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Extensions of n-ary prime hyperideals via an n-ary multiplicative
subset in a Krasner (m,n)-hyperring
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Abstract. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative subset of R. The purpose
of this paper is to introduce the notion of n-ary S-prime hyperideals as a new expansion of n-ary prime
hyperideals. A hyperideal I of R disjoint with S is said to be an n-ary S-prime hyperideal if there exists s ∈ S
such that whenever 1(xn

1) ∈ I for all xn
1 ∈ R, then 1(s, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n. Several properties and

characterizations concerning n-ary S-prime hyperideals are presented. The stability of this new concept
with respect to various hyperring-theoretic constructions are studied. Furthermore, the concept of n-ary
S-primary hyperideals is introduced. Several properties of them are provided.

1. Introduction

Prime and primary ideals which are quite important in commutative rings have been studied by many
authors. In 2019, Hamed and Malek [17] introduced the notion of S-prime ideal which is a generalization
of prime ideals. Suppose that R is a commutative ring with identity and S ⊆ R a multiplicative subset. A
proper ideal P of R disjoint from S is called an S-prime of R if there exists an s ∈ S such that for all x, y ∈ R if
xy ∈ P, then sx ∈ P or sy ∈ P. In [25] , Massaoud defined and investigated the concept of S-primary ideals
of a commutative ring in a way that generalizes essentially all the results concerning primary ideals. A
proper ideal Q of R disjoint from S is called an S-primary of R if there exists an s ∈ S such that for all x, y ∈ R
if xy ∈ P, then sx ∈ P or sy ∈

√
Q. Furthermore, some results on S-primary ideals of a commutative ring

were studied by Visweswaran in [32].
Hyperstructures represent a natural extension of classical algebraic structures and they were defined

by the French mathematician F. Marty. In 1934, Marty [24] defined the concept of a hypergroup as a
generalization of groups during the 8th Congress of the Scandinavian Mathematicians. A comprehensive
review of the theory of hyperstructures can be found in [2, 10–12, 29, 33–35]. The simplest algebraic
hyperstructures which possess the properties of closure and associativity are called semihypergroups. n-
ary semigroups and n-ary groups are algebras with one n-ary operation which is associative and invertible
in a generalized sense. The notion of investigations of n-ary algebras goes back to Kasner’s lecture [19] at a
scientific meeting in 1904. In 1928, Dorente wrote the first paper concerning the theory of n-ary groups [15].
Later on, Crombez and Timm [8, 9] defined and described the notion of the (m,n)-rings and their quotient
structures. Mirvakili and Davvaz [20] defined (m,n)-hyperrings and obtained several results in this respect.
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In [13], they introduced and illustrated a generalization of the notion of a hypergroup in the sense of Marty
and a generalization of an n-ary group, which is called n-ary hypergroup. The n-ary structures has been
studied in [20–23, 30]. Mirvakili and Davvaz [27] defined (m,n)-hyperrings and obtained several results in
this respect.

It was Krasner, who introduced one important class of hyperrings, where the addition is a hyperop-
eration, while the multiplication is an ordinary binary operation, which is called Krasner hyperring. In
[26], a generalization of the Krasner hyperrings, which is a subclass of (m,n)-hyperrings, was defined by
Mirvakili and Davvaz. It is called Krasner (m,n)-hyperring. Ameri and Norouzi in [1] introduced some
important hyperideals such as Jacobson radical, n-ary prime and primary hyperideals, nilradical, and n-ary
multiplicative subsets of Krasner (m,n)-hyperrings. Afterward, the notions of (k,n)-absorbing hyperideals
and (k,n)-absorbing primary hyperideals were studied by Hila et al. [18]. Norouzi et al. proposed and
analysed a new definition for normal hyperideals in Krasner (m,n)-hyperrings, with respect to that one
given in [26] and they showed that these hyperideals correspond to strongly regular relations [28]. Asadi
and Ameri introduced and studied direct limit of a direct system in the category of Krasner (m,n)-hyperrigs
[7]. Dongsheng defined the notion of δ-primary ideals in a commutative ring where δ is a function that
assigns to each ideal I an ideal δ(I) of the same ring [14]. Moreover, in [16] he and his colleague investigated
2-absorbing δ-primary ideals which unify 2-absorbing ideals and 2-absorbing primary ideals. Ozel Ay et al.
generalized the notion of δ-primary on Krasner hyperrings [31]. The concept of δ-primary hyperideals in
Krasner (m,n)-hyperrings, which unifies the prime and primary hyperideals under one frame, was defined
in [4].

In this paper, the author aims to complete this circle of ideas. Motivated by the research works on S-
prime ideals and S-primary ideals of commutative rings, the notions of n-ary S-prime and n-ary S-primary
hyperideals are defined and investigated in a commutative Krasner (m,n)-hyperring.

2. Preliminaries

Recall first the definitions and basic terms from the hyperrings theory.
Let H be a non-empty set and P∗(H) be the set of all the non-empty subsets of H. Then the mapping f
from Hn into P∗(H) is called an n-ary hyperoperation and the algebraic system (H, f ) is called an n-ary
hypergroupoid. Define f (An

1) = f (A1, ...,An) =
⋃
{ f (xn

1) | xi ∈ Ai, i = 1, ...,n} for non-empty subsets A1, ...,An

of H. The sequence xi, xi+1, ..., x j will be denoted by x j
i and this is the empty symbol for j < i. Using this

notation, f (x1, ..., xi, yi+1, ..., y j, z j+1, ..., zn) will be written as f (xi
1, y

j
i+1, z

n
j+1). The expression will be written in

the form f (xi
1, y

( j−i), zn
j+1) if yi+1 = ... = y j = y. If for every 1 ≤ i < j ≤ n and all x1, x2, ..., x2n−1 ∈ H,

f
(
xi−1

1 , f (xn+i−1
i ), x2n−1

n+i

)
= f

(
x j−1

1 , f (xn+ j−1
j ), x2n−1

n+ j

)
then the n-ary hyperoperation f is called associative. An n-ary hypergroupoid with the associative n-ary
hyperoperation is called an n-ary semihypergroup. An n-ary hypergroupoid (H, f ) in which the equation
b ∈ f (ai−1

1 , xi, an
i+1) has a solution xi ∈ H for every ai−1

1 , a
n
i+1, b ∈ H and 1 ≤ i ≤ n, is called an n-ary

quasihypergroup, when (H, f ) is an n-ary semihypergroup, (H, f ) is called an n-ary hypergroup. An n-ary
hypergroupoid (H, f ) is commutative if for all σ ∈ Sn, the group of all permutations of {1, 2, 3, ...,n}, and for
every an

1 ∈ H we have f (a1, ..., an) = f (aσ(1), ..., aσ(n)). If an
1 ∈ H, then (aσ(1), ..., aσ(n)) is denoted by aσ(n)

σ(1) . If f is an
n-ary hyperoperation and t = l(n − 1) + 1, then t-ary hyperoperation f(l) is given by

f(l)(x
l(n−1)+1
1 ) = f

(
f (..., f ( f (xn

1), x2n−1
n+1 ), ...), xl(n−1)+1

(l−1)(n−1)+1

)
.

Definition 2.1. [26] A non-empty subset K of an n-ary hypergroup (H, f ) is said to be an n-ary subhypergroup of H
if (K, f ) is an n-ary hypergroup. An element e ∈ H is called a scalar neutral element if x = f (e(i−1), x, e(n−i)), for every
1 ≤ i ≤ n and for every x ∈ H.

An element 0 of an n-ary semihypergroup (H, 1) is called a zero element if for every xn
2 ∈ H, 1(0, xn

2) = 1(x2, 0, xn
3) =

... = 1(xn
2 , 0) = 0. If 0 and 0′ are two zero elements, then 0 = 1(0′, 0(n−1)) = 0′ and so the zero element is unique.
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Definition 2.2. [20] Let (H, f ) be a n-ary hypergroup. (H, f ) is called a canonical n-ary hypergroup if:
(1) There exists a unique e ∈ H, such that for every x ∈ H, f (x, e(n−1)) = x;
(2) For all x ∈ H there exists a unique x−1

∈ H, such that e ∈ f (x, x−1, e(n−2));
(3) If x ∈ f (xn

1), then for all i, xi ∈ f (x, x−1, ..., x−1
i−1, x

−1
i+1, ..., x

−1
n ).

e is said to be the scalar identity of (H, f ) and x−1 is the inverse of x. Notice that the inverse of e is e.

Definition 2.3. [26] (R, f , 1), or simply R, is said to be a Krasner (m,n)-hyperring if:
(1) (R, f ) is a canonical m-ary hypergroup;
(2) (R, 1) is a n-ary semigroup;
(3) The n-ary operation 1 is distributive with respect to the m-ary hyperoperation f , i.e., for every ai−1

1 , a
n
i+1, x

m
1 ∈ R,

and 1 ≤ i ≤ n, 1
(
ai−1

1 , f (xm
1 ), an

i+1

)
= f

(
1(ai−1

1 , x1, an
i+1), ..., 1(ai−1

1 , xm, an
i+1)

)
;

(4) 0 is a zero element (absorbing element) of the n-ary operation 1, i.e., for every xn
2 ∈ R , 1(0, xn

2) = 1(x2, 0, xn
3) =

... = 1(xn
2 , 0) = 0.

Throughout this paper, (R, f , 1) denotes a commutative Krasner (m,n)-hyperring.
A non-empty subset S of R is called a subhyperring of R if (S, f , 1) is a Krasner (m,n)-hyperring. The non-

empty subset I of (R, f , 1) is a hyperideal if (I, f ) is an m-ary subhypergroup of (R, f ) and 1(xi−1
1 , I, x

n
i+1) ⊆ I,

for every xn
1 ∈ R and 1 ≤ i ≤ n.

Definition 2.4. [1] Let x be an element in a Krasner (m,n)-hyperring R. The hyperideal generated by x is denoted
by < x > and defined as < x >= 1(R, x, 1(n−2)) = {1(r, x, 1(n−2)) | r ∈ R}.

Definition 2.5. [1] An element x ∈ R is said to be invertible if there exists y ∈ R such that 1R = 1(x, y, 1
(n−2)
R ). Also,

the subset U of R is invertible if and only if every element of U is invertible.

Definition 2.6. [1] Let P , R be a hyperideal of a Krasner (m,n)-hyperring R. P is a prime hyperideal if for
hyperideals X1, ...,Xn of R, 1(Xn

1 ) ⊆ P implies that Xi ⊆ P for some 1 ≤ i ≤ n.

Lemma 2.7. (Lemma 4.5 in [1]) Let P , R be a hyperideal of a Krasner (m,n)-hyperring R. Then P is a prime
hyperideal if for all xn

1 ∈ R, 1(xn
1) ∈ P implies that x1 ∈ P or ... or xn ∈ P.

Definition 2.8. [1] Let I be a hyperideal in a Krasner (m,n)-hyperring R with scalar identity. The radical (or

nilradical) of I, denoted by
√

I
(m,n)

is the hyperideal
⋂

P, where the intersection is taken over all prime hyperideals P

which contain I. If the set of all prime hyperideals containing I is empty, then
√

I
(m,n)

is defined to be R.

Ameri and Norouzi showed that if x ∈
√

I
(m,n)

then there exists t ∈ N such that 1(x(t), 1(n−t)
R ) ∈ I for t ≤ n, or

1(l)(x(t)) ∈ I for t = l(n − 1) + 1 [1].

Definition 2.9. [1] Let I be a proper hyperideal of a Krasner (m,n)-hyperring R with the scalar identity 1R. I is a

primary hyperideal if 1(xn
1) ∈ I and xi < I implies that 1(xi−1

1 , 1R, xn
i+1) ∈

√
I

(m,n)
for some 1 ≤ i ≤ n.

If I is a primary hyperideal in a Krasner (m,n)-hyperring R with the scalar identity 1R, then
√

I
(m,n)

is prime.
(Theorem 4.28 in [1])

Definition 2.10. [1] Let S be a non-empty subset of a Krasner (m,n)-hyperring R. S is called an n-ary multiplicative
if 1(sn

1) ∈ S for s1, ..., sn ∈ S.

Definition 2.11. [26] Let (R1, f1, 11) and (R2, f2, 12) be two Krasner (m,n)-hyperrings. A mapping h : R1 −→ R2 is
called a homomorphism if for all xm

1 ∈ R1 and yn
1 ∈ R1 we have

h( f1(x1, ..., xm)) = f2(h(x1), ..., h(xm))
h(11(y1, ..., yn)) = 12(h(y1), ..., h(yn)).



M. Anbarloei / Filomat 37:12 (2023), 3857–3869 3860

3. n-Ary S-prime hyperideals

In this section, the concept of n-ary S-prime hyperideals is introduced in a Krasner (m,n)-hyperring R
such that S is an n-ary multiplicative subset of R. The following definition constitutes the S-version of n-ary
prime hyperideals.

Definition 3.1. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be a hyperideal of R
with I ∩ S = ∅. I refers to an n-ary S-prime hyperideal if there exists an s ∈ S such that for all xn

1 ∈ R with 1(xn
1) ∈ I,

we get 1(s, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n.

Example 3.2. The set R = {0, 1, 2} with the following 3-ary hyperoperation f and 3-ary operation 1 is a Krasner
(3, 3)-hyperring such that f and 1 are commutative.

f (0, 0, 0) = 0, f (0, 0, 1) = 1, f (0, 1, 1) = 1, f (1, 1, 1) = 1, f (1, 1, 2) = R,

f (0, 1, 2) = R, f (0, 0, 2) = 2, f (0, 2, 2) = 2, f (1, 2, 2) = R, f (2, 2, 2) = 2,

1(1, 1, 1) = 1, 1(1, 1, 2) = 1(1, 2, 2) = 1(2, 2, 2) = 2,

and for x1, x2 ∈ R, 1(0, x1, x2) = 0. Consider 3-ary multiplicative subset S = {1, 2} of Krasner (3, 3)-hyperring
(R, f , 1). Then hyperideal P = {0, 2} is a 3-ary S-prime hyperideal of R.

The following example shows that an n-ary S-prime hyperideal may not be an n-ary prime hyperideal of R.

Example 3.3. The set R = {0, 1, 2, 3} with following 2-hyperoperation ” ⊕ ” is a canonical 2-ary hypergroup.

⊕ 0 1 2 3
0 0 1 2 3
1 1 A 3 B
2 2 3 0 1
3 3 B 1 A

In which A = {0, 1} and B = {2, 3}. Define a 4-ary operation 1 on R as follows:

1(a4
1) =

2 if a1, a2, a3, a4 ∈ B
0 otherwise.

It follows that (R,⊕, 1) is a Krasner (2,4)-hyperring. S = {2, 3} is a 4-ary multiplicative subset of R. In the hyperring,
I = {0} is a 4-ary S-prime hyperideal of R but it is not prime, because 1(1, 2, 2, 3) = 0 ∈ I while 1, 2, 3 < I.

The first theorem gives a characterization of n-ary S-prime hyperideals.

Theorem 3.4. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be a hyperideal of R with
I ∩ S = ∅. Then I is n-ary S-prime if and only if (I : s) = {r ∈ R | 1(r, s, 1(n−2)) ∈ I} is an n-ary prime hyperideal of R
for some s ∈ S.

Proof. =⇒ Let I be is an n-ary S-prime hyperideal of R. Then there exists s ∈ S such that for all xn
1 ∈ R

with 1(xn
1) ∈ I, we get 1(s, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n. Suppose that 1(yn

1) ∈ (I : s) for yn
1 ∈ R.

Then 1(s, 1(yn
1), 1(n−2)) = 1(1(s, y1, 1(n−2)), yn

2) ∈ I and so 1(s, 1(s, y1, 1(n−2)), 1(n−2)) = 1(s2, y1, 1(n−3)) ∈ I or
1(s, yi, 1(n−2)) ∈ I for some 2 ≤ i ≤ n. Since I∩S = ∅, then we conclude that 1(s, y1, 1(n−2)) ∈ I or 1(s, yi, 1(n−2)) ∈ I
for some 2 ≤ i ≤ n. So, 1(s, yi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n which implies yi ∈ (I : s) for some 1 ≤ i ≤ n.
Consequently, (I : s) is an n-ary prime hyperideal of R.
⇐= Let (I : s) be an n-ary prime hyperideal of R for some s ∈ S. Suppose that 1(xn

1) ∈ I for xn
1 ∈ R. Since

I ⊆ (I : s), then 1(xn
1) ∈ (I : s). Since (I : s) is an n-ary prime hyperideal of R, then xi ∈ (I : s) for some 1 ≤ i ≤ n.

This implies that 1(s, xi, 1(n−2)) ∈ I) for some 1 ≤ i ≤ n which means I is an n-ary S-prime hyperideal of R.
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Theorem 3.5. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and R ⊆ G be an extension of
R. If I is an n-ary S-prime hyperideal of G, then I ∩ R is an n-ary S-prime hyperideal of R.

Proof. Let I be an n-ary S-prime hyperideal of G. Then there exist s ∈ S such that for all xn
1 ∈ R with 1(xn

1) ∈ I,
we get 1(s, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n. Let 1(xn

1) ∈ I ∩ R for xn
1 ∈ R. Since 1(xn

1) ∈ I, then 1(s, xi, 1(n−2)) ∈ I
for some 1 ≤ i ≤ n which means 1(s, xi, 1(n−2)) ∈ I ∩ R. Thus, I ∩ R is an n-ary S-prime hyperideal of R.

Theorem 3.6. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be a hyperideal of R. If
I ⊆ ∪n

i=1Ii for some n-ary S-prime hyperideals In
1 of R, then there exists s ∈ S such that 1(s, I, 1(n−2)) ⊆ Pi for some

1 ≤ i ≤ n.

Proof. Let I ⊆ ∪n
i=1Ii for some n-ary S-prime hyperideals In

1 of R. For each 1 ≤ i ≤ n, we get si ∈ S such that
(Ii : si) is an n-ary prime hyperideal of R, by Theorem 3.4. Since I ⊆ ∪n

i=1Ii ⊆ ∪
n
i=1(Ii : si), we have I ⊆ (Ii : si)

for some 1 ≤ i ≤ n, by Theorem 5.1 in [5]. Thus 1(si, I, 1(n−2)) ⊆ Ii.

Theorem 3.7. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be a hyperideal of R
with I ∩ S = ∅. Then I is n-ary S-prime if and only if there exists s ∈ S, for all hyperideals In

1 of R, if 1(In
1 ) ⊆ I, then

1(s, Ii, 1(n−1)) ⊆ I for some 1 ≤ i ≤ n.

Proof. =⇒ Let I be an n-ary S-prime hyperideal of R. Then there exists s ∈ S such that for all xn
1 ∈ R with

1(xn
1) ∈ I we have 1(s, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n. Let for some hyperideals In

1 of R with 1(In
1 ) ∈ I we

have 1(s, Ii, 1(n−2)) ⊈ I for all 1 ≤ i ≤ n. This means 1(s, ai, 1(n−2)) < I for some ai ∈ Ii and 1 ≤ i ≤ n which is a
contradiction, since I is an n-ary S-prime hyperideal of R and 1(an

1) ∈ 1(In
1 ) ⊆ I.

⇐= Let 1(xn
1) ∈ I for xn

1 ∈ R. Then 1(⟨x1⟩, · · · , ⟨xn⟩) ⊆ I. Hence we have 1(s, ⟨xi⟩, 1(n−2)) ⊆ I for some 1 ≤ i ≤ n
which implies 1(s, xi, 1(n−2)) ∈ I. Thus, I is an n-ary S-prime hyperideal of R.

In view of Theorem 3.7, the following result is obtained.

Corollary 3.8. Let I be a proper hyperideal of a Krasner (m,n)-hyperring R. Then I is an n-ary prime hyperideal if
and only if for all hyperideals In

1 of R, If 1(In
1 ) ⊆ I, then Ii ⊆ I for some 1 ≤ i ≤ n.

Proof. Consider S = {1}. Then we are done, by Theorem 3.7.

Theorem 3.9. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be an n-ary S-prime
hyperideal of R. If J be a hyperideal of R with J ⊆ I, then 1(s,

√
J

(m,n)
, 1(n−2)) ⊆ I for some s ∈ S.

Proof. Let a ∈
√

J
(m,n)

. Then there exists t ∈ N such that 1(a(t), 1(n−t)) ∈ J for t ≤ n or 1(l)(a(t)) ∈ I for
t = l(n − 1) + 1. If 1(a(t), 1(n−t)) ∈ J ⊆ I, then 1(⟨a⟩(t), 1(n−t)) ⊆ I. By Theorem 3.7, we get 1(s, ⟨a⟩, 1(n−2)) ⊆ I for
some s ∈ S which implies 1(s, a, 1(n−2)) ∈ I. Consequently, 1(s,

√
J

(m,n)
, 1(n−2)) ⊆ I. If t = l(n − 1) + 1, then by

using a similar argument, one can easily complete the proof.

Theorem 3.10. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and In
1 be n-ary S-prime

hyperideals of R. Then there exists s ∈ S such that 1(s,
√
∩n

i=1Ii
(m,n)
, 1(n−2)) ⊆ ∩n

i=1Ii.

Proof. Let In
1 be n-ary S-prime hyperideals of R. Then for each 1 ≤ i ≤ n we have si ∈ S such that for all xn

1 of

R, if 1(xn
1) ∈ Ii, then 1(si, x j, 1(n−2)) ∈ Ii for some 1 ≤ j ≤ n. By Theorem 3.9, we get 1(si,

√
Ii

(m,n)
, 1(n−2)) ⊆ Ii for

each 1 ≤ i ≤ n. Put s = 1(sn
1). Hence we obtain 1(s,

√
∩n

i=1Ii
(m,n)
, 1(n−2)) = 1(s,∩n

i=1

√
Ii

(m,n)
, 1(n−2)) ⊆ ∩n

i=1Ii.

Theorem 3.11. Let S and T be two n-ary multiplicative subsets of a Krasner (m,n)-hyperring R with S ⊆ T such
that for each t ∈ T, there is t′ ∈ T with 1(t, t′(n−1)) ∈ S. If I is an n-ary T-prime hyperideal of R, then I is an n-ary
S-prime hyperideal of R.



M. Anbarloei / Filomat 37:12 (2023), 3857–3869 3862

Proof. Let 1(xn
1) ∈ I for some xn

1 ∈ R. Since I is an n-ary T-prime hyperideal of R, then there exists t ∈ T such
that 1(t, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n. By the hypothesis, there is t′ ∈ T such that 1(t, t′(n−1)) ∈ S. Put
s = 1(t, t′(n−1)). Hence we have 1(s, xi, 1(n−2)) = 1(1(t, t′(n−1)), xi, 1(n−2)) = 1(1(t′(n−1), 1), 1(t, xi, 1(n−2)), 1(n−2)) ∈ I,
as required.

Theorem 3.12. Let (R1, f1, 11), (R2, f2, 12) be two Krasner (m,n)-hyperrings and h : R1 −→ R2 be a homomorphism
such that 0 < h(S). If I2 is an n-ary h(S)-prime hyperideal of R2, then h−1(I2) is an n-ary S-prime hyperideal of R1.

Proof. Suppose that I2 is an n-ary h(S)-prime hyperideal of R2. Then there exists s ∈ S such that for all
yn

1 ∈ R2 with 12(yn
1) ∈ I2 we have 12(h(s), yi, 1(n−2)) ∈ I2 for some 1 ≤ i ≤ n. Put I1 = h−1(I2). It is easy

to see that I1 ∩ S = ∅. Let 11(xn
1) ∈ I1 for xn

1 ∈ R1. Then h(11(xn
1)) = 12(h(x1), ..., h(xn)) ∈ I2. So, we have

12(h(s), h(xi), 1(n−2)) = h(11(s, xi, 1(n−2))) ∈ I2 for some 1 ≤ i ≤ n which implies 11(s, xi, 1(n−2)) ∈ h−1(I2) = I1.
Consequently, h−1(I2) is an n-ary S-prime hyperideal of R1.

The concept of Krasner (m,n)-hyperring of fractions was introduced in [6].

Theorem 3.13. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative subset of R with 1 ∈ S. If I is
an n-ary S-prime hyperideal of R with I ∩ S = ∅, then S−1I is an n-ary prime hyperideal of S−1R.

Proof. Let G( a1
s1
, ..., an

sn
) ∈ S−1I for a1

s1
, ..., an

sn
∈ S−1R. Then we have

1(an
1 )

1(sn
1 ) ∈ S−1I. It implies that there exists t ∈ S

such that 1(t, 1(an
1), 1(n−2)) ∈ I. Since I is an n-ary S-prime hyperideal of R and I ∩ S = ∅, then there exists

s ∈ S such that 1(s, ai, 1(n−2)) ∈ I or 1(s, 1(t, ai, 1(n−2)), 1(n−2)) = 1(s, t, ai, 1(n−3)) ∈ I for some 1 ≤ i ≤ n. Hence

we conclude that G( ai
si
, 1

1
(n−1)

) = 1(ai,1(n−1))
1(si,1(n−1))) =

1(s,ai,1(n−2))
1(s,si,1(n−2)) ∈ S−1I or G( ai

si
, 1

1
(n−1)

) = 1(ai,1(n−1))
1(si,1(n−1)) =

1(s,t,ai,1(n−3))
1(s,t,si,1(n−2)) ∈ S−1I for

some 1 ≤ i ≤ n . Thus S−1I is an n-ary prime hyperideal of S−1R.

Theorem 3.14. Let R be a Krasner (m,n)-hyperring, S be an n-ary multiplicative subset of R with 1 ∈ S and I be a
hyperideal of R with I ∩ S = ∅ . If S−1I is an n-ary prime hyperideal of S−1R and S−1I ∩ R = (I : s) for some s ∈ S,
then I is an n-ary S-prime hyperideal of R.

Proof. Let S−1I be an n-ary prime hyperideal of S−1R and S−1I ∩ R = (I : s) for some s ∈ S. Assume that
1(an

1) ∈ I for some an
1 ∈ R. Then we get G( a1

1 , · · · ,
an
1 ) ∈ S−1I. Since S−1I is an n-ary prime hyperideal

of S−1R, we obtain ai
1 ∈ S−1I for some 1 ≤ i ≤ n which implies 1(t, ai, 1(n−2)) ∈ I for some t ∈ S. Hence

ai =
1(t,ai,1(n−2))
1(t,1(n−1)) ∈ S−1I. This means ai ∈ (I : s) for some s ∈ S. Therefore we have 1(s, ai, 1(n−2)) ∈ I. Thus we

conclude that I is an n-ary S-prime hyperideal of R.

Let J be a hyperideal of a Krasner (m,n)-hyperring (R, f , 1). Then the set

R/J = { f (xi−1
1 , J, x

m
i+1) | xi−1

1 , x
m
i+1 ∈ R}

endowed with m-ary hyperoperation f which for all x1m
11 , ..., x

mm
m1 ∈ R

f
(

f (x1(i−1)
11 , J, x1m

1(i+1)), ..., f (xm(i−1)
m1 , J, xmm

m(i+1))
)

= f
(

f (xm1
11 ), ..., f (xm(i−1)

1(i−1) ), J, f (xm(i+1)
1(i+1) ), ..., f (xmm

1m )
)

and with n-ary hyperoperation 1which for all x1m
11 , ..., x

nm
n1 ∈ R

1

(
f (x1(i−1)

11 , J, x1m
1(i+1)), ..., f (xn(i−1)

n1 , J, xnm
n(i+1))

)
= f

(
1(xn1

11), ..., 1(xn(i−1)
1(i−1)), J, 1(x

n(i+1)
1(i+1)), ..., f (xnm

1m)
)

construct a Krasner (m,n)-hyperring, and (R/J, f , 1) is called the quotient Krasner (m,n)-hyperring of R
by J [1]. Now, it is determined when the hyperideal I/J is n-ary S̄-prime in R/J.



M. Anbarloei / Filomat 37:12 (2023), 3857–3869 3863

Theorem 3.15. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and let I and J be two
hyperideals of R such that J ⊆ I. Let J ∩ S = ∅ and I/J ∩ S̄ = ∅ with S̄ = { f (si−1

1 , J, s
n
i+1) | si−1

1 , s
n
i+1 ∈ S}. If I is an

n-ary S-prime hyperideal of R, then I/J is an n-ary S̄-prime hyperideal of R/J.

Proof. Let I be an n-ary S-prime hyperideal of R. Then there exists some s ∈ S such that if 1(xn
1) ∈ I for

xn
1 ∈ R, then we get 1(s, xi, 1(n−2)) ∈ I for some 1 ≤ i ≤ n. Let

1

(
f (x1(i−1)

11 , J, x1m
1(i+1)), ..., f (xn(i−1)

n1 , J, xnm
n(i+1))

)
∈ I/J

for some f (x1(i−1)
11 , J, x1m

1(i+1)), ..., f (xn(i−1)
n1 , J, xnm

n(i+1)) ∈ R/J.
This means

f
(
1(xn1

11), ..., 1(xn(i−1)
1(i−1)), J, 1(x

n(i+1)
1(i+1)), ..., 1(x

nm
1m)

)
∈ I/J.

Then

f
(
1(xn1

11), ..., 1(xn(i−1)
1(i−1)), 0, 1(x

n(i+1)
1(i+1)), ..., 1(x

nm
1m)

)
⊆ I

which implies

1

(
f (x1(i−1)

11 , 0, x1m
1(i+1)), ..., f (xn(i−1)

n1 , 0, xnm
n(i+1))

)
⊆ I.

Since I is an n-ary S-prime hyperideal of R, then for some 1 ≤ j ≤ n, we obtain

1

(
s, f (x j(i−1)

j1 , 0, x jm
j(i+1)), 1

n−2
)
⊆ I.

Therefore

f
(
1(s, f (x j(i−1)

j1 , 0, x jm
j(i+1)), 1

n−2), J, 0(m−2)
)
∈ I/J

and so

f
(
1(1(s, 1(n−2)), f (x j(i−1)

j1 , 0, x jm
j(i+1)), 1

n−2), J, 0(m−2)
)
∈ I/J.

Thus we conclude that

1

(
f (s, J, 1(n−2)), f (x j(i−1)

j1 , J, x jm
j(i+1)), 1

(n−2)
R/J

)
∈ I/J.

Consequently, I/J is an n-ary S̄-prime hyperideal of R/J.

Suppose that I is a normal hyperideal of Krasner (m,n)-hyperring (R, f , 1). Then the set of all equivalence
classes [R : I∗] = {I∗[x] | x ∈ R} is a Krasner (m,n)-hyperring with the m-ary hyperoperation f/I and the n-ary
operation 1/I, defined as follows:

f/I(I∗[x1], · · · , I∗[xm]) = {I∗[z] | z ∈ f (I∗[x1], · · · , I∗[xm])}, ∀xm
1 ∈ R

1/I(I∗[x1], · · · , I∗[xn]) = I∗[1(xn
1)], ∀xn

1 ∈ R

(for more details refer to [26]).

Theorem 3.16. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring (R, f , 1) and let I be a normal
hyperideal of R. If J is an n-ary S-prime hyperideal of R such that I ⊆ J, then [J : I∗] is an n-ary [S : I∗]-prime
hyperideal of [R : I∗].

Proof. First of all, notice that S ∩ J = ∅ if and only if [S : I∗] ∩ [J : I∗] = ∅. Let 1/I(I∗[x1], · · · , I∗[xn]) ∈ [J : I∗]
for some xn

1 ∈ R. Then I∗[1(xn
1)] ∈ [J : I∗]. This means I∗[1(xn

1)] ⊆ J. So
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I∗[1(xn
1)] = f

(
I, 1(xn

1), 0(m−2)
)
= f

(
I, 1(xn

1), 1(0(n))(m−2)
)

= 1
(

f (I, x1, 0(m−2)), · · · , f (I, xn, 0(m−2))
)
⊆ J.

Since J is an n-ary S-prime hyperideal of R, then there exists s ∈ S such that 1(s, f (I, xi, 0(m−2)), 1(n−2)) ⊆ J for
some 1 ≤ i ≤ n which implies

f
(
I, 1(s, xi, 1(n−2)), 0(m−2)

)
⊆ J.

Hence I∗[1(s, xi, 1(n−2))] ∈ [J : I∗] which means 1/I(I∗[s], I∗[xi], I∗[1](n−2)) ∈ [J : I∗]. Thus [J : I∗] is an n-ary
[S : I∗]-prime hyperideal of [R : I∗].

Let (R1, f1, 11) and (R2, f2, 12) be two Krasner (m,n)-hyperrings such that 1R1 and 1R2 be scalar identitis of R1
and R2, respectively. Then the (m,n)-hyperring (R1 ×R2, f1 × f2, 11 × 12) is defined by m-ary hyperoperation
f = f1 × f2 and n-ary operation 1 = 11 × 12, as follows:

f1 × f2((a1, b1), · · · , (am, bm)) = {(a, b) | a ∈ f1(am
1 ), b ∈ f2(bm

1 )}

11 × 12((x1, y1), · · · , (xn, yn)) = (11(xn
1), 12(yn

1)),

for all am
1 , x

n
1 ∈ R1 and bm

1 , y
n
1 ∈ R2 [3]. Suppose that S = S1×S2 such that S1 and S2 are n-ary multiplicative

subsets of R1 and R2, respectively. Assume that I1 is an n-ary S1-prime hyperideal of R1. It is easy to verify
that (I1 × R2) ∩ S = ∅ ⇐⇒ I1 × S1 = ∅. Next theorem determines the n-ary S-prime hyperideals in the
product of two, and hence any finite number of, Krasner (m,n)-hyperrings.

Theorem 3.17. Let (R1, f1, 11) and (R2, f2, 12) be two Krasner (m,n)-hyperrings such that 1R1 and 1R2 be two scalar
identities of R1 and R2, respectively. Suppose that S = S1 × S2 such that S1 and S2 are n-ary multiplicative subsets
of R1 and R2, respectively. Then I1 is an n-ary S1-prime hyperideal of R1 if and only if I1 × R2 is an n-ary S-prime
hyperideal of R1 × R2.

Proof. =⇒ Assume that I1 is an n-ary S1-prime hyperideal of R1. Let 11 × 12((x1, y1), · · · , (xn, yn)) ∈ I1 × R2
for some xn

1 ∈ R1 and yn
1 ∈ R2. Then we get 11(xn

1) ∈ I1. By the hypothesis, there exists s1 ∈ S1 such that
11(s1, xi, 1(n−2)) ∈ I1 for some 1 ≤ i ≤ n. Then we have 11 × 12((s1, 1R2 ), (xi, yi), (1R1 , 1R2 )(n−2)) ∈ I1 × R2. Thus
we conclude that I1 × R2 is an n-ary S-prime hyperideal of R1 × R2.
⇐= Let I1 × R2 be an n-ary S-prime hyperideal of R1 × R2. Assume that 11(xn

1) ∈ I1 for some xn
1 ∈ R1. Then

11 × 12((x1, 1R2 ), · · · (xn, 1R2 )) ∈ I1 × R2. Since I1 × R2 is an n-ary S-prime hyperideal of R1 × R2, then there
exists an element (s1, s2) in S such that 11 × 12((s1, s2), (xi, 1R2 ), (1R1 , 1R2 )(n−2)) ∈ I1 ×R2 for some 1 ≤ i ≤ n. This
means 11(s1, xi, 1

(n−2)
R1

) ∈ I1. Consequently, I1 is an n-ary S1-prime hyperideal of R1.

Now, the following result obtained by the previous theorem is given.

Corollary 3.18. Let (Ri, fi, 1i) be a Krasner (m,n)-hyperring for each 1 ≤ i ≤ t such that 1Ri is scalar identity of Ri.
Assume that S = S1 × · · · × St such that Si is an n-ary multiplicative subset of Ri for each 1 ≤ i ≤ t. If Ii is an n-ary
Si-prime hyperideal of Ri for some 1 ≤ i ≤ t, then R1 × · · · ×Ri−1 × Ii ×Ri+1 × · · · ×Rt is an n-ary S-prime hyperideal
of R1 × · · · × Rt.

4. n-Ary S-primary hyperideals

The aim of this section is to define the notion of n-ary S-primary hyperideals in a Krasner (m,n)-
hyperring. The overall framework of the structure is then explained.

Definition 4.1. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be a hyperideal of R
with I∩S = ∅. I refers to an n-ary S-primary hyperideal if there exists an s ∈ S such that for all xn

1 ∈ R with 1(xn
1) ∈ I,

we have 1(s, xi, 1(n−2)) ∈ I or 1(xi−1
1 , s, x

n
i+1) ∈

√
I

(m,n)
.
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Example 4.2. In Example 3.2, the hyperideal P = {0} is a 3-ary S-primary hyperideal of R.

It is clear that any n-ary S-prime hyperideal of a Krasner (m,n)-hyperring R is an n-ary S-primary hyperideal
of R. The converse in general is not true. The following is an example of an n-ary S-primary hyperideal
that is not an n-ary S-prime hyperideal.

Example 4.3. Suppose that G = [0, 1] and define a 2-ary hyperoperation ” ⊞ ” on G as follows:

α ⊞ β =

{
{max{α, β}}, if α , β

[0,α], if α = β.

Let ” ·” is the usual multiplication on real numbers and S = {1}. In the Krasner (2, 3)-hyperring G, the hyperideal
I = [0, 0.5] is a 3-ary S-primary hyperideal of G.

Example 4.4. Consider the multiplicative group of unitsZ∗12 = {1, 5, 7, 11} ofZ12 = {0, 1, 2, ..., 11}. The construction
Z12/Z∗12 is a Krasner hyperring. The set S = {Z12, 3Z12, 9Z12} is a 3-ary multiplicative subset of Z12/Z∗12. We can
observe that the hyperideal I = {0Z12, 4Z12} with

√
I = {0Z∗12, 2Z

∗

12, 4Z
∗

12, 6Z
∗

12} is a 3-ary S-primary hyperideal of
Z12/Z∗12. The hyperideal I is not a 3-ary S-prime hyperideal of Z12/Z∗12. Because, 1((2Z∗12)2, 3Z∗12) ∈ I but neither
1(2Z∗12, s, 1) ∈ I nor 1(3Z∗12, s, 1) ∈ I for all s ∈ S.

The following is a direct consequence and can be proved easily and so the proof is omited.

Theorem 4.5. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R such that S ⊆ U(R) and I be
a hyperideal of R. Then I is an n-ary S-primary hyperideal of R if and only if I is an n-ary primary hyperideal of R.

The following theorem offers a characterization of n-ary S-primary hyperideals.

Theorem 4.6. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be a hyperideal of R with
I ∩ S = ∅. Then I is an n-ary S-primary hyperideal of R if and only if (I : s) = {x ∈ R | 1(x, s, 1(n−2)) ∈ I} is an n-ary
primary hyperideal of R for some s ∈ S.

Proof. =⇒ Let I be an n-ary S-primary hyperideal of R. Then there exists s ∈ S such that if 1(an
1) ∈ I, then

1(s, ai, 1(n−2)) ∈ I or 1(ai−1
1 , s, a

n
i+1) ∈

√
I

(m,n)
. Now we show (I : s) = {x ∈ R | 1(s, x, 1(n−2)) ∈ I} is an n-ary

primary hyperideal of R. Suppose that 1(xn
1) ∈ (I : s) for some xn

1 ∈ R. This means 1(1(xn
1), s, 1(n−2)) =

1(xi−1
1 , 1(s, xi, 1(n−2)), xn

i+1) ∈ I. Then we have 1(s, 1(s, xi, 1(n−2)), 1(n−2)) = 1(s(2), xi, 1(n−3)) ∈ I or 1(xi−1
1 , s, x

n
i+1) ∈

√
I

(m,n)
. In the first case, we have 1(s, xi, 1(n−2)) ∈ I or 1(s(3), 1(n−3)) ∈

√
I

(m,n)
. From 1(s(3), 1(n−3)) ∈

√
I

(m,n)
, it

follows that there exists t ∈ N such that 1(1(s(3), 1(n−3))(t), 1(n−t)) ∈ I for t ≤ n or 1(l)(1(s(3), 1(n−3))(t)) ∈ I for t =
l(n−1)+1. In both possibilities, we conclude that I∩S , ∅which is a contradiction. Hence get 1(s, xi, 1(n−2)) ∈ I
which implies xi ∈ (I : s). In the second case, there exists t ∈N such that 1(1(xi−1

1 , s, x
n
i+1)(t), 1(n−t)) ∈ I for t ≤ n

or 1(l)(1(xi−1
1 , s, x

n
i+1)(t)) ∈ I for t = l(n−1)+1. If t ≤ n, then we obtain 1(s, 1(s(t), 1(n−t)), 1(n−2)) = 1(s(t+1), 1(n−t−1)) ∈

√
I

(m,n)
or 1(s, 1(xi−1

1 , 1, x
n
i+1)(t), 1(n−t−1)) ∈ I. From 1(s(t+1), 1(n−t−1)) ∈

√
I

(m,n)
, it follows that I ∩ S , ∅. Thus

we conclude that 1(s, 1(xi−1
1 , 1, x

n
i+1)(t), 1(n−t−1)) ∈ I which means 1(1(xi−1

1 , 1, x
n
i+1)(t), 1(n−t)) ∈ (I : s). Therefore

1(xi−1
1 , 1, x

n
i+1) ∈

√
(I : s)

(m,n)
. Similar for other case. Consequently, (I : s) is an n-ary primary hyperideal of R.

⇐= Let (I : s) = {x ∈ R | 1(x, s, 1(n−2)) ∈ I} be an n-ary primary hyperideal of R for some s ∈ S. Suppose
that 1(xn

1) ∈ I for some xn
1 ∈ R. Then we get 1(xn

1) ∈ (I : s). Since (I : s) is an n-ary primary hyperideals of R,

then xi ∈ (I : s) which implies 1(s, xi, 1(n−2)) ∈ I or 1(xi−1
1 , 1, x

n
i+1) ∈

√
(I : s)

(m,n)
which means there exists t ∈N

such that 1(s, 1(xi−1
1 , 1, x

n
i+1)(t), 1(n−t−1)) ∈ I for t ≤ n or 1(s, 1(l)(xi−1

1 , 1, x
n
i+1)(t)), 1(n−2)) ∈ I for t = l(n − 1) + 1. If

t ≤ n, then we have 1(1(xi+1
1 , s, x

n
i+1)(t), 1(n−t)) ∈ I which implies 1(xi−1

1 , s, x
n
i+1) ∈

√
I

(m,n)
. Similar for other case.

This means I is an n-ary S-primary hyperideal of R.

In the following, the relationship between an n-ary S-primary hyperideal and its radical is considered.
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Theorem 4.7. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and I be an n-ary S-primary

hyperideal of R. Then
√

I
(m,n)

is an n-ary S-prime hyperideal of R.

Proof. Since I ∩ S = ∅ then we conclude that
√

I
(m,n)
∩ S = ∅. Now, let 1(xn

1) ∈
√

I and for all j ∈

{1, ..., i − 1, i + 1, ...,n}, 1(s, x j, 1(n−2)) <
√

I
(m,n)

for each s ∈ S. Since 1(xn
1) ∈

√
I

(m,n)
, there exists t ∈N such that

1(1(xn
1)(t), 1(n−t)) ∈ I for t ≤ n or 1(l)(1(xn

1)(t)) ∈ I for t = l(n− 1)+ 1. If 1(1(xn
1)(t), 1(n−t)) ∈ I, then there exists s ∈ S

such that 1(s, x(t)
i , 1

(n−t−1)) ∈ I or 1(s, 1(xi−1
1 , 1, x

n
i+1)(t), 1(n−t−1)) as I is a n-ary S-primary hyperideal of R. Hence

we get 1(1(s, xi, 1(n−2))(t), 1(n−t)) ∈ I which implies 1(s, xi, 1(n−2)) ∈
√

I
(m,n)

or 1(1(xi−1
1 , s, x

n
i+1)(t), 1(n−t)) ∈ I. In the

second case, we get

1

(
1(x(t)

1 , 1(x
i−1
2 , s, 1, x

n
i+1)(t), 1(n−2t)

)
∈ I

=⇒ 1
(
1(x(t)

1 , 1
(n−t)), 1(xi−1

2 , s, 1, x
n
i+1)(t), 1(n−t−1)

)
∈ I

=⇒ 1
(
s, 1(x(t)

1 , 1
(n−t)), 1(n−2)

)
∈ I or 1

(
s, 1(xi−1

2 , s, 1, x
n
i+1)(t), 1(n−t−1)

)
∈

√
I

(m,n)

=⇒ 1
(
1(s, x1, 1(n−2))(t), 1(n−t)

)
∈ I or 1

(
1(xi−1

2 , s
(2), xn

i+1)(t), 1(n−t)
)
∈

√
I

(m,n)

=⇒ 1(s, x1, 1(n−2)) ∈
√

I
(m,n)

or 1
(
1(xi−1

2 , s
(2), xn

i+1)(t), 1(n−t)
)
∈
√

I
(m,n)

.

Since 1(s, x1, 1(n−2)) ∈
√

I
(m,n)

is a contradiction, then

1

(
1(xi−1

2 , s
(2), xn

i+1)(t), 1(n−t)
)
∈
√

I
(m,n)

=⇒ ∃w ∈N; 1
(
1(1(xi−1

2 , s
(2), xn

i+1), 1(n−t))(w), 1(n−w)
)
∈ I

=⇒ 1
(
1(x(t+w)

2 , 1(n−t−w), 1(1(xi−1
3 , s

(2), 1, xn
i+1)(w), 1(n−w−1)

)
∈ I

=⇒ 1(s, x2, 1(n−2)) ∈
√

I
(m,n)

or 1
(
1(1(xi−1

3 , s
(3), xn

i+1)(t), 1(n−t))(w), 1(n−w)
)
∈

√
I

(m,n)

...
=⇒ · · · or 1(s, xn, 1(n−2)) ∈

√
I

(m,n)

which is contradiction with1(s, x j, 1(n−2)) <
√

I
(m,n)

for all j ∈ {1, ..., i−1, i+1, ...,n}. Thus we have1(s, xi, 1(n−2)) ∈
√

I
(m,n)

. Consequently,
√

I
(m,n)

is an n-ary S-prime hyperideal of R. If t = l(n− 1)+ 1, then by using a similar
argument, one can easily complete the proof.

For a hyperideal I of a Krasner (m,n)-hyperring R, we refer to the n-ary S-prime hyperideal P =
√

I
(m,n)

as the associated S-prime hyperideal of I and on the other hand I is referred to as an n-ary P-S-primary
hyperideal of R. The intersection of n-ary P-S-primary hyperideals is discussed in the next theorem.

Theorem 4.8. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and In
1 be n-ary P-S-primary

hyperideals of R for some n-ary S-prime hyperideal P of R. Then, I = ∩n
i=1Ii is an n-ary P-S-primary hyperideal of R.

Proof. Let I j be an n-ary S-primary hyperideal of R for all 1 ≤ j ≤ n. Then there exists s j ∈ S such

that if 1(xn
1) ∈ I j for xn

1 ∈ R, then 1(s j, xi, 1(n−2)) ∈ I j or 1(xi−1
1 , s j, xn

i+1) ∈
√

I j
(m,n)

for some 1 ≤ i ≤ n. We
put s = 1(sn

1). Let 1(an
1) ∈ I for some an

1 ∈ R and let us assume that 1(s, ai, 1(n−2)) < I for all 1 ≤ i ≤ n.
This means 1(s j, ai, 1(n−2)) < I j for some 1 ≤ j ≤ n. Since I j is an S-primary hyperideal of R, we get
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1(ai−1
1 , s j, an

i+1) ∈
√

I j
(m,n)

. Since In
1 are n-ary P-S-primary hyperideals of R for some n-ary S-prime hyperideal

P of R, then
√

I j
(m,n)
=
√

I
(m,n)

. Then we obtain 1(ai−1
1 , s j, an

i+1) ∈
√

I
(m,n)

which implies 1(ai−1
1 , s, a

n
i+1) ∈

√
I

(m,n)

and the proof is over.

Theorem 4.9. Let S be an n-ary multiplicative subset of a Krasner (m,n)-hyperring R and In−1
1 be hyperideals of R

such that for each 1 ≤ i ≤ n − 1, Ii ∩ S , ∅. If I is an n-ary S-primary hyperideal of R, then 1(In−1
1 , I) is an n-ary

S-primary hyperideal of R.

Proof. Since 1(In−1
1 , I) ⊆ I and I ∩ S = ∅, we get 1(In−1

1 , I) ∩ S = ∅. Let I be an n-ary S-primary hyperideal of

R. Then there exists s ∈ S such that if 1(an
1) ∈ I for an

1 ∈ R, then 1(s, ai, 1(n−2)) ∈ I or 1(ai−1
1 , s, a

n
i+1) ∈

√
I

(m,n)
.

Suppose that 1(xn
1) ∈ 1(In−1

1 , I) for some xn
1 ∈ R. As 1(In−1

1 , I) ⊆ I, then 1(xn
1) ∈ I. Since for each 1 ≤ i ≤ n − 1,

Ii ∩ S , ∅, then we have ui ∈ Ii ∩ S. Put u = 1(un−1
1 , 1). If 1(s, xi, 1(n−2)) ∈ I, then 1(1(u, s, 1(n−2)), xi, 1(n−2)) =

1(u, 1(s, xi, 1(n−2)), 1(n−2)) ∈ 1(I(n−1)
1 , I). Now, let 1(xi−1

1 , s, x
n
i+1) ∈

√
I

(m,n)
. Then there exists t ∈ N such that

1(1(xi−1
1 , s, x

n
i+1)(t), 1(n−t)) ∈ I for t ≤ n or 1(l)(1(xi−1

1 , s, x
n
i+1)(t)) ∈ I, for t = l(n−1)+1. In the former case, we have

1

(
u(t), 1

(
1(xi−1

1 , s, x
n
i+1)(t), 1(n−t))

)
, 1(n−t−1)

)
= 1

(
1

(
xi−1

1 , 1(u, s, 1
(n−2)), xn

i+1

)(t)

, 1(n−t)

)
∈ 1(In−1

1 , I)

which implies 1(xi−1
1 , 1(u, s, 1

(n−2)), xn
i+1) ∈

√
1(In−1

1 , I)
(m,n)

. Thus, 1(In−1
1 , I) is an n-ary S-primary hyperideal

of R. In the second case, a similar argument completes the proof.

Theorem 4.10. Let (R1, f1, 11), (R2, f2, 12) be two Krasner (m,n)-hyperrings and h : R1 −→ R2 be a homomorphism
such that 0 < h(S). If I2 is an n-ary h(S)-primary hyperideal of R2, then h−1(I2) is an n-ary S-primary hyperideal of
R1.

Proof. Suppose that I2 is an n-ary h(S)-primary hyperideal of R2. Then there exists s ∈ S such that for all

yn
1 ∈ R2 with 12(yn

1) ∈ I2 we have 12(h(s), yi, 1(n−2)) ∈ I2 or 12(yi−1
1 , h(s), yn

i+1) ∈
√

I2
(m,n)

for some 1 ≤ i ≤ n. Put
I1 = h−1(I2). It is easy to see that I1 ∩ S = ∅. Let 11(xn

1) ∈ I1 for xn
1 ∈ R1. Then h(11(xn

1)) = 12(h(x1), ..., h(xn)) ∈
I2. So, we have 12(h(s), h(xi), 1(n−2)) = h(11(s, xi, 1(n−2))) ∈ I2 or 12(h(x1), ..., h(xi−1), h(s), h(xi+1), ..., h(xn)) =
h(11(xi−1

1 , s, x
n
i+1)) ∈

√
I2

(m,n)
which implies 11(s, xi, 1(n−2)) ∈ h−1(I2) = I1 or 11(xi−1

1 , s, x
n
i+1) ∈ h−1(

√
I2

(m,n)
) =√

h−1(I2)
(m,n)
=
√

I1
(m,n)

. Thus h−1(I2) = I1 is an n-ary S-primary hyperideal of R1.

Theorem 4.11. Let (R1, f1, 11) and (R2, f2, 12) be two Krasner (m,n)-hyperrings such that 1R1 and 1R2 be two scalar
identities of R1 and R2, respectively. Suppose that S = S1 × S2 such that S1 and S2 are n-ary multiplicative subsets of
R1 and R2, respectively. Then I1 is an n-ary S1-primary hyperideal of R1 if and only if I1 × R2 is an n-ary S-primary
hyperideal of R1 × R2.

Proof. =⇒ Suppose that I1 is an n-ary S1-primary hyperideal of R1. Let 11 × 12((x1, y1), · · · , (xn, yn)) ∈
I1 × R2 for some xn

1 ∈ R1 and yn
1 ∈ R2. Then we have 11(xn

1) ∈ I1. Then there exists s1 ∈ S1 with

11(s1, xi, 1(n−2)) ∈ I1 or 11(xi−1
1 , s1, xn

i+1) ∈
√

I1
(m,n)

. So 11 × 12((s1, 1R2 ), (xi, yi), (1R1 , 1R2 )(n−2)) ∈ I1 × R2 or

11 × 12((x1, y1), ..., (xi−1, yi−1), (s1, 1R2 ), (xi+1, yi+1), ..., (xn, yn)) ∈
√

I1
(m,n)
× R2 =

√
I1 × R2

(m,n)
. Consequently,

I1 × R2 is an n-ary S-primary hyperideal of R1 × R2.
⇐= Let I1 × R2 be an n-ary S-primary hyperideal of R1 × R2. Suppose that 11(xn

1) ∈ I1 for some xn
1 ∈

R1. Then 11 × 12((x1, 1R2 ), · · · (xn, 1R2 )) ∈ I1 × R2. Since I1 × R2 is an n-ary S-primary hyperideal of
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R1 × R2, then there exists an element (s1, s2) in S such that 11 × 12((s1, s2), (xi, 1R2 ), (1R1 , 1R2 )(n−2)) ∈ I1 × R2

or 11 × 12((x1, 1R2 ), ..., (xi−1, 1R2 ), (s1, s2), (xi+1, 1R2 ), ..., (xn, 1R2 ) ∈
√

I1 × R2
(m,n)

=
√

I1
(m,n)
× R2. This means

11(s1, xi, 1
(n−2)
R1

) ∈ I1 or 11(xi−1
1 , s1, xn

i+1) ∈
√

I1
(m,n)

. Thus I1 is an n-ary S1-primary hyperideal of R1.

Theorem 4.12. Let R be a Krasner (m,n)-hyperring and S be an n-ary multiplicative subset of R with 1 ∈ S. If I is
an n-ary S-primary hyperideal of R with I ∩ S = ∅, then S−1I is an n-ary primary hyperideal of S−1R.

Proof. Let a1
s1
, ..., an

sn
∈ S−1R such that G( a1

s1
, ..., an

sn
) ∈ S−1I . Then we have

1(an
1 )

1(sn
1 ) ∈ S−1I. It implies that there exists

t ∈ S such that 1(t, 1(an
1), 1(n−2)) ∈ I and so 1(ai−1

1 , 1(t, ai, 1(n−2)), an
i+1) ∈ I. Without loss of generality, we may

assume that 1(an−1
1 , 1(t, an, 1(n−2))) ∈ I. Since I is an n-ary S-primary hyperideal of R, then there exist s ∈ S

such that at least one of the cases hold: 1(s, ai, 1(n−2)) ∈ I for some 1 ≤ i ≤ n − 1, 1(s, 1(t, an, 1(n−2)), 1(n−2)) ∈ I,

1(ai−1
1 , s, a

n−1
i+1 , 1(t, an, 1(n−2))) ∈

√
I

(m,n)
for some 1 ≤ i ≤ n − 1 or 1(an−1

1 , s) ∈
√

I
(m,n)

.

If 1(s, ai, 1(n−2)) ∈ I for some 1 ≤ i ≤ n − 1, then we get G( ai
si
, 1

1
(n−1)

) = 1(ai,1(n−1))
1(si,1(n−1)) =

1(s,ai,1(n−2))
1(s,si,1(n−2)) ∈ S−1I. If

1(s, 1(t, an, 1(n−2)), 1(n−2)) ∈ I, then G( an
sn
, 1

1
(n−1)

) = 1(an,1(n−1))
1(sn,1(n−1)) =

1(s,t,an,1(n−3))
1(s,t,sn,1(n−3)) ∈ S−1I. If 1(ai−1

1 , s, a
n−1
i+1 , 1(t, an, 1(n−2)) ∈

√
I

(m,n)
for some 1 ≤ i ≤ n − 1, then we get G( a1

s1
, ..., ai−1

si−1
, 1

1 ,
ai+1
si+1
, ..., an−1

sn−1
, an

sn
) =

1(ai−1
1 ,1(s,t,1

(n−2)),an−1
i+1 ,an)

1(si−1
1 ,1(s,t,1

(n−2)),sn−1
i+1 ,an) ∈ S−1

√
I

(m,n)
=

√

S−1I
(m,n)

, by Lemma 4.7 in [6]. If 1(an−1
1 , s) ∈

√
I

(m,n)
, then G( a1

s1
, ..., an−1

sn−1
, 1

1 ) =
1(an−1

1 ,s)
1(sn−1

1 ,s) ∈ S−1
√

I
(m,n)
=
√

S−1I
(m,n)

.

Thus S−1I is an n-ary primary hyperideal of S−1R.

The following theorem shows that if S−1I is an n-ary primary hyperideal of S−1R and S−1I ∩ R = (I : s) for
some s ∈ S, then I is an n-ary S-primary hyperideal of R.

Theorem 4.13. Let R be a Krasner (m,n)-hyperring, S be an n-ary multiplicative subset of R such that 1 ∈ S and I
be a hyperideal of R with I ∩ S = ∅ . If S−1I is an n-ary primary hyperideal of S−1R and S−1I ∩ R = (I : s) for some
s ∈ S, then I is an n-ary S-primary hyperideal of R.

Proof. Suppose that S−1I is an n-ary primary hyperideal of S−1R and S−1I ∩ R = (I : s) for some s ∈ S.
Assume that 1(an

1) ∈ I for some an
1 ∈ R. Then we obtain G( a1

1 , · · · ,
an
1 ) ∈ S−1I. Since S−1I is an n-ary primary

hyperideal of S−1R, we get ai
1 ∈ S−1I or G( a1

1 , · · · ,
ai−1

1 ,
1
1 ,

ai+1
1 , · · · ,

an
1 ) ∈

√

S−1I
(m,n)

for some 1 ≤ i ≤ n. In
the former case, we have ai =

ai
1 ∈ S−1I ∩ R which implies ai ∈ (I : s) by the hypothesis. This means

1(s, ai, 1(n−2)) ∈ I and we are done. In the second case, we get G(G( a1
1 , · · · ,

ai−1
1 ,

1
1 ,

ai+1
1 , · · · ,

an
1 )(t), 1

1
(n−t)

) ∈ S−1I
for t ≤ n or G(l)(G( a1

1 , · · · ,
ai−1

1 ,
1
1 ,

ai+1
1 , · · · ,

an
1 )(t)) ∈ S−1I for t = l(n − 1) + 1. The first possibility follows

that 1(1(a1, · · · , ai−1, 1, ai+1, · · · , an)(t), 1(n−t)) = 1(1(a1,··· ,ai−1,1,ai+1,··· ,an)(t),1(n−t))
1(1(1(n))(t),1(n−t)) ∈ S−1I ∩ R. Hence we conclude that

1(s, 1(a1, · · · , ai−1, 1, ai+1, · · · , an)(t), 1(n−t−1)) ∈ I, by the hypothesis. So 1(1(a1, · · · , ai−1, s, ai+1, · · · , an)(t), 1(n−t)) ∈ I

which implies 1(a1, · · · , ai−1, s, ai+1, · · · , an) ∈
√

I
(m,n)

, as needed. In the second possibility, one can easily
complete the proof by using an argument similar.

5. Conclusion

In this paper, the author extended the study initiated in [17] about S-prime ideals and in [25] about S-
primary ideals in a commutative ring. The concepts of n-ary S-prime and n-ary S-primary hyperideals were
introduced in a Krasner (m,n)-hyperring. Some of their essential characteristics were investigated and some
examples were provided. Moreover, the stabilty of the notions were examined in some hyperring-theoretic
constructions.

This study can be continued in several directions, such as: to define graded S-prime and graded
S-primary hyperideals, to analyse similar notions in the context of (m,n)-hypermodules.
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