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Abstract. In this paper, we establish a new integral identity involving Riemann-Liouville fractional inte-
grals and differentiable functions. Then, we use the newly established identity and prove several Newton’s
type inequalities for differentiable convex functions and functions of bounded variation. Moreover, we give
a mathematical example and graphical analysis of newly established inequalities to show their validity.

1. Introduction

Fractional calculus (that is, calculus of integrals and derivatives of any arbitrary real or complex order)
has grown in popularity and relevance over the last three decades, owing to its demonstrated applications
in a wide range of seemingly disparate domains of science and engineering. It does, in fact, give a number
of potentially valuable tools for solving differential and integral equations, as well as a variety of other
problems involving mathematical physics special functions, as well as their extensions and generalizations
in one or more variables.

The concept of fractional calculus is widely thought to have originated with a question posed to Gottfried

Wilhelm Leibniz (1646-1716) by Marquis de L'Hopital (1661-1704) in 1695, in which he tried to understand
the meaning of Leibniz’s notation % for the derivative of ordern = {0,1,2,---} whenn = % (Whatifn = %?).
Leibniz replied to L’'Hopital on September 30, 1695, with the following message: ”... This is an apparent

paradox from which, one day, useful consequences will be drawn. ...”

”
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The theories of differential, integral, and integro-differential equations, and special functions of mathe-
matical physics as well as their extensions and generalizations in one and more variables, some of the areas
of presently applications of fractional calculus include Fluid Flow, Rheology, Dynamical Processes in Self-
Similar and Porous Structures, Diffusive Transport Akin to Diffusion, Electrical Networks, Probability and
Statistics, Control Theory of Dynamical Systems, Viscoelasticity, Electrochemistry of Corrosion, Chemical
Physics, Optics and Signal Processing, and so on.

Because of the importance of the Fractional Calculus, researchers have utilized it to establish various
fractional integral inequalities that have been shown to be quite useful in approximation theory. Inequalities
such as Hermite-Hadamard, Simpson’s, midpoint, Ostrowski’s and trapezoidal inequalities are examples
and by using these inequalities, we can obtain the bounds of formulas used in numerical integration. In [22],
Sarikaya et al. proved some Hermite-Hadamard type inequalities and trapezoidal type inequalities for the
first time using the Riemann-Liouville fractional integrals. Set [25] proved a Riemann-Liouville fractional
version of the Ostrowski’s inequalities for differentiable functions. Iscan and Wu used harmonic convexity
and proved Hermite-Hadamard type inequalities in [13]. Sarikaya and Yildrim [23] used Riemann-Liouville
fractional integrals to prove some new Hermite-Hadamard type inequalities and midpoint type inequalities
for differentiable convex functions. Sarikayaetal. [21] proved general version of Simpson’s type inequalities
for differentiable s-convex functions. In [20], the authors used Riemann-Liouville frcational integrals and
proved some Simpson’s type inequalities for general convex functions. Another version of Simpson’s type
inequalities for differentiable s-convex functions was provided by the Chen and Huang in [6]. Recently,
Sarikaya and Ertugral [24] defined a new class of fractional integrals, called generalized fractional and they
used these integrals to prove general version of Hermite-Hadamard type inequalities for convex functions.
In [33], the authors used generalized fractional integrals and proved some trapezoidal type inequalities for
harmonic convex functions. Budak et al. [5] proved several variants of Ostrowski’s and Simpson’s type
for differentiable convex functions via generalized fractional integrals. For more inequalities via fractional
integrals, one can consult [1, 4, 14-16, 18, 30, 31, 34] and references therein. On the other hand several papers
focused on the functions of bounded vatiation to prove some important inequalities such as Ostrowski type
[11], Simpson type [7, 10], tapezoid type [3, 8], midpoint type [9].

Inspired by the ongoing studies, we establish some Newton’s formula type inequalities for differentiable
convex functions and functions of bounded variations via Riemann-Liouville fractional integrals and give
some graphical analysis of the newly established inequalities.

This paper is summarized as follows: Section 2 provides a brief overview of the fundamentals of
fractional calculus as well as other related studies in this field. In Section 3, we establish an integral identity
that plays a major role in establishing the main outcomes of this paper. Some new inequalities of Newton’s
type for differentiable convex functions via Riemann-Liouville fractional integrals are presented in Section
4. Some fractional Newton type inequalities for functions of bounded variation are given in Section 5.
Section 6 concludes with some suggestions for future research.

2. Fractional Integrals and Related Inequalities

In this section, we recall some basic notations and notions of the fractional integrals. We also recall some
inequalities via different fractional integrals.

Definition 2.1. [12, 17, 29] Let Y € Ly [A1, A2]. The Riemann-Liouville fractional integrals (RLFIs) ]‘;{ﬁY and
J3,-Y of order a > O with Ay = 0 are defined as follows:

1 * o
J3,. Y (x) = mfA (=) I (wdy, x> A

and

A2

1 _
[ Y0 =75 (u=x) 7Y () dp, x < Ay,
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respectively, where I is the well-known Gamma function. For more applications and generalizations of fractional
calculus, one can consult [26-28].

In 2013, Sarikaya et al. proved the following fractional Hermite-Hadmard type inequality for the first
time:

Theorem 2.2. [22] For a positive convex function Y : I C R — R with Y € L1[A1,A2] and 0 < Ay < Ay, the
following inequality holds:

Y(/\1+/\2) F'a+1)

Y (A1) + Y (A7)
2 2(Ay = Ay ’

[ ) + 15, T ()] < =222

1)

After that Sarikaya and Yildirim proved the following new version of fractional Hermite-Hadamard
inequality:

Theorem 2.3. [23] For a positive convex function Y : I CR — RwithY € L1 [A1,A2], 0 < Ay < Ayand Ay, Ap €1,
the following inequality holds:

A+ Ay F(oz+1) a a
V(A2 A [ T s

Remark 2.4. If we set a = 1 in inequalities (1) and (2), then we obtain the classical Hermite-Hadamard inequality
(see, [19]):

A+ A 1 i Y(/\1) + Y(AZ)
Y( - )SAZ_MI Y (x) dx < : .

Y (A1) + Y (A7)
—

T ()| < )

The following fractional version of Simpson’s type inequalities for differentiable s-convex functions was
given by Chen and Huang:

Theorem 2.5. [6] Suppose that a differentiable function Y : I C [0,00) —» Rwith Y € L1 [A1, A2], 0 < Ay < Ay and
A1, A € I° (interior of 1). If |Y”| is a s-convex function, then following inequality holds:

& [ra+ar(B52) s o) ®

%[f v (5]

A2

T I A+ 1Y (AN 5, @),

where

_Z'(s,oz):j(;1

Remark 2.6. From inequality (3), we have

=l v a-wan

(i) If we set @ = 1, then we obtain the classical Simpson’s inequality for s-convex functions (see, [21, Theorem 7]):

1 A1+/\2) ] 1 fAz

’6[Y(A1)+4Y( )| e [ @

(A=A (s —4) 6 +2x5+2 -2 x 342 42
65t2(s+1) (s +2)

[ (A + Y7 (A2)]].
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(ii) If we set s = a =1, then we obtain the classical Simpson’s inequality for convex functions (see, [21, Corollary

1)):

1 A+ Ay
’6[Y(A1)+4Y( :

5(A, — A1)
72

)+Y(A2)]—A2i/\1 ];\ZY(x)dx

I (A + Y7 (A2)1]

3. An Identity
In this section, we prove an integral identity to prove the main results.

Lemma 3.1. Let Y : I € R — R be a differentiable function on I° with Y € Ly [A1, Ay], then the following RLFIs
identity holds:

%[T(A1)+3T(

3 T(a+1) [
(A = Aq)*

2A1;A2)+3Y(A1 -;2/\2)+T(/\2)] 4)

2A1 + A A +2A
gf‘l*/‘z ;Y‘ (M) + ]0;1*4/‘2 7Y( 13 : ) + IXZ’Y( : 3 : )]
3 3

3

= %[Il + 1D +13],

where

1
3 2+ A
b= (e (PR e
0

1
L = f(a—l)Y’(HA1+2/\2+(1—H)2A1+/\2)dlu
; 2 3 3

and

1
5 A +2A
’Ff(““‘g)‘f'(“)‘”“‘”) S5
0

Proof. Using integration by parts and change of variables, we have

I

201+ A
B (1= ) (5)

15 2AM + As 9
Y( )+
8 (A2 — M) 8 (A2 — A1)
3a Ui 2M + Ao
_— a T( +(1-u)A )d
(AZ_Al)L I u 3 ( /’1) 1)au

_ 15 (ZAl + /\2) 9 3e+1T (a+1) "

Y(A) — ————————J%,, Y (A1),
S(AZ_/\l) 3 8(/\2—A1) ( 1) (Az_Al)a+1 %_ ( 1)

Il
5—
[
—_

=
S

|
| W
~——
=
—_—

Y (A1)

Similarly, we have

1 1) AL+ 21, 201 + Ay
a_ 2 T’( . )d ©)
fo (# S|V =+ Q) —5—)du
3 A+ 275 3 (2/\1 + Az)
2(A2—/\1)Y( 3 )+ i)\ 3

I
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_3‘”11"(0(+1) a (2/\1 +)L2)

(A = Ap)* 7252 3

and
1
5\ AL +2A
L = f (#“—g)Y (W\z+(l—u)—1 3 2)01” @)
0
5 15 M +2M2) 3T (@+1) Ay +245
L R (b2 vz

8 (A — Aq) (A2) 8(Ay — Aq) 3 (/\Z_Al)oﬁl Aa— 3

Thus, we obtain the required equality by adding (5)-(7) and multiplying the resultant one by %. d

4. Fractional Newton’s Inequalities for Differentiable Convex Functions

In this section, we prove some new Newton’s inequalities for differentiable convex function via Riemann-
Liouville fractional integrals. For sake of brevity, we use the following notations:

1
Ar(a) = fou

-
8 a+2\8 a+2 16’

. 3
p S‘du

1 3
Ar(a) = f a—g'dﬂ
0
o)) 3
B 8 a+1\8 a+1 8
1 1
A3(0() = f‘u[,la—zd‘u
0
_ (1)5“_ 2 (1)“&L_1
- \2 a+2\2 a+2 4’
1 1
A = [
0
_ 2(1)“1_ 2 (1)“%;_1
h 2 a+1\2 a+1 27
1 5
As(a) = fwl“—gdu
0
_ (?)i“_ 2 (?)““ZL_E
- \8 a+2\8 a+?2 16’
1 5
A = [ o~ gl
0

(5)”1 2 (5) 1 5

2|5 - =]+ - =

8 a+11\8 a+1l 8

Theorem 4.1. We assume that the conditions of Lemma 3.1 hold. If |Y'| is convex function, then we have the
following Newton’s type inequality:

‘% [Y(/\l) ; 3Y(M)

+3,Y,(/\1 +2A2)

+Y <Az)] (8)
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3 T@+1) 2A1+ A A +2A
3 3 N 2\1+\2 Y(/\1) +]A1+2\2 ( 13 2) ]}\2_ ( - 2)

(A2 = Aq)* 3

Azz_/‘l (Y (1)1 (3A2 (@) = A1 (@) + 244 (a) = A3 (@) + Ag (@) = As (@)

+Y (A)I(A1 (@) + Ay () + A3 (@) + 246 (a) + A5 (@))].

IA

Proof. Taking modulus in (4) and applying convexity of |Y’|, we have

‘1 [Y(/\l) + 3Y(2A13+ M) + 3Y(A1 +32A2

3“ T@+1)
(A2 = Ap)*

Ay — Ay f
9 |J, I
1

Jy b=l
1

f# —-HY' Mz+(1 )
Ay—A 3

_ %UO ,Ja__‘r( “Al+“A2)

8
1 2— 1
+f ya_l"]('( HA1+ +‘u/\2)
0

2 3 3
1
J

‘u“ _ §'IY/(1 _H)\l + 2+[u)\2)
bt [nr' )l f

3 3
+|Y'<A1)|f— R A T
0 0
11
el [
1 o 3

3
5 , "24pu|, 5
S‘dwlY (Az)lf0 —5 K —g‘dy]
A2

= 2—7/\1 [ (A1) (BAz2 (@) — A1 (@) + 2A4 (@) — Az (@) + Ag (@) — As ()

+Y (A2)[ (A1 (@) + Ag (@) + Az (@) + 246 () + As ()]

)+ v ()]
2A1 + )\2)+ BL-Y(M +2A, )]

[ 2}\1+/\2 Y(/\l) + ]\1+2}\2 ( 3 3
a 3‘
8

IA

ke (u%g—MZ +(1 —y)/\l) dy

A+ 2/\2

+(1-p)

201 + /\2)

:

du

du

A+ 2/\2)

dy

:

= awsrer oo [ 4
1

IA

du

_5‘

This completes the proof. [
Example 4.2. Let [A1, A2] = [0, 1] and define the function Y : [0,1] = R, Y(u) = %3 such that Y’ (u) = u* and |Y’|
is convex on [0,1] .Under these assumptions we have

L
12

% [T(/\l) + 3T(2A13+ Az) +31((A1 J;ZAZ

)+ Y(/\2)] =

By definition of Riemann Liouville fractional integrals, we obtain

_ a— 1x — 1
2\1+A2 Y(/\1) ] (O) r( )f 3 S dx = 3F(0() (0(+3)3a+3,



M. A. Ali et al. / Filomat 37:11 (2023), 3427-3441 3433

L Y(Z5) - I‘U(l)

a 1 3
= - = —d
F(a) *
8a +3402 +39 +9
I'a)a(a+1)(a+2)(a+3)3a+4

and

A+ 27, . 2
nx(E57) = ()

1 1 2 a—1 X3
- —r@fg (-3) e

33a® + 154a% + 183a + 50
T(@a(@+1)(a+2)(a+3)30H4

By these equalities we have

301 (a + 1) 20, + A, Ay 421,
oA [ ayy Y (A1) + ]\1+2A2 ( 3 ) J5,-Y ( 3 )
4203 + 19002 + 2230 + 59

Ba+D)(@a+2)(a+3)

The left hand side of the inequality (8) reduce to

‘1 [Y(/\l) + 3Y(2A13+ /\2) + 3T(A1 -;2/\2) ¥ T(/\z)]
3T+ A1+ A2\ (A1 20
Ay — A" [ 2\1+\2 Y (A) + ]\1+2\2 ( 3 )+ ]Asz( 3 )

_ |420° +1900% + 2230 +59 1
S F@+D@+2)(@+3) 12
= LHS.

On the other hand, since [Y" (A1)| = 0 and [Y’ (A2)| = 1, we have the right hand side of the inequality (8) as follows:

PRI ()] (32 (@) ~ A1 () + 244 (2) — As (@) + As () ~ A3 @)

FIY (2] (41 @) + As (@) + A3 ) + 246 (a) + 45 ()]
= o LA (@) + A4 (@) + A3 @) + 246 (@) + A5 ()
= RHS.

It is clear from Figure 1 that LHS < RHS for all & > 0.

Remark 4.3. In Theorem 4.1, if we set o = 1, then we have the following inequality:

1 2A1+A2) (/\14—2/\2) ]_ 1 fAZ
‘S[Y(A1)+SY( ) o[- e | Y@

75(A2 — M)

< 1725 U (A0l + Y (AN
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Figure 1: An example to Theorem 4.1

Theorem 4.4. We assume that the conditions of Lemma 3.1 hold. If |Y'|, q > 1 is convex function, then we have
the following Newton’s type inequality:

‘é [Y(/\l) + 3Y(2A13+ M) + 3Y(A1 +32A2

) +Y (Az)]
201+ Ay
3

)”izj( 3

Aq(a) g
3

3T (a+1) [
Ay = Aq)*

Ay =M
9

S )+ Y
3

3

A+ 27, )]

AT (@) (nr' Al

IN

+ Y (Al

3Az (a) — A1 (a)
3

2A4 (a) — Az (a)
3

Ag (@) — As (a)
3

v o A0

3

2A¢ () + As () )5
Lo

+A7 (@) (nr' Al

+A;’3 (@) (nr' (A1)l + [ (Al

Proof. By taking modulus in (4) and applying power mean inequality, we have

‘% [Y(/\l) + 31((2)\1; AZ) + 3T(A1 +32A2

)+ Y(/\2)]

Sy YO0+ T, Y(F2 ) 0 (25
3

(A2 = Ap)* 3
3_
Y,( HA] + E/\2)

A fl
1
)
0
1
J
0

3T (a+1) [ 21 + Ay A +2A, )]

8

aB‘




M. A. Ali et al. / Filomat 37:11 (2023), 3427-3441 3435

a

IA

;
8

3 —
Y/( IJAl + EAz)

S ([
Lt (f
(b=l ([

Using convexity of [Y’|7, we have

a_l‘
=3

2 - 1+
T'( 3‘u/\1+ 3[1/\2)

a

8

;

,(1—u 2+ u
T( 3 A+ 3 Az)

‘1 [Y(Al) + 3?(2)\1; AZ) + BT(Al EZAZ

)+ Y(/\z)]

3a-1T (CY + 1) 201 + Ay A+ 27,
W [ 2)\1+\2 Y(Al) + ]\1+2)\2 ( 3 ) ]}\2_ ( 3 )]
A=l . 3], )
: T[(fo " ‘é\d*‘)
1 3 :
x(nw (M )I" “= 2l o f s’d”)
1—%
(4]
1 11+ 1 ]
X(I (M )Iq 3# pt = z'dﬂ‘FW'(/\z)quO 3 z‘dﬂ)
-1
A )
x(m (Al)w ‘du I ()l f ]du) ]
= Ai‘% @ (nr' (o 22O Ay 2 0)
+Ai_% (CY) (lfY-/ (Al)lq 2A4 (06)3_ A3 (OC) + |»Y-/ (Az)lq A4 (CK) ; A3 (a))q
A7 (nr' @ As@ |y 0 20 (@) (a))ql _

Thus, the proof is completed. [J

Remark 4.5. In Theorem 4.4, if we set aw = 1, then we have the following inequality:

)+T(/\2)]—A21A1 j:ZY(x)dx

A+ 275
3

1 2AM1 + As
\s[wm( o)

+3Y(
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Ay — Ay
36

1y (1 (A7 + Y (A7)
+(Z)( 2 )

IA

(17)1— 973 Y (A1) + 251 Y’ (/\2)|‘7
16 1152

+(1_7)1-3 251 1Y (A)] +973 1Y (A)F\
16 1152 '

Theorem 4.6. We assume that the conditions of Lemma 3.1 hold. If |Y'|, q > 1 is convex function, then we have
the following Newton's type inequality:

‘1[T(A1)+3Y(2A1;A2)+3Y(Al +32A2)+Y(A2)] 9)
3T (@ +1 2M 4+ A A +2A
W[ 2\1+\2 Y(A1)+]A1+2\2 ( 13 2) ])\27 ( - 3 2)]

1
Ay —A 3 51 (AT + Y (A)7)?
< M 5 1 ;(a,p)( 1 - 2
1 1
1 4 q / Ay 1 / q / AY
vl (a,p)(nr Qo + 10 Aa) ) o] (a,p)(nr G + S A ) }
where g™t + p~! =1 and
1 3P
A7 (a,p) = fo K- gl dus
1 1P
Ag(a,p) = fo H = 5| A
and
Proof. Taking modulus in (4) and applyin Holder inequality, we have

‘1[Y(A1)+3Y(2A1;A2)+3Y(A1 +32A2)+Y(A2)]
3T (@ +1 2M + A A +2A
T P 0 P, Y[ r (22

3

8

a

A f
1
o)
0
1
!
0
Ay — Ay fl
9 . H

3—p
Y =
( 3 /\1+

IA
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1 1) T 2—-u T+u i
ke sl ([T (5o 55
1 1
(Lo ([t 250 o) |
By using convexity of [Y'|7, g > 1,we obtain
‘%[Y(A1)+3T(2A1;A2)+3T(Al 22A2)+T(A2)]

a

2+ A A +2A
b T+, Y2 r (2 2)]
3P\ '3-p AT
w3l ) (oo [ 25 e ar [ S
8 0 3 0 3
Py 12—u 11+ g
dH) (IT’ (/h)qu Td/vl"‘nf’ (/\2)|qf Td#)
0 0

5P\ 11— o4y \
ut = g‘ d!i) (W' (/\1)|qf TydﬁlﬂT/ ()\2)|qf Tydﬂ) ]
0 0

Aé (a,p) (5 " (A" + Y (Az)lq)‘7

(A2 = Aq)°

([
(f
(f

Ay =M
9

3T (a+1) [

IN

o 1
Hm3

6

Al @, p)(nw Al + 17" (/\2)|q)" cab @) (nr' (I +517" (Az)rﬂ

2 o 6
Thus, the proof is completed. [J

Remark 4.7. In Theorem 4.6, if we set a = 1, then we have the following inequality:

1 2M1 + Ay /\1+2/\2) ]_ 1 fAz
‘S[T(A1)+3Y( T2+ (SR ()| - = i

Y (x)dx

1

B N AR A W I U (R 0D A
= 79 |\eipe 6

+( 1 )3 (nr' (Al + Y (W)é

2 (p+1) 2
(3TN D+ 5 (o)
g+l (p+1) 6 ’

5. Fractional Newton Type Inequality for Functions of Bounded Variation

In this section, we prove a fractional Newton type inequality for function of bounded variation.

Theorem 5.1. Let Y : [A1,A2] — R be a function of bounded variation on [A1, A2]. Then we have the following
Newton type inequality for Riemann-Liouville fractional integrals

‘% [Y(/\l) + 3Y(2A13+ M) + Bnr(A1 7;2/\2

)+ 1 ()]
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3“ T@+1)
Ay = Aq)*

5\
< — .
< 24\/(?)
1

d
where \/(Y) denotes the total variation of Y on [c,d] .
c

2L+ A A +2A
[2\1+\2 Y(/\l)+]A1+2\2 (#) ]}\2_ ( - 2)]

3 3

Proof. Define the mapping K,(x) by,

Ay—Aq1)"
(- -Yghl g <x g Puh
_ 20+ \Y  (A=Ap) 20141, A1+21,
Ka(x) - (X -3 ) - T3 3 <x< ~—3
a5y
(x _ /\122}\2) _ X 223-3“1) AlEZ/\z <x< Ao

It follows from that

A2
f Ka(0dY(x) (10)
A

= f ((x - )Y -

Ay

(A — Aq)*

g 301 )dY(x)

11421y
3 (x 2+ )a ()
3 2.3

A a o
2 A1+ 24, 5(A2 — A1)
+ f‘ﬂ;‘z ((x i ) - g3 ax(x).

Integrating by parts, we get

) dY(x)

2q+Ay
3

2044y

(e - G e ay
= ((" - M) - Mg;—fi)a)ﬂx) s f (x = A1) Y ()dx
. e

_ 5(Ay — Al)a 201 + Ay (Ar — /\1)’1 N
- 8-3¢ Y( 2 )+ 8 . 3a-1 ’Y‘(Al)_r(a"'l)]wﬁf()\lf
Similarly, we have

A +21y

B 2M + A )a (A2 = A1)*
o, ((x 3 7 3 dY(x) (12)
(Ap — /\1)a (/\1 + 2/\2) Ay — /\1)“ (2/\1 + Az) (2/\1 + /\2)
> 30 Y ) t o Y > ['(a +1)]A1+2\2 3

and

A a
2 AM+20\ 5(A —Ay)
fA;‘z ((x - ) 2= v (13)
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(A —Aq)"

8. 3a-1 T(A2) +

5(A; = Al)aT(/\l + 27,

M +2/\2)
8. 3¢ 2 3 ’

)—F(a+1)];*2,Y(

By putting the equalities (11)-(13) in (10), we have

%[T(/\l) +3Y(

3* 1T (a+1)
W [ iy Y (Aqp) + ]/\1+2‘z (

a-1 Ao
_ Mf_—m fA Ko (0)dY ().

Ml; Az) + BY(Al +32A2) + T(/\z)]

2/\1+A2) g (A1+2A2)
3 A= 3

It is well known that if g, Y : [A1,A2] — R are such that g is continuous on [A;, A;] and Y is of bounded
variation on [A1, A;], then fﬁz g(u)dY (u) exist and

U g(wdY(w)

On the other hand, using (14), we get

< sup |g(u)| Vm (14)

ue /\1 Az]

201 + /\2) (/\1 + 27,
3Y
3 )7 3

‘1[Y(A1)+3Y( )+Y(/\2)]

3071 (@ + 1) A+ A2\ . (A +2A,
W[ A T ( 3 )HM—T( 3 )
na-1 A2
< — K, (x)dY(x
w—wfh W)
a1 241 +Ap _ o
< 2|l ((x—w - M)mx)
(A2 = A1) M 8347
A+24o
3 20+ A\ (A= Ag)”
’ fzf‘w‘z ((x_ 3 ) T |7
A a
2 A+ 27, . 5(/\2 - /\1)
i fw\z ((x_ 3 ) I A
3
Z\1+A2
3a—1 Al)
< — su x—Aq)" )+
TR [12&2]( D \/()
/\1+2/\2
2A1 + Ay )a (A — A)*
- - Y
xé[ﬁpw] (x 3 23 ZMZ( :
3 /3 -3

Ay
\ )

A +215
3

+ sup

(X _ A+ 2/\2)01 _ S(Az - /\1)“
xe[@,/\z]

3 8- 3¢

2/\1 +Ap M +2/\2

_ 3a-1 5 (Az )\1) (Az 5 (/\2 Al)
T (h-A)T| 83 \/(Y) 3& V(Y) 8.3 V(Y)

z)\1+\ A 24y
3
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5"
< =
< 7 V.
A
This completes the proof. [

Remark 5.2. If we take @ = 1 in Theorem 5.1, then we get the inequality

A2
1 20 + /\2) (/\1 + 2)\2) ] 1 f“ 5
‘8 [Y(A1)+3Y(—3 3 (Z2 )Y - | T < 5 \A/(Y)

which is given by Alomari in [2].

6. Conclusion

In this work, we used Riemann-Liouville fractional integrals and proved some new Simpson’s second
type inequalities for differentiable convex functions. We also gave a mathematical example and graphical
analysis to show the validity of newly established results. Moreover, we established fractional Newton type
inequalities for functions of bounded variation. It is an interesting and new problem that the upcoming
researchers can obtain the similar inequalities for other kinds of convexity and co-ordinated convexity in
their future work.
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