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Abstract. We develop A-numerical radius inequalities of the product and the commutator of semi-Hilbert
space operators using the notion of A-numerical radius distance and A-seminorm distance. Further, we
introduce a pair of translatable radii of semi-Hilbert space operators in the direction of another operator
and obtain related inequalities which generalize the relevant inequalities studied in the setting of Hilbert
space.

1. Introduction and terminologies

Throughout this paper, H denotes a non trivial complex Hilbert space with inner product ⟨., .⟩ and
associated norm ∥ · ∥. Let B(H) denote the algebra of all bounded linear operators acting on H . Let the
symbol I stand for the identity operator onH . For every operator T ∈ B(H),N(T), R(T) and R(T) stand for
the null space, the range and the closure of the range of T, respectively. The adjoint of T is denoted by T∗.
Let B(H)+ be the cone of positive operators, i.e.,

B (H)+ =
{
A ∈ B (H) : ⟨Ax, x⟩ ≥ 0,∀x ∈ H

}
.

An operator A ∈ B (H)+ defines a positive semi-definite sesquilinear form

⟨., .⟩A : H ×H → C,
〈
x, y

〉
A =

〈
Ax, y

〉
, ∀x, y ∈ H .

Naturally, this semi-inner product induces a seminorm ∥ · ∥A defined by

∥x∥A =
√
⟨x, x⟩A =

∥∥∥∥A
1
2 x

∥∥∥∥ , ∀x ∈ H .
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Observe that ∥x∥A = 0 if and only if x ∈ N (A). Then ∥ · ∥A is a norm on H if and only if A is an injective
operator and the semi-normed space (B (H) , ∥ · ∥A) is complete if and only ifR (A) is closed. Given T ∈ B(H),
if there exists c > 0 satisfying ∥Tx∥A ≤ c ∥x∥A for all x ∈ R (A), then

∥T∥A = sup
x∈R(A)

x,0

∥Tx∥A
∥x∥A

= sup
x∈R(A)
∥x∥A=1

∥Tx∥A < ∞.

From now on, we suppose that A , 0 is a positive operator in B(H) and we denote

B
A(H) =

{
T ∈ B(H) : ∥T∥A < ∞

}
.

It can be seen that BA(H) is not a subalgebra of B(H), and ∥T∥A = 0 if and only if T∗AT = 0. Moreover, for
T ∈ BA(H) we have

∥T∥A = sup
{∣∣∣〈Tx, y

〉
A

∣∣∣ : x, y ∈ R (A) and ∥x∥A =
∥∥∥y

∥∥∥
A = 1

}
.

For T ∈ B(H), an operator S ∈ B(H) is called A-adjoint of T if for every x, y ∈ H

⟨Tx, y⟩A = ⟨x,Sy⟩A,

that is, AS = T∗A. An operator T ∈ B(H) is called A-selfadjoint if AT is selfadjoint, i.e., AT = T∗A, and it is
called A-positive if AT is positive.
The existence of A-adjoint operator is not guaranteed. The set of all operators which admit A-adjoints is
denoted by BA(H). By Douglas theorem [10], we get

BA(H) =
{
T ∈ B(H) : R (T∗A) ⊆ R (A)

}
=

{
T ∈ B(H) : ∃ c > 0 such that ∥ATx∥ ≤ c ∥Ax∥ ,∀x ∈ H

}
.

If T ∈ BA(H), then T admits an A-adjoint operator. Moreover, there exists a distinguished A-adjoint
operator of T, namely, the reduced solution of the equation AX = T∗A, i.e., T♯A = A†T∗A, where A† is the
Moore-Penrose inverse of A. The A-adjoint operator T♯A satisfies

AT♯A = T∗A, R
(
T♯A

)
⊆ R (A) andN

(
T♯A

)
= N (T∗A) .

Again, by applying Douglas theorem [10], we can see that

BA1/2 (H) =
{
T ∈ B(H) : ∃ c > 0 such that ∥Tx∥A ≤ c ∥x∥A ,∀x ∈ H

}
.

Any operator inBA1/2 (H) is called A-bounded operator. Moreover, it was proved in [2] that if T ∈ BA1/2 (H),
then

∥T∥A := sup
x<N(A)

∥Tx∥A
∥x∥A

= sup
x∈H ,∥x∥A=1

∥Tx∥A .

In addition, if T is A-bounded, then T (N (A)) ⊆ N (A) and

∥Tx∥A ≤ ∥T∥A ∥x∥A ,∀x ∈ H .

Note that BA(H) and BA1/2 (H) are two subalgebras of B(H) which are neither closed nor dense in B(H)
(see [2, 3]). Moreover, the following inclusions

BA(H) ⊆ BA1/2 (H) ⊆ BA(H) ⊆ B(H),

hold with equality if A is injective and has a closed range.
Now, we collect some properties of T♯A and its relationship with the seminorm ∥·∥A. Let T ∈ BA(H), then
the following statements hold:
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(1) If AT = TA, then T♯A = P
ℜ(A)T

∗.

(2) T♯A ∈ BA(H),
(
T♯A

)♯A
= P

ℜ(A)TP
ℜ(A) and

((
T♯A

)♯A)♯A
= T♯A .

(3) T♯A T and TT♯A are A-selfadjoint and A-positive.
(4) If S ∈ BA(H), then TS ∈ BA(H) and (TS)

♯A
= S♯A T♯A .

(5) ∥T∥A =
∥∥∥T♯A

∥∥∥
A =

∥∥∥T♯A T
∥∥∥ 1

2

A =
∥∥∥TT♯A

∥∥∥ 1
2

A.

Note that P
ℜ(A) stands for the projection ontoℜ (A) and henceforth we write P instead of P

ℜ(A) for simplicity.
The concept of the classical numerical radius was generalized to the A-numerical radius (see in [23]) as
follows:

ωA (T) = sup
{
|⟨Tx, x⟩A| : x ∈ H , ∥x∥A = 1

}
.

It follows that

ωA (T) = ωA

(
T♯A

)
for any T ∈ BA(H).

It is well known that for any T ∈ BA(H)

T♯A P = PT♯A = T♯A ,

but PT , TP and the equality holds if N (A)⊥ is invariant for T (see [22]).
A fundamental inequality for the A-numerical radius is the power inequality (see [14, 19]), which says that
for T ∈ BA(H),

ωA (Tn) ≤ ωn
A (T) , n ∈N.

Further, A-numerical radius ωA(·) is a seminorm on BA(H), and it satisfies that

1
2
∥T∥A ≤ ωA (T) ≤ ∥T∥A , (1)

for every T ∈ BA(H). Moreover, it is known that if T is A-selfadjoint, then

ωA (T) = ∥T∥A . (2)

For proofs and more facts about A-numerical radius of operators, we refer the reader to [23, 24]. Any
operator T ∈ BA(H) can be represented as

T =ℜA (T) + iℑA (T) ,

where

ℜA (T) =
T + T♯A

2
and ℑA (T) =

T − T♯A

2i
.

Further,ℜA (T) and ℑA (T) are A-selfadjoint operators. In addition, we have∥∥∥ℜA (T)
∥∥∥

A ≤ ωA (T)

and ∥∥∥ℑA (T)
∥∥∥

A ≤ ωA (T) .

The A-Crawford number of T ∈ BA(H) is defined as

cA (T) = inf
{
|⟨Tx, x⟩A| : x ∈ H , ∥x∥A = 1

}
.

Recently, several improvements of A-numerical radius inequalities are given in [17, 19, 24]. Further
generalizations and refinements of A-numerical radius are discussed in [6–9, 13].

The paper is organized as follows. In section 2, we develop new inequalities for the A-numerical radius
of the product and the commutator of operators acting on a semi-Hilbert space. In section 3, we introduce a
pair of translatable radii of a semi-Hilbert space operator in the direction of another operator, and develop
related inequalities.
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2. Inequalities involving A-seminorm distance and A -numerical radius distance

In this section, we generalize and refine some inequalities involving A-seminorm distance and A-
numerical radius distance of semi-Hilbert space operators. To give our first result, we need the following
lemma.

Lemma 2.1. If x, y ∈ H with y , 0, then

inf
λ∈C

∥∥∥x − λy
∥∥∥2

A =
∥x∥2A

∥∥∥y
∥∥∥2

A −
∣∣∣〈x, y

〉
A

∣∣∣2∥∥∥y
∥∥∥2

A

.

Proof. First we note the following identity which can be found in [12]:

inf
λ∈C
∥a − λb∥2 =

∥a∥2 ∥b∥2 − |⟨a, b⟩|2

∥b∥2
,

for any a, b ∈ H with b , 0.
Choosing a = A

1
2 x and b = A

1
2 y in the above identity, we get

inf
λ∈C

∥∥∥∥A
1
2
(
x − λy

)∥∥∥∥2
=

∥∥∥A
1
2 x

∥∥∥2 ∥∥∥A
1
2 y

∥∥∥2
−

∣∣∣∣〈A
1
2 x,A

1
2 y

〉∣∣∣∣2∥∥∥A
1
2 y

∥∥∥2 .

This implies that

inf
λ∈C

∥∥∥x − λy
∥∥∥2

A =
∥x∥2A

∥∥∥y
∥∥∥2

A −
∣∣∣〈x, y

〉
A

∣∣∣2∥∥∥y
∥∥∥2

A

,

as required.

For our next result we need the notion of A-seminorm distance. For T ∈ BA (H), let DA (T) denote the
A-seminorm distance of T from the scalar operators, i.e.,

DA (T) = inf
λ∈C
∥T − λI∥A .

By using the A-seminorm distance DA(T), we prove the following inequalities.

Theorem 2.2. Let T ∈ BA (H). Then√
D2

A (T) + c2
A (T) ≤ ∥T∥A ≤

√
D2

A (T) + ω2
A (T).

Proof. Let x ∈ H be an A-unit vector, i.e, ∥x∥A = 1. In view of Lemma 2.1, we observe that

inf
λ∈C
∥Tx − λx∥2A =

∥Tx∥2A ∥λx∥2A − |⟨Tx, λx⟩A|
2

∥λx∥2A
= ∥Tx∥2A − |⟨Tx, x⟩A|

2

≤ ∥T∥2A − c2
A (T) .

Therefore,

inf
λ∈C
∥Tx − λx∥2A ≤ ∥T∥

2
A − c2

A (T) .
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By taking the supremum over x ∈ H with ∥x∥A = 1, it follows that

D2
A (T) + c2

A (T) ≤ ∥T∥2A ,

which gives the first inequality of the theorem. Now we prove the second inequality. From Lemma 2.1, we
have

∥x∥2A
∥∥∥y

∥∥∥2

A −
∣∣∣〈x, y

〉
A

∣∣∣2 = ∥∥∥y
∥∥∥2

A inf
λ∈C

∥∥∥x − λy
∥∥∥2

A . (3)

Now, replacing x by Tx and y by x in the identity (3), we obtain that

∥Tx∥2A − |⟨Tx, x⟩A|
2 = inf

λ∈C
∥Tx − λx∥2A .

This implies that

∥Tx∥2A = inf
λ∈C
∥Tx − λx∥2A + |⟨Tx, x⟩A|

2 .

Taking the supremum over x ∈ H with ∥x∥A = 1 in the above inequality, we get

∥T∥2A ≤ inf
λ∈C
∥T − λI∥2A + ω

2
A(T) = D2

A (T) + ω2
A(T).

This completes the proof.

Remark 2.3. The inequality in [18, Th. 2.2] follows from the first inequality of Theorem 2.2 by considering the
identity operator instead of A.

The following lemma plays a crucial role in our next proof.

Lemma 2.4. Let x, y, z ∈ H and let λ, µ ∈ C. Then∣∣∣⟨x, z⟩A 〈
y, z

〉
A

∣∣∣ ≤ ∣∣∣〈x, y
〉

A

∣∣∣ + inf
λ∈C
∥x − λz∥A inf

µ∈C

∥∥∥y − µz
∥∥∥

A .

Proof. On account of [11], we have

|⟨a, c⟩ ⟨b, c⟩| ≤ |⟨a, b⟩| + inf
λ∈C
∥a − λc∥ inf

µ∈C

∥∥∥b − µc
∥∥∥ .

for all a, b, c ∈ H and for every λ, µ ∈ C.
Choosing a = A

1
2 x, b = A

1
2 y and c = A

1
2 z in the above inequality, we obtain∣∣∣∣〈A

1
2 x,A

1
2 z

〉 〈
A

1
2 y,A

1
2 z

〉∣∣∣∣
≤

∣∣∣∣〈A
1
2 x,A

1
2 y

〉∣∣∣∣ + inf
λ∈C

∥∥∥∥A
1
2 x − λA

1
2 z

∥∥∥∥ inf
µ∈C

∥∥∥∥A
1
2 y − µA

1
2 z

∥∥∥∥ .

This implies that∣∣∣⟨Ax, z⟩
〈
Ay, z

〉∣∣∣ ≤ ∣∣∣〈Ax, y
〉∣∣∣ + inf

λ∈C

∥∥∥∥A
1
2 (x − λz)

∥∥∥∥ inf
µ∈C

∥∥∥∥A
1
2
(
y − µz

)∥∥∥∥ .

Thus,∣∣∣⟨x, z⟩A 〈
y, z

〉
A

∣∣∣ ≤ ∣∣∣〈x, y
〉

A

∣∣∣ + inf
λ∈C
∥x − λz∥A inf

µ∈C

∥∥∥y − µz
∥∥∥

A ,

as required.
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In [11], Dragomir proved that if T ∈ B(H), then

ω2(T) ≤ ω(T2) + inf
λ∈C
∥T − λI∥ . (4)

The following theorem generalizes the inequality (4).

Theorem 2.5. Let T ∈ BA(H). Then

ω2r
A (T) ≤ 2r−1

(
ωr

A(T2) +D2r
A (T)

)
,

for any r ≥ 1.

Proof. Let x ∈ H be an A-unit vector inH . Replacing x by Tx, y by T♯A x and z by x in Lemma 2.4, we get∣∣∣∣⟨Tx, x⟩A
〈
T♯A x, x

〉
A

∣∣∣∣ ≤ ∣∣∣∣〈Tx,T♯A x
〉

A

∣∣∣∣ + inf
λ∈C
∥Tx − λx∥A inf

µ∈C

∥∥∥T♯A x − µx
∥∥∥

A .

This implies that

|⟨Tx, x⟩A|
2
≤

∣∣∣∣〈T2x, x
〉

A

∣∣∣∣ + ∥(T − λI) x∥A
∥∥∥∥(T♯A − µI

)
x
∥∥∥∥

A
.

Now, by the elementary inequality
(
α+β

2

)r
≤
αr+βr

2 , α, β > 0 and r ≥ 1, we obtain

|⟨Tx, x⟩A|
2r
≤ 2r−1

(∣∣∣∣〈T2x, x
〉

A

∣∣∣∣r + ∥(T − λI) x∥rA
∥∥∥∥(T♯A − µI

)
x
∥∥∥∥r

A

)
.

Taking the supremum over x ∈ H with ∥x∥A = 1 in the above inequality, we obtain

ω2r
A (T) ≤ 2r−1

(
ωr

A(T2) + ∥T − λI∥rA
∥∥∥T♯A − µI

∥∥∥r

A

)
.

Finally, by taking the infimum over λ, µ ∈ C, we get

ω2r
A (T) ≤ 2r−1

(
ωr

A(T2) +Dr
A (T) Dr

A

(
T♯A

))
.

Further, for every T ∈ BA (H) and for every λ ∈ C one can observe that

∥T − λI∥A =
∥∥∥∥(T − λI)♯A

∥∥∥∥
A

=
∥∥∥T♯A − λP

∥∥∥
A =

∥∥∥∥(T − λP)♯A
∥∥∥∥

A

= ∥T − λP∥A .

Therefore, we have

DA

(
T♯A

)
= inf

λ∈C

∥∥∥T♯A − λI
∥∥∥

A = inf
λ∈C

∥∥∥T♯A − λP
∥∥∥

A

= inf
λ∈C

∥∥∥∥∥(T − λI
)♯A∥∥∥∥∥

A

= inf
λ∈C

∥∥∥T − λI
∥∥∥

A

= DA (T) .

Thus,

ω2r
A (T) ≤ 2r−1

(
ωr

A(T2) +D2r
A (T)

)
.

This completes the proof.
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In particular, considering r = 1 in Theorem 2.5, we get the following corollary.

Corollary 2.6. If T ∈ BA(H), then

ωA(T) ≤
√
ωA(T2) +D2

A (T).

Now, we consider the A-seminorm distance DA(T,B) defined as follows: For T,B ∈ BA(H),

DA(T,B) = inf
λ∈C
∥T − λB∥A.

Applying compactness argument it is easy to observe that there existsλ0 ∈ C such that DA(T,B) = ∥T−λ0B∥A.
Using this generalized distance DA(T,B), and proceeding similarly as in Theorem 2.2, we have the following
inequalities.

Theorem 2.7. Let T,B ∈ BA(H). Then√
m2

A(B)D2
A(T,B) + c2

A(B♯A T)

∥B∥A
≤ ∥T∥A ≤

√
∥B∥2AD2

A(T,B) + w2
A(B♯A T)

mA(B)
,

where mA(B) = inf
∥x∥A=1

∥Bx∥A.

Next, we need the following two inequalities.

Lemma 2.8. [22] Let T,S ∈ BA (H). Then

ωA

(
TS♯A ± ST

)
≤ 2 ∥S∥A ωA (T) .

Theorem 2.9. [4, Th. 2.2] Let T,S ∈ BA (H). Then

ωA(TS) ≤ ∥T∥AωA(S) +
1
2

min
{
ωA(TS + ST♯A ), ωA(TS − ST♯A )

}
.

We are now in a position to prove the following result.

Theorem 2.10. Let T,S ∈ BA (H). Then

ωA (TS) ≤ min
{(
∥T∥A +DA (T)

)
ωA (S) ,

(
∥S∥A +DA (S)

)
ωA (T)

}
.

Proof. There exists λ0 ∈ C such that DA (T) = ∥T − λ0I∥A. If λ0 = 0, then by the inequalities in (1), we get

ωA (TS) ≤ ∥TS∥A ≤ ∥T∥A∥S∥A ≤ 2 ∥T∥A ωA (S) = (∥T∥A +DA (T))ωA (S) .

Next consider λ0 , 0, and let µ = λ0
|λ0 |

. Then, from Theorem 2.9 we have

ωA (TS) = ωA
(
µTS

)
≤ ∥T∥A ωA (S) +

1
2
ωA

(
µTS − µST♯A

)
= ∥T∥A ωA (S) +

1
2
ωA

(
µS♯A T♯A − µT♯

♯A
A S♯A

)
= ∥T∥A ωA (S) +

1
2
ωA

(
µT♯

♯A
A S♯

♯A
A − µS♯

♯A
A T♯A

)
= ∥T∥A ωA (S) +

1
2
ωA

(
µ
(
T♯
♯A
A − λ0I

)
S♯
♯A
A − µS♯

♯A
A

(
T♯
♯A
A − λ0I

)♯A)
≤ ∥T∥A ωA (S) +

∥∥∥∥T♯
♯A
A − λ0I

∥∥∥∥
A
ωA

(
S♯
♯A
A

)
(by using Lemma 2.8)

= ∥T∥A ωA (S) +
∥∥∥∥T♯

♯A
A − λ0I

∥∥∥∥
A
ωA (S) .
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Now, by using the fact
∥∥∥X♯A

∥∥∥
A = ∥X∥A for all X ∈ BA (H) we can observe that∥∥∥∥T♯

♯A
A − λ0I

∥∥∥∥
A
=

∥∥∥T♯A − λ0P
∥∥∥

A =
∥∥∥∥(T − λ0I)♯A

∥∥∥∥
A
= ∥T − λ0I∥A .

Therefore,

ωA (TS) ≤ ∥T∥A ωA (S) + ∥T − λ0I∥A ωA (S) =
(
∥T∥A +DA (T)

)
ωA (S) . (5)

Replacing T by S♯A and S by T♯A in the above inequality and since DA(S♯A ) = DA(S), we get

ωA (TS) ≤
(
∥S∥A +DA (S)

)
ωA (T) . (6)

Combining the inequalities in (5) and (6), we obtain the desired inequality.

Remark 2.11. Clearly, DA(T) ≤ ∥T∥A and DA(S) ≤ ∥S∥A. Therefore, we have(
∥T∥A +DA (T)

)
ωA (S) ≤ 2∥T∥AwA(S) and

(
∥S∥A +DA (S)

)
ωA (T) ≤ 2∥S∥AwA(T).

Thus, the inequality in Theorem 2.10 is better than the well-known existing inequality

ωA(TS) ≤ min {2∥T∥AωA(S), 2∥S∥AωA(T)} ,

see in [24].

For our next result we need the notion of A-numerical radius distance. For T ∈ BA (H), let dA (T) denote
the A-numerical radius distance of T from the scalar operators, i.e.,

dA (T) = inf
λ∈C
ωA (T − λI) .

Applying compactness argument we observe that there exists λ0 ∈ C such that dA (T) = ωA (T − λ0I). Next,
using the A-numerical distance dA(T), we obtain the following inequalities.

Theorem 2.12. Let T ∈ BA(H). Then

∥T∥A ≤ ωA(T) + dA(T) ≤ 2ωA(T).

Proof. There exists λ0 ∈ C such that dA(T) = ωA(T − λ0I). If λ0 = 0, then ∥T∥A ≤ 2ωA(T) = ωA(T) + dA(T).

Now, we take λ0 , 0, and let µ = λ0
|λ0 |

. Therefore,

∥T∥A = ∥µT∥A =
∥∥∥ℜA(µT) + iℑA(µT)

∥∥∥
A

≤

∥∥∥ℜA(µT)
∥∥∥

A +
∥∥∥ℑA(µT)

∥∥∥
A

=
∥∥∥ℜA(µT)

∥∥∥
A +

∥∥∥ℑA(µ(T − λ0I))
∥∥∥

A
≤ ωA(T) + ωA(T − λ0I).

Hence, ∥T∥A ≤ ωA(T) + dA(T). The second inequality follows from the fact that dA(T) ≤ ωA(T).

The following corollary reads as follows.

Corollary 2.13. Let T,S ∈ BA(H). Then

ωA(TS) ≤
(
ωA(T) + dA(T)

)(
ωA(S) + dA(S)

)
≤ 4ωA(T)ωA(S).

Proof. The proof follows from the fact that ωA(TS) ≤ ∥TS∥A ≤ ∥T∥A∥S∥A and using the inequalities in
Theorem 2.12.
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The inequality in Corollary 2.13 also have been obtained in [24, Th. 3.5].
To obtain next result we need the following lemma.

Lemma 2.14. [24] Let T,S ∈ BA (H). Then

ωA (TS ± ST) ≤ 4ωA (T)ωA (S) .

Now, we are in a position to prove the following result.

Theorem 2.15. Let T,S ∈ BA (H). Then

ωA (TS − ST) ≤ 4dA (T) dA (S) ≤ 4ωA (T)ωA (S) .

Proof. Let λ0, ζ0 ∈ C such that ωA (T − λ0I) = dA (T) and ωA (S − ζ0I) = dA (S). Then, we have

ωA (TS − ST) = ωA ((T − λ0I) (S − ζ0I) − (S − ζ0I) (T − λ0I))
≤ 4ωA ((T − λ0I)ωA (S − ζ0I)) (by using Lemma 2.14)
= 4dA (T) dA (S) .

Thus,

ωA (TS − ST) ≤ 4dA (T) dA (S) .

The second desired inequality follows from the fact that dA (T) ≤ ωA (T) and dA (S) ≤ ωA (S).

Remark 2.16. By taking A = I in Theorem 2.15 we get a recent result proved by Abu-Omar and Kittaneh in [1].

Again, we need the following lemma to prove the next refinement.

Lemma 2.17. [5, Th. 2.4] Let T,S ∈ BA (H). Then

ωA (TS − ST) ≤ 2
√

2∥T∥AωA (S) .

Theorem 2.18. Let T,S ∈ BA (H). Then

ωA (TS − ST) ≤ 2
√

2 min
{
DA(T)dA(S),DA(S)dA(T)

}
≤ 2
√

2∥T∥AωA (S) .

Proof. Let λ0, ζ0 ∈ C such that ∥T − λ0I∥ = DA (T) and ωA (S − ζ0I) = dA (S). Then, we have

ωA (TS − ST) = ωA ((T − λ0I) (S − ζ0I) − (S − ζ0I) (T − λ0I))

≤ 2
√

2 ∥T − λ0I∥A ωA (S − ζ0I) (by using Lemma 2.17)

= 2
√

2DA(T)dA (S) .

Thus, ωA (TS − ST) ≤ 2
√

2DA(T)dA (S).
Replacing T by S and S by T in the above inequality, we have

ωA (TS − ST) ≤ 2
√

2DA(S)dA (T) .

Combining the above two inequalities we get the first inequality. The second inequality follows from the
fact DA(T) ≤ ∥T∥A and dA(S) ≤ wA(S).

Now, we generalize the A-numerical distance dA(T) as in the following from: For T,B ∈ BA(H),

dA(T,B) = inf
λ∈C
ωA(T − λB).

Using this generalized A-numerical distance dA(T,B), we obtain the following inequalities.
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Theorem 2.19. Let T,S,B ∈ BA (H) be such that B commutes with both T and S. Then

ωA (TS − ST) ≤ 4dA (T,B) dA (S,B) ≤ 4ωA (T)ωA (S) .

We skip the detail of the proof of the above theorem as it follows analogously as Theorem 2.15. Similarly,
proceeding as in Theorem 2.18 we get the following theorem.

Theorem 2.20. Let T,S,B ∈ BA (H) be such that B commutes with both T and S. Then

ωA (TS − ST) ≤ 2
√

2 min
{
DA(T,B)dA(S,B),DA(S,B)dA(T,B)

}
≤ 2
√

2∥T∥AωA (S) .

Our next result reads as follows:

Theorem 2.21. Let T,S ∈ BA (H). Then

ωA (TS + ST) ≤ 2 min
{
ωA (T)

(
ωA (S) + dA (S)

)
, ωA (S)

(
ωA (T) + dA (T)

)}
≤ 4ωA (T)ωA (S) .

Proof. Let λ0 ∈ C such that ωA (S − λ0I) = dA (S). If λ0 = 0, then we get

ωA (TS + ST) ≤ 2ωA (T)
(
ωA (S) + dA (S)

)
= 4ωA (T)ωA (S) .

As in the proof of Theorem 2.10, we may assume that λ0 , 0, and let µ = λ0
|λ0 |

. Then,

ωA (TS + ST) = ωA
(
T
(
µS

)
+

(
µS

)
T
)

= ωA
(
TℜA

(
µS

)
+ iTℑA

(
µS

)
+ℜA

(
µS

)
T + iℑA

(
µS

)
T
)

≤ ωA
(
TℜA

(
µS

)
+ℜA

(
µS

)
T
)
+ ωA

(
TℑA

(
µS

)
+ ℑA

(
µS

)
T
)

.

It is easy to verify that

ℜ
♯A
A

(
µS

)
=ℜ

♯
♯A
A

A

(
µS

)
and ℑ♯AA

(
µS

)
= ℑ

♯
♯A
A

A

(
µS

)
.

Therefore, it follows from Lemma 2.8 that

ωA
(
TℜA

(
µS

)
+ℜA

(
µS

)
T
)
= ωA

(
ℜ
♯A
A

(
µS

)
T♯A + T♯Aℜ♯AA

(
µS

))
= ωA

(
T♯Aℜ

♯
♯A
A

A

(
µS

)
+ℜ♯AA

(
µS

)
T♯A

)
≤ 2

∥∥∥∥ℜ♯AA

(
µS

)∥∥∥∥
A
ωA

(
T♯A

)
= 2

∥∥∥ℜA
(
µS

)∥∥∥
A ωA (T) .

Similarly,

ωA
(
TℑA

(
µS

)
+ ℑA

(
µS

)
T
)
≤ 2

∥∥∥ℑA
(
µS

)∥∥∥
A ωA (T) .

Hence,

ωA (TS + ST) ≤ 2ωA (T)
(∥∥∥ℜA

(
µS

)∥∥∥
A +

∥∥∥ℑA
(
µS

)∥∥∥
A

)
= 2ωA (T)

(∥∥∥ℜA
(
µS

)∥∥∥
A +

∥∥∥ℑA
(
µ (S − λ0I)

)∥∥∥
A

)
.

Since
∥∥∥ℜA

(
µS

)∥∥∥
A ≤ ωA

((
µS

))
= ωA (S) and

∥∥∥ℑA
(
µ (S − λ0I)

)∥∥∥
A ≤ ωA (S − λ0I), we get

ωA (TS + ST) ≤ 2ωA (T) (ωA (S) + ωA (S − λ0I)) = 2ωA (T) (ωA (S) + dA (S)) .

Now, replacing T by S and S by T in the above inequality, we get

ωA (TS + ST) ≤ 2ωA (S) (ωA (T) + dA (T)) .

Combining the above two inequalities we obtain the first inequality. The second inequality follows from
dA(T) ≤ ωA(T) and dA(S) ≤ ωA(S).
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3. Translatable radii of an operator in semi-Hilbert space

In [20, 21] authors introduced and studied a couple of translatable radii of a bounded linear operator T
on a Hilbert space in the direction of another bounded linear operator S as follows: If 0 < σapp(S) (σapp(S)
denotes the approximate point spectrum of S), let

MS(T) = sup
∥x∥=1

∥∥∥∥∥Tx −
⟨Tx,Sx)
⟨Sx,Sx⟩

Sx
∥∥∥∥∥

i.e., MS(T) = sup
∥x∥=1

{
∥Tx∥2 −

| ⟨Tx,Sx⟩ |2

⟨Sx,Sx⟩

}1/2

and if 0 <W(S), let

M̃S(T) = sup
∥x∥=1

∥∥∥∥∥Tx −
⟨Tx, x⟩
⟨Sx, x⟩

Sx
∥∥∥∥∥ .

MS(T) and M̃S(T) are defined as translatable radii of the operator T in the direction of S. Author [20] further
proved that if 0 <W(S) (the closure of the numerical range of S) then

M̃S(T) ≥MS(T) ≥ mS(T)/∥S−1
∥,

where mS(T) is the radius of the smallest circle containing the set

WS(T) =
{
⟨Tx,Sx⟩
⟨Sx,Sx⟩

: ∥x∥ = 1
}

.

Here, we introduce the translatable radius of T in the direction of S with respect to seminorm ∥ · ∥A as
follows : Let T,S ∈ BA1/2 (H). If 0 < σapp(A1/2S), then let

MS(T)A = sup
∥x∥A=1

∥∥∥∥∥Tx −
⟨Tx,Sx⟩A
⟨Sx,Sx⟩A

Sx
∥∥∥∥∥

A

and if 0 <WA(S), then let

M̃S(T)A = sup
∥x∥A=1

∥∥∥∥∥Tx −
⟨Tx, x⟩A
⟨Sx, x⟩A

Sx
∥∥∥∥∥

A
.

It is easy to observe that

MS(T)A = sup
∥x∥A=1

{
∥Tx∥2A −

|⟨Tx,Sx⟩A|2

⟨Sx,Sx⟩A

}1/2

,

and MS(T)A = MS(T + µS)A for all µ ∈ C, that is, MS(T)A is translation invariant in the direction of S. For
S = A = I we get the transcendental radius studied in [15, 16]. We also observe that M̃S(T)A = M̃S(T + µS)A

for all µ ∈ C. MS(T)A and M̃S(T)A are defined as the translatable radius of T in the direction of S with respect
to seminorm ∥ · ∥A. Now, we consider the set

WS(T)A =
{
⟨Tx,Sx⟩A
⟨Sx,Sx⟩A

: x ∈ H , ∥x∥A = 1
}

,

if 0 < σapp(A1/2S) and

W̃S(T)A =
{
⟨Tx, x⟩A
⟨Sx, x⟩A

: x ∈ H , ∥x∥A = 1
}

,



M. Guesba et al. / Filomat 37:11 (2023), 3443–3456 3454

if 0 <WA(S). Clearly, WS(T)A =WS(T) and W̃S(T)A = W̃S(T) if A = I. Let mS(T)A (resp. m̃S(T)A) be the radius
of the smallest circle containing the set WS(T)A (resp. W̃S(T)A ) and let |WS(T)A| = sup{|λ| : λ ∈WS(T)A} and
|W̃S(T)A| = sup{|λ| : λ ∈ W̃S(T)A}. Then it is easy to observe that

mS(T)A = inf
µ∈C
|WS(T − µS)A|

and

m̃S(T)A = inf
µ∈C
|W̃S(T − µS)A|.

Next we prove a nice relation between the translatable radius MS(T)A and DA(T,S). To do so we need
the following lemma, which follows from [25, Th. 2.2].

Lemma 3.1. Let T,S ∈ BA1/2 (H). Then the following are equivalent:
(i) There exists a sequence {xn} inH with ∥xn∥A = 1 such that ⟨Txn,Sxn⟩A → 0 and ∥Txn∥A → ∥T∥A.
(ii) ∥T − µS∥A ≥ ∥T∥A for all µ ∈ C.

Theorem 3.2. Let T,S ∈ BA1/2 (H) be such that 0 < σapp(A1/2S). Then

MS(T)A = DA(T,S) = inf
µ∈C
∥T − µS∥A.

Proof. There exists µ0 ∈ C such that DA(T,S) = ∥T − µ0S∥A. Therefore, for all µ ∈ Cwe get,

∥T − µ0S∥A ≤ ∥T − µS∥A = ∥(T − µ0S) + (µ0 − µ)S∥A.

Since MS(T)A =MS(T−µS)A for all scalars µ, so without loss of generality we assume that ∥T∥A ≤ ∥T−µS∥A
for all scalars µ. Therefore, it follows from Lemma 3.1 that there exists a sequence {xn} inH with ∥xn∥A = 1
such that ⟨Txn,Sxn⟩A → 0 and ∥Txn∥A → ∥T∥A. Now,

∥T∥A = lim
n→∞
∥Txn∥A

= lim
n→∞

{
∥Txn∥

2
A −
|⟨Txn,Sxn⟩A|

2

⟨Sxn,Sxn⟩A

}1/2

≤ MS(T)A.

Also, for any x ∈ H with ∥x∥A = 1, we have

∥T∥A ≥ ∥Tx∥A

≥

{
∥Tx∥2A −

|⟨Tx,Sx⟩A|2

⟨Sx,Sx⟩A

}1/2

.

This implies that ∥T∥A ≥ MS(T)A. Therefore, ∥T∥A = MS(T)A, that is, ∥T − µ0S∥A = MS(T − µ0S)A = MS(T)A.
This completes the proof.

Applying Theorem 3.2 we obtain the following corollary.

Corollary 3.3. Let T,S ∈ BA1/2 (H) be such that 0 < σapp(A1/2S). Then

M̃S(T)A ≥MS(T)A = DA(T,S) ≥ mS(T)A/∥S−1
∥A.
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Proof. For any x ∈ H with ∥x∥A = 1, we have |⟨Tx,Sx⟩A |
⟨Sx,Sx⟩A

≤
∥T∥A
∥Sx∥A

≤ ∥T∥A∥S−1
∥A for all T ∈ BA1/2 (A). Therefore,

|WS(T)A| ≤ ∥T∥A∥S−1
∥A for all T ∈ BA1/2 (A). Thus, |WS(T − µS)A| ≤ ∥T − µS∥A∥S−1

∥A for all µ ∈ C. Taking
the infimum over µ ∈ C, we get mS(T)A ≤ DA(T,S)∥S−1

∥A, which gives the last inequality. Now, let
Tx = ⟨Tx,Sx⟩A

⟨Sx,Sx⟩A
Sx + h and Tx = ⟨Tx,x⟩A

⟨Sx,x⟩A
Sx + h̃, where ⟨h,Sx⟩A = 0 and ⟨h̃, x⟩A = 0. Then we have,

h̃ = h +
{
⟨Tx,Sx⟩A
⟨Sx,Sx⟩A

−
⟨Tx, x⟩A
⟨Sx, x⟩A

}
Sx.

This implies that

∥h̃∥2A = ∥h∥
2
A +

∣∣∣∣∣ ⟨Tx,Sx⟩A
⟨Sx,Sx⟩A

−
⟨Tx, x⟩A
⟨Sx, x⟩A

∣∣∣∣∣2 ∥Sx∥2A.

Thus, ∥h̃∥A ≥ ∥h∥A, that is,
∥∥∥Tx − ⟨Tx,x⟩A

⟨Sx,x⟩A
Sx

∥∥∥
A
≥

∥∥∥Tx − ⟨Tx,Sx⟩A
⟨Sx,Sx⟩A

Sx
∥∥∥

A
, which implies M̃S(T)A ≥ MS(T)A. Also, it

follows from Theorem 3.2 that MS(T)A = DA(T,S), so we complete the proof.

Remark 3.4. For A = I, we get the inequality developed in [20] and for S = A = I, we get the inequality developed
in [16].

Finally, we obtain the following inequality which generalizes the inequality given in [20, Th. 2].

Proposition 3.5. Let T,S ∈ BA1/2 (H) be such that cA(S) ≥ r > 0. Then

MS(T)A = DA(T,S) ≥ r m̃S(T)A.

Proof. Let x ∈ H with ∥x∥A = 1. Then we have,
∣∣∣ ⟨Tx,x⟩A
⟨Sx,x⟩A

∣∣∣ ≤ ∥T∥A/r, that is, |W̃S(T)A| ≤ ∥T∥A/r for all operators

T ∈ BA1/2 (H). Therefore, r |W̃S(T − µS)A| ≤ ∥T − µS∥A for all scalars µ. Taking the infimum over µ ∈ C we
obtain that r m̃S(T)A ≤ DA(T,S). Also, from Theorem 3.2 we have MS(T)A = DA(T,S). This completes the
proof.
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