}.

Example 1.4. [13] Let (S, ||.||) be a normed space. Let F, G, H be Fuzyy sets on S X R* such that, for p > ||v|| and
forallv e,

p<0 0, p<0 I

0, V|
F(v,p) = G(v,p) = v and H(v,p) = —.
v,p) { e P>, (v, p) { v >0, (v, p) .

If p < |l then F(v,p) = 0, G(v,p) = 1 and H(v,p) = 1. Then (S, N, 7T, Q) is neutrosophic normed space such
that N : S x R* — [0,1].

Theorem 1.5. [15] Let (S, N, T, 52) be neutrosophic normed space and further assume that ¥(v,p) > 0 forall p > 0
implies that v = 0. For ¢ € (0, 1) define

IMle = inf{p > 0: v, p) > ¢, G(v,p) < 1 - cand H(v,p) <1 -c}. 1)
Then the set {|[v||. : ¢ € (0, 1)} called as set of c-norms is an ascending family of norms on neutrrosophic normed space
S.

Now we will discuss about the convergence of the sequence (¢x) in neutrosophic normed space (S, N, T, 32)

Definition 1.6. [13] A sequence (c,) in neutrosophic normed space (S, N, T, 52) is said to be convergent to ¢ € S, if
foreach t > 0 and c € (0,1) there exists ng € IN such that

F(Cn -G, t) > 1 —-C, G(Cn -G, t) <c and H(Cn -G, t) < c, (2)
foralln > ng.

Definition 1.7. [13] A sequence (cx) in neutrosophic normed space (S, N, T, 52) is said to be Cauchy, if for each t > 0
and c € (0,1) there exists ny € IN such that for all n,k > ny,

F(ck — cu,t) > 1 =¢, G(ck — cn, t) < cand H(cx — ¢p, t) < cC. @3)
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Definition 1.8. A sequence (cx) in a neutrosophic normed space (S, N, T, CQ) is G-Cauchy, if
lim F(Gyy = G p) = 1, im H(Gsy = 6o, p) = 0 and lim H(cney = ) = 1,
foreach p > 0 and j € IN. In neutrosophic norm space, any Cauchy sequence is also G-Cauchy.

Definition 1.9. The set U C S is called neutrosophic bounded in neutrosophic normed space (S, N, T, Q), if there
exist p > 0 and 0 € (0,1) such that

F(z,p) >1-0, G(z,p) < Oand H(z,p) < 0,
foreach z € U.

Definition 1.10. Let (S, N, T, 52) be an neutrosophic normed space and U be any subset of S then U is said to be
g—bounded, if lim,_,., ®y(p) = 1, lim,_,.o Wy (p) = 0 and limy,_, [Ty (p) = 0, where

Dy(p) = inflE(z,p) : z € U}, Yulp) = sup{G(z,p) : z € U}, [y(p) = sup{H(z,p) : z € U}.

In neutrosophic normed space (S, N, T, Q) a sequence (¢,) is bounded if and only if there exists some py > 0

and 0 € (0,1) such that F(c,, po) > 1 -0, G(cu, po) < 0 and H(c,, po) < 6 for every positive integer n and
q — bounded if and only if

lim inf F(c,, p) = 1, lim sup G(¢,, p) = 0 and lim sup H(c,, p) =0. 4)
elN p—oo neN p—o0

p=een neN
Definition 1.11. A sequence (c,) in a neutrosophic normed space (S, N, T, 0(2) is said to be slowly oscillating, if

sup liminf min F(¢x —¢,, ) =1, (5)

p>1 n—oo  p<k<u,

inflimsup max G(ck — ¢y, £) =0 (6)
>l e n<k<py,

and
inflimsup max H(ck —¢u, £) =0 (7)

>l oo n<k<py

forall t > 0, where u, = |un]| (Floor function (denoted as | |) is a fuction that maps a real number u to a greatest
integer less than or equal to u ). In neutrosophic normed space, the slow oscillation condition can be restated as;

A sequence (c,) is slowly oscillating if and only if for t > 0 and 0 < € < 1, there exists u > 1 and ng € IN, depend on
t and €, such that

F(gk — Cn, t) > 1 —€, G(Ck — Cn, t) < €, and H(Ck — Cn, t) < €,
where ng <n <k < .

Lemma 1.12. [23] For a real number i > 0 define {u} as {u} = u — Lul. Then the following assertions are true:

(1) if u > 1, for each k € N — {0} with k > {iy} then we have Ly > k.

(i) if 0 < u < 1,then w< k for each k € N — {0} where e = [uk].



V. A. Khan, M. Faisal / Filomat 37:11 (2023), 3411-3426 3415

Lemma 1.13. [23] Let u be a positive real number, define {u} by {u} = p - Lul. Then the following assertions are true:

3
(i) if u>1, for each k € N — {0} with k > (

, we have
p(u—1)

po_metl o 2u
< < .
pu=-1  w—-k p-1

(1) if 0 < u <1, foreach k € N — {0} with k > %, we have

12
Pt 2t

0< .
k= 1-u

The focus of this article is to provide a basic understanding of Cesiaro summability and associated Tauberian
theorems in neutrosophic normed spaces. In the next section, we study the sequences which are not
convergent in ordinary sense with respect to the neutrosophic norm and then we also work on some
conditions, under which the foresaid sequences will converge with respect to the neutrosophic norm.

2. Main Results

In this section, we are going to introduce Cesaro summability methods in neutrosophic normed space
and related Tauberian theorems.

Definition 2.1. Let (¢c,,) be a sequence in neutrosophic normed space (S, N, 7T, 52). Then (¢y,) is said to be Cesaro
summable to ¢ € S if sequence (0,,) of arithmatic means is convergent to C, i.e.,

1 n
Gn:n+1kZ_()‘(gk)_>C

as n tends to 0.

Theorem 2.2. Let (c,,) be a sequence convergent to ¢ in neutrosophic normed space (S, N, T, ,Q). Then the sequence
(on) defined as o, = anl Y i_o ck is Cesaro summable to c.

Proof. Let ¢ = (¢,) be a convergent sequence and converges to ¢, then by the definition 1.6, for fix t > 0 and
every € > 0 there exists 1, € IN such that

t t t
F(gn—g, §)>1—e, G(gn—g, §)<eandH(gn—g, §)<e

for n > ny. In light of the facts,

lim F(Z(ck -9,
k=0

(n + Dt] -1, im G
2 n—oo0

a n+ 1t
Z(ck—c), ( > )]ZO, and
k=0

lim H
n—oo

Z(Ck -q), n -gl)t] =0,
=0
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there exists 17 € IN such that

[Z(gk m] >1-¢, G

Z(gk -0), ( ;DtJ <¢€, and

k=0

{Z(gk c), mﬂ)t)

for n > n1. Then, we have

F[n-lu;g"_c’] [ +1Z(gk_g) t)
3

(ck—¢), (n+ 1)t]

1o

F Z(ck—c) (n+1)t], (Z (ck =

k=0 k=ng+1

v

IV

k=np+1

F Z(Cn0+1 (n i l)t] F(gno+1 - %)
(gn0+2 2) ......... ,F (gn -, %)}

IV

and

t
’ G(Cnm—l -G, E)I

G[nj_lzCk—C, ]<max{ Z(Cno+l M

t t
G(gno+2_g/ E)/ ----- /G(gn -G, E)}

Similarly for H, we have

1)t t
H[nHch—c, ]<maX{ (Z(cnou ],H(cn0+1—c, E)’
t t
H(CVI0+2_CI 5)/ ------ rH(Cn -G, E)}

O

+1)t

min{
{F Z( o) (n+1)t] F( Z (k- ©), @]}
F

)

3416

Converse part of the theorem 2.2 is not true, i.e., as the following example shows, Cesiro summability

in neutrosophic normed space does not entail convergence.
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Example 2.3. Let (c,) be a sequence defined as ¢, = (=)D ip neutrosophic normed space (]R, N, 7T, 52), where R
denotes real vector space and ¥, G and H are as in Example 1.4. By definition 2.2,

. Zn:
op = .
"Tn+1 ok
k=0

Then
2n
1 -1
I Lt = T gy
Con — 0asn — oo and
1 2n+1
O+l = m L Ck — Op+1 = 0f01’ alln = 0,1,2,3,4,...

(02n) and (02n41) are two complementary subsequences of the sequence (oy,) such that (c2,) and (02y+1) converge to
0. This implies that the sequence (0,) conveges to 0. Now we will check wether sequence (0,) is convergent or not in
neutrosophic normed space

. 1 _1 = i t -
lim F(o,, ) = lim F(5—, £) = lim ]

-1

. L -1 T 2n+1 _
Y}I_I:I;)G(O‘Zn/t) = ,}%G(Zn +1’ t) B 1}1—{1‘;’% -0
and
lim H(oy,, f) = lim H( -1 t) .= 0
n—oo 2ns n—oo 2” + 1’ n—eo ‘

By Definition 1.6 we get that sequence (02,) is convergent in neutrosophic normed space. Similarly for the sequence
(02041)

. 1 i t
r}l_I)I;IOF(O-Zn+1/t) = 31_1)101013(0, B = 31—]:)1010 t+0 L

: . , 0
Hm Glozn ) = Jim G (0. = lim 7275 =0

and

0
lim H(o2,41,t) = im H(0,t) = lim — =0,
n—o0 n—00 n—o0

By Definition 1.6 we get that sequence (024+1) is convergent in neutrosophic normed space. Hence sequence (o,,) is
convergent in neutrosophic normed space (]R, N, T, 52) Hence sequence (c,,) is Cesaro summable to 0 in neutrosophic
normed space. Now we will check the convergence of sequence (c,) with respect to neutrosophic norms ¥, G, H
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lim F(cz, ~ (~1),) = lim F(~1 - (~1),) = lim ﬁ 1,

lim G(cy, — (-1),t) = lim G(-1 - (-1),¢) = hm % =0

and
. . .0
lim H(cy, — (-1),t) = lim H(-1 - (-1),t) = lim — = 0.
Nn—00 n—oo n—oo f
This implies that sequnce (cp,) — -1 in neutrosophic normed space. Similarly for sequence (coy41) we get

hm F(con, —1,t) = hm F(1-1,t) = lim ﬁ =1,
n—oo

0
li L= li 1-1,8) = lim — =
lim G(can = 1,1) = lim G( f) = lim - —o -0

and

hmH(Czn—l t)—hmH(l—l t)—th:O

n—oo

This implies that sequence (cn+1) — 1 in neutrosophic normed space as n tends to oo. Hence, the sequence (c,) is not
convergent in neutrosophic normed space.

Now we will find conditions ensure that every Cesiro summable sequence is convergent in neutrosophic normed
space. For this we need the above lemmas 1.12,1.13 .

Theorem 2.4. Let (c,,) be a sequence in neutrosophic normed space (S, N, T, Q). If (¢cu) is Cesaro summable to ¢ € S
then it converges to ¢ if and only if forall t > 0

Un
sup limian( Z(Ck Cn), ) (8)
w1 1T et
inf limsup G —cp), t] = 9
inf lim sup ( k%(gk ) ) ©)

and

Hn
inf limsup H Ck — Cn )z. 10
int im sup ( ), (10)

k n+1
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Proof. Let (c,,) be a sequence in neutrosophic normed space (S, N, T, 52) and Cesaro summable to ¢ € S.

1
Necessary part: Let(c,) converges to ¢. Fix t > 0. For any p > 1 by Lemma 1.12 for each n € N — {0} with n > ﬁ
we can write
LR VA B a1
Cn =0y = O, = On) = ck—¢
n n iy —n U n Hn_nk=n+1 k n
3 —
By Lemma 1.13 , for n > G ), we have
plp—1)
pa+1 _ t
F(Hn — n(a“" —0y), t) = F(oy” -0y, E)
Up—nt
t
ZFGW—OW-ET,
=1
pn +1 _ t
G(Hn — n(GH” —0y), t) = G(UH” -0y, H”_H)
fn—n
t
< G O_‘u,, On, 2_/~‘ ,
=3

and

tn +1 t

IA

t
H(G‘u” — Oy, I),

Since (0,,) is Cauchy,

. pn +1
lim F (0w, —0on), t| =
n—oo !’l‘rl —-n

. e +1
Iim G (0, —0on), t]=0
n—oo yn —-n

and

. pn+1
lim H (04, —0n), t] =0
n—oo Uy — 1

By equation (11) ,we have

1
lim F —cu) t]=1
lim (un—n 2:(€k Sn) )

k=n+1
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. 1y
JI_I)I;IOG( —n Z (gk_gl’l)r t)_ol

Hn k=n+1

Hn
lim H( 1 Z (ck — cn), t) =0.

e Hn =1 k=n+1

Consequently, equations (8) , (9) , and (9) are proved. Converse part: Suppose that equations (8) , (9) and (10) are
true. Fix t > 0. Then for given € > 0 there exists u > 1 and ny € IN such that

and

Un
. 1 t
lim F( Z (Gk = cn), 5) >1-¢,

H U e

Un
. 1 t
lim G( - Z (Gk = Gn), 5) <e

e Hn = k=n+1

Hn
1 t
Iim H E Ck—¢C ,—)<e.
n— o0 (Hn_nk—wrl( k n) 3

t t t
for all n > ng. There exists ny € IN such that F(an -g, 5) >1-—e¢ G(an -, 5) < € and H(an -c, 5) < € for

n > ny. There exists n, € IN such that

nt1
F(Zn — n(a“" — o), é) >1-g¢

pn +1 t
G(m(ﬁy” - Gn), 5) <E€

and

pn +1 t
H([Jn — n(g"” —04), —) <e

+1
In view of the fact that i (0, — 0u) — 0. Hence, we have

Hn — N
F H)=F + e i ! ! i + t
(cn—c, t)=F(cp—0p+0,—-¢, t)= Uy — n(G,Un On) Ly — 1 k:n+1(gk Cn) +0n— G,

a+1
> mln{F(# (U/,Ly, - Gn)r E)r
Un =1 3

Un
F( L Z (Gk = Gn), é) F(on -, %)}

—-n
Hn k=n+1

>1-¢,
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Hn

Z(ck—cn)+6n—c, t)

k=n+1

Uy +1

(G[ln —0n) —

Gcn—¢ )=G(cp—0,+0,—¢, 1) =G(
Uy — 1 Hn — 1

< G pn +1 t
< max Hn_n(dy,, On), 3)

1 t t
G —Sn)r F ) G oy —¢C, =
(Hn—”kgjl(gk Cn) 3) ( c 3)}

<E€.

and

”n +1 Un
H(c, —¢, t) =H(¢y —0n +0,—¢, t) =H (O, —0n) — (ck—cn)+on—c, t
o =1 Hn =1, 200
.+ 1
< max{H( Zn — n(a”" —0p), é),
n
1 t t
H (Gk = Sn)s —), H(Gn -, —)}
(”” - k;1 3 3
< €.

For n > max{ng, n1, na}. This completes the proof. If 0 < u <1, by Lemma 1.12, we have

+1 1 -
B - Y (-
n k=p,+1

Theorem 2.5. Let (c,,) be a sequence in neutrosophic normed space (S, N, T, 52) For t > 0, conditions ((5), (6) , (7))
are equivalent to

sup liminf min F(cx —¢,, 1) =1, (12)

O<p<1 "% pn<ksn

inf limsup max G(cx —¢Gu, t) =0, (13)

O<u<l ;500" Hn<ksn

inf limsup max H(cx —¢,, t) =0, (14)

O<pu<l ;500 pn<ksn
respectively.

Proof. We will only show that condition 5 is equivalent to condition 12 because other conditions can be done similarly.
Fort>0and u > 1, let

T(u) = liminf min F(cx — ¢y, t)

n—oo  n<k<|p,]
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and

1 .. .
W(;) =liminf min F(¢ — ¢y, 1).

k—o0 ij]<"§k
For each p1 > 1 there exists an increasing sequence (n,,) such that

T(u) = lim min F(ck — ¢y, 1)

m—0o0n, <kSLHumJ

There exists a sequence (ky,) inn (N, | tn,, 1] such that

min  F(cx — ¢y, t) = F(ck, — Cn,s 1)-

M <k<| iy, |

Note that ky, € (N, | i, 1] implies n,y, € (I_%J, km) (see Remark 3 from [17]), we have
W(l) = liminf min F(¢y — ¢y, 1)
u koo |k j<nsk

< lim min F(g,, —cp, t)

< llm F(Ck,,, - Cnm’ t)
m—oo

= lim min F(cx —cp,, f)
m—00 p,, <k<pip,,

= T(u)
1
W(-) < T(y)
U
On changing the roles of T(u), and W(%) and follow the above steps we will get W(i) > T(u). Hence, we get
W(%) =T(u), i.e., conditions 5 and 12 are equivalent. This completes the proof. [
Example 2.6. Let R be real vector space and (]R, N, T, ,Q) be neutrosophic normed space. Let (c,) be a sequnce

in neutrosophic normed sapce defined as ¢, = Y.;, = Then sequence (c,) is slowly oscillating with respect to the

neutrophic norm defined in example 1.4 Fix t > 0. Forany r € (0,1), choose y = tr + 1. Then for 1 <n < m < uy, in
view of the fact that

N1 oy 1 1 w1 vl
n-al=| L - =N L i s
=1 i=1 i=1 i=n+1 i=1
_ il
=| i
i=n+1
1 N 1 1 +l
“n+1 n+2 n+3 7 m
1 1 1 1 m-n
<-4+ —+—+... + - =
n n n n n
<pu-1l=tr
we get,
t t
F(¢—cu, t) = >1-r

>
t+|Cm_Cn| t+tr
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IS — Gul tr r
G(om—Gu 1) = = — (15)
" Etlom—cal t+lom—cul, 14 kel

. - r . ..

Since M > 0, we get TE—— < r. Hence, from the equation 3.8 we have G(C,, — Gy, t) < r. Similarly
1+ Cm — GCn
t
- tr
H(c;m—gn, t)=|gm—t(;n| < ?=1’.

Hence the given sequence is slowly oscillating with respect to neutrosophic norm.

Theorem 2.7. Let (S, ||.||) be a normed space and (S, N, T, 52) be neutrosophic normed space as defined in Example
1.4. Then a sequence (c,) is slowly oscillating in (S, ||.||) if and only if (c,) is slowly oscillating in (S, N, T, 52)

Proof. Direct part; Let sequence (cy) is slowly oscillating in (S,Il.ll). Fix t > 0 and for any r € (0,1). Define
1o = tr > 0. Then there exists p > 1 and ng € IN such that ||c,, — cull < o whenever ng <n <m < p,. We get

t t

F —Cu, b)) = > >1—-r
Cn = D= T, =l v i
lISm = Call tr r
G(em —cn, t) = = — <r
m n f+ ”Cm — Cn” t+ ||gm - g””, 1+ HCm;wll
and
- tr

H(cm — cu, t)=w <—=r

t

Hence, sequence (c,) oscillates slowly in neutrosophic normed space (S, N, T, 52)

Conversely, let sequence (cy,) is slowly oscillating in neutrosophic normed space (S, N, T, 52) Now using the definition

of slowly oscillating sequence in neutrosophic normed space, for given r € (0, 3), there exists y > 1 and ny € N such
that

1

(T | S —
e

>1-—r whenever ng <n <m< .
From the above inequality we have

,
llcm — call < 1< 2r
-1

This shows that sequence (c,) is slowly oscillating in (S, ||.|). This completes the proof. [

from Definition 1.7, 1.11 and 1.8 we have the relation Cauchy = slow oscillation = G — Cauchy. But the
converse need not be true

Example 2.8. Let (]R, N, T, Q) be neutrosophic normed space defined as in example 1.4. Then the sequence (c,)
1 1
defined as ¢, = Y.y — is G — Cauchy but not slowly oscillating and sequence (1t,,) defined as mt, = Y.i_ = is slowly

oscillating but is not Cauchy.
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Theorem 2.9. Let (S, N, T, 52) be a neutrosophic normed space and satisfies equation (1) . Let (c,) be a sequence in
S. Then (cy) is slowly oscillating in (S, N, T, 52) if and only if (c,) is slowly oscillating in (S, ||.I|c) for each ¢ € (0, 1).

Proof. Let for given c € (0,1) and s > 0, sequence (¢,) is slowly oscillating in (S, N, T, SZ) Thenfore=1-c¢
there exists u > 1 and ny € IN so that for ngp < n <k < u, we get

F(ck—cn,s) > 1-¢€, Gk —cn,8) <€ and H(ck — ¢, ) <€,
and

lick = culle= inf{t > 0 : F(ck — cu, £) > ¢, G(ck —cn,t) <1—c and H(ck—cp ) <1-¢} <s.

This implies that sequence () is slowly oscillating in (S, [[.I|c).

Conversely, choose c € (0,1) and let (¢,) be slowly oscillating sequence in (S, ||.|l.). Then for s > 0 there
exist u > 1 and ng € (0, 1) such that

lick = culle= inf{t > 0 : F(cx — cu, £) > ¢, Glck — cn, ) <1 —c and H(ck —cp, ) <1-c} <s.

Whenever ny < n <k < p,. Thus F(cx — ¢u,5) > ¢, G(ck —¢cpn,8) <1—cand H(ck — ¢4, 5) < 1—c whenever
ny < n < k < uy,. Since s and c were arbitrary. Hence, sequence (c,) is slowly oscillating in (S, N, 7T, Q) O

Theorem 2.10. Let (c,) be a sequence in neutrosophic normed space (S, N, T, 5’2) If (cy) is slowly oscillating then
equations (2.2), (9) and (10) are satisfied.

Proof. Let (c,) be slowly oscillating sequence in neutrosophic normed space (S, N,T, gz) For fixt > 0and e
€ (0,1) there exist 4 > 1 and ng € (0, 1) such that

F(ck—cn ) >1—€, G(ck—cu,t) <€ and H(cp — cp,t) <,

whenever ny < n <k < u,. We have

Hn Hn
1
F( — Z (Sk = cn), t) = F( Z (Sk = cn), (ptn = n)t)
Hn k=n+1 k=n+1
> min{F(cu11 — Cn, 1), F(Cur2 = Gy ), F(Gp, — Gy 1)}
>1-—g¢,
1 Hn Hn
G( —u Z (ck— Cn)/ t) = G( Z (Ck —Cn), (,un - I’l)t)
Hn k=n+1 k=n+1
< max{G(cu+1 — Sn, 1), G(Cns2 — Guy 1)-er, G(Sp, — Gy B}
<e
and
1 Hn Hn
H( —u Z (ck— Cn)r t) = H( Z (Ck —Cn), (,un - n)t)
Hn k=n+1 k=n+1
< max{H(cp+1 — ¢n, 1), H(Cns2 — S, 1), HCp, — G, 1)}
<e

whenever ng < n < k < p,,. This completes the proof. O
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From the previous theorems 2.2 and 2.10, we get the following theorem.

Theorem 2.11. Let (c,,) be a sequence in neutrosophic normed space (S, N, 7T, 52). If (¢n) is Cesaro summable to ce
S and slowly oscillating, then (c,) converges to c.

Theorem 2.12. Let (c,) be a sequence in neutrosophic normed space (S, N, T, Q). If {n(cn-cu-1)} is q — bounded,
then (c,) is slowly oscillating.
Proof. Given e € (0,1). By equation (1.6), 3 L. > 0 such that,

t > L. implies that infF(n(c, —cu-1), t) >1—¢€, supG(n(c, —cu-1), t) <€
nelN neN
and

SUPH(”(Cn - Cn—l)r t) <e€.
nelN

t
Foreacht>0,ifwetakey<l+L—,thenn0§n<k<yn
€

k
F(Ck — Cny t) = F( Z (C] - Cj—l)/ t)

t
> min Fl(¢ci—c¢i—1), ——
n+1<j<k (6j=¢j-1) k—n)

[\
S
S
i

\

min Flj(c;—cj-1),

n+1<j<k

\%

min F(j(Cj—Cj—1), —

n+1<j<k

v

;?HgF(n(Cn - Cn—l)/ _)
>1-¢€
and similarly

t
G(ck—cn, t) < squ(n(cn —Cu-1), —1) <e
nelN !J -

and
t
H(ck—cu, t) < supH(n(f;n = Cn-1), —) <e.
nelN u-= 1

Hence sequence (c,) is slowly oscillating. [

In view of Theorem 2.11 and 2.12, we give an analogue of classical two sided Tauberian theorem due to
Hardy [8].

Theorem 2.13. Let (c,,) be a sequence in neutrosophic normed space (S, N, T, 52). If (cu) is Cesaro summable to
¢ € S and {n(c,-cn-1)} is g — bounded, then (c,) converges to c.
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