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Abstract. Duadic codes constitute a well-known class of cyclic codes. In this paper, we study the structure
of duadic codes of length n over the ring R = Fp + uFp + vFp + uvFp, u2 = v2 = 0, uv = vu, where p is prime
and (n, p) = 1. These codes have been studied here in the setting of abelian codes over R, and we have
used Fourier transform and idempotents to study them. We have characterized abelian codes over R by
studying their torsion and residue codes. It is shown that the Gray image of an abelian code of length n
over R is a binary abelian code of length 4n. Conditions for self-duality and self-orthogonality of duadic
codes over R are derived. Some conditions on the existence of self-dual augmented and extended codes
over R are presented. We have also studied Type II self-dual augmented and extended codes over R. Some
results related to the minimum Lee distances of duadic codes over R are presented. We have also presented
a sufficient condition for abelian codes of the same length over R to have the same minimum Hamming
distance. Some optimal binary linear codes of length 36 and ternary linear codes of length 16 have been
obtained as Gray images of duadic codes of length 9 and 4, respectively, over R using the computational
algebra system Magma.

1. Introduction

The idea of finding good codes over a finite field via the Gray map has inspired many researchers to
study codes over finite rings. This idea originated with the breakthrough paper of Hammons et al. [6],
wherein it was shown that some well known binary non-linear codes are actually images of some linear
codes over Z4 under the Gray map. Cyclic codes are among the most studied families of codes because of
their rich algebraic structure and their relatively efficient encoding and decoding methods. Abelian codes
are a generalization of cyclic codes. Berman [2] and MacWilliams [16] introduced abelian codes over finite
fields. Speigel [25] studied abelian codes over the integer residue ringZm for some positive integer m. Rajan
and Siddiqi [17, 18] studied cyclic codes and abelian codes over Zm using the discrete Fourier transform
approach. Duadic codes are an important class of abelian codes, and were introduced by Leon et al. [12]
as a generalization of quadratic residue codes. They showed that every extended self-dual cyclic binary
code is a duadic code. They also showed that in some cases Reed-Muller codes are also duadic codes.
Further, it was shown that in several cases duadic codes are better than quadratic residue codes of the same
length, and in some cases they have the best parameters among the codes of the same length. Tilborg [26]
presented an important method to evaluate the minimum weights of binary quadratic residue codes. Li
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[11] generalized this result to duadic codes. Recently, Kumar and Bhaintwal [8] have studied duadic codes
of odd length over Z4 + uZ4 using the Fourier transform approach.

In recent years there has been a lot of interest on linear codes over various rings of the form considered in
this paper. Bonnecaze and Udaya [3] have studied cyclic codes over the ring F2 +uF2, u2 = 0, and provided
their basic framework. Dougherty et al. [4] have studied and classified Type II codes over F2 + uF2. Yildiz
and Karadeniz have studied cyclic codes overF2+uF2+vF2+uvF2, where u2 = v2 = 0, uv = vu, and obtained
some good binary codes as the images of these codes under two Gray maps. Ankur and Kewat [1] have
studied Type II codes over F2 + uF2 + vF2 + uvF2. They have characterized the structure of self-dual, Type I
codes and Type II codes over F2 + uF2 + vF2 + uvF2 with given generator matrix in terms of the structures
of their torsion and residue codes. Kai et al. [7] studied (1 + u)-constacyclic codes of arbitrary length over
F2 + uF2 + vF2 + uvF2. In this paper, they have given a complete classification of self-dual constacyclic
codes and enumerated them. Wang and Zhu [27] have studied repeated-root constacyclic codes over R and
enumerated such self-dual codes for any given length n. Haifeng et al. studied (1 − uv)-constacyclic codes
over Fp + uFp + vFp + uvFp [5]. They have proved that a Gray image of (1 − uv)-constacyclic code over this
ring is a distance invariant quasi-cyclic code of index p2 and length p3n over Fp. Shi et al. have studied
[24] the asymptotic behavior of quasi-cyclic codes on the same or similar rings. Shi et. al. [20] studied
constacyclic codes over Z4[u]/⟨u2

− 1⟩. Shi et. al. [21] studied double circulant LCD codes over Z4. Many
author [9, 14, 22, 23] have studied different classes of codes over similar structure of such type of rings.

In this paper, we study the structure of duadic codes of length n over the ring R = Fp + uFp + vFp + uvFp
with (n, p) = 1, in the setting of abelian codes over R, and using the Fourier transform and idempotents.
The torsion codes and residue codes of abelian codes have been studied. It is shown that the Gray image
of an abelian code of length n over R is a binary abelian code of length 4n. Conditions for self-duality and
self-orthogonality of duadic codes are derived. Some conditions on the existence of self-dual augmented
and extended codes over R are presented. We have also studied Type II augmented and extended codes
over R. Some results related to the minimum Lee distances of duadic codes over R are obtained. We have
presented a sufficient condition for abelian codes of the same length over R to have the same minimum
Hamming distance. Some optimal binary linear codes of length 36 and ternary linear codes of length
16 have been obtained as Gray images of duadic codes of length 9 and 4, respectively, over R using the
computational algebra system Magma.

The paper is organized as follows. Section 2 collects the relevant notations and definitions. Section 3
describes the algebraic structure of abelian codes over R. In Section 4, duadic codes and generalized duadic
codes over R are introduced and some conditions for these codes to be self-dual, self-orthogonal or isodual
are determined. A new Gray map is introduced and it is shown that the image of an abelian code under this
map is also an abelian code. Section 5 presents some results on the minimum distance of abelian codes. In
Section 6, the augmented and extended abelian codes over R are characterized in terms of self-duality, and
some self-dual, self-orthogonal and isodual properties of these codes are discussed. In Section 7, Type II
augmented and extended abelian codes over R have been studied. In Section 8, some optimal binary linear
codes of length 36 and ternary linear codes of length 16 have been obtained as Gray images of duadic codes
of length 9 and 4, respectively, over R using the computational algebra system Magma.

2. Preliminaries

Throughout the paper, R denotes the ring Fp +uFp + vFp +uvFp = {a+ub+ vc+uvd : a, b, c, d ∈ Fp}with
u2 = v2 = 0,uv = vu, where p is a prime and Fp = {0, 1, · · · , p − 1} is the field of order p. The ring R can also
be viewed as the quotient ring Fp[u, v]/

〈
u2, v2,uv − vu

〉
. An element a + ub + vc + uvd ∈ R is a unit if and

only if a is non-zero. The ring R is a local ring with the unique maximal ideal ⟨u, v⟩ and it has a total of p4

elements. The ideals of R are ⟨0⟩, ⟨1⟩, ⟨u⟩, ⟨v⟩, ⟨uv⟩, ⟨u + v⟩, and ⟨u, v⟩. A linear code C of length n over R is
an R-submodule of Rn. A linear code C of length n over R is called a cyclic code if it is invariant under the
cyclic shift, i.e., (cn−1, c0, . . . , cn−2) ∈ C whenever (c0, c1, . . . , cn−1) ∈ C.

The Hamming distance d(x, y) between any two elements x, y ∈ Rn is the number of coordinate positions



R. Kumar, M. Bhaintwal / Filomat 37:12 (2023), 3985–3998 3987

where x and y differ. The minimum Hamming distance dH(C) of a code C is given by

dH(C) = min{d(x, y) : x, y ∈ C, x , y} .

The Hamming weight wH(x) of any x ∈ Rn is the total number of non-zero coordinates in x. If C is a non-zero
linear code, dH(C) coincides with the smallest weight of a non-zero codeword in C.

Now, as in [28], we define a Gray map ϕ from R to F4
p as

ϕ(a + ub + vc + uvd) = (a + b + c + d, c + d, b + d, d) .

The map ϕ can be extended to a map from Rn to F4n
p component-wise. The Lee distance dL(C) of a linear

code C over R is defined as the Hamming distance of ϕ(C). For a linear code C of length n over R, the dual
of C is defined by

C⊥ = {x ∈ Rn : x · c = 0 ∀c ∈ C} ,

where x · c denotes the usual inner product of x and c. If C ⊆ C⊥, we say that C is self-orthogonal, and if
C = C⊥ then C is said to be a self-dual code. Two codes are equivalent if one can be obtained from the other
by permuting and exchanging the coordinates.

Let S = Fp + uFp. For a linear code C of length n over R, we define the residue code Res(C) and the
torsion code Tor(C) of C as

Res(C) = {a′ ∈ Sn : ∃ b′ ∈ Sn such that a′ + vb′ ∈ C} ,
Tor(C) = {b′ ∈ Sn : vb′ ∈ C} .

The residue code and the torsion code are linear codes of length n over Fp + uFp.

For a linear code C of length n over R, we define four binary linear codes associated to C in R, as

Res(Res(C)) = C (mod ⟨u, v⟩) ,
Tor(Res(C)) = {a1 ∈ F

n
p : ua1 ∈ C mod v} ,

Res(Tor(C)) = {a2 ∈ F
n
p : va2 ∈ C mod uv} ,

Tor(Tor(C)) = {a3 ∈ F
n
p : uva3 ∈ C} .

For a linear code C of length n over R and ϵ ∈ R, we define the extended code Cϵ of C to be the code
obtained by appending to each codeword c = (c1, · · · , cn) an overall parity-check coordinate c∞ = ϵ

∑n
i=1 ci,

i.e.,

Cϵ = {(c, c∞) | c ∈ C} .

By the augmented code C of C, we mean the code C + span{1}, where 1 is the all-one vector and span{v}
denotes the R-span of any vector v ∈ Rn. The augmented and extended code (C)ϵ of C is defined as

(C)ϵ = {(c, c∞) + λ(1, ϵn) : c ∈ C, λ ∈ R} .

3. Abelian codes

In this section, we study the algebraic structure of abelian codes over R = Fp+uFp+vFp+uvFp. Suppose
G is a finite abelian group of odd order n. We assume that the operation in G is written additively. An
abelian code of length n over R is defined to be an ideal in the group ring R[G]. Every element of R[G] can
be written uniquely as a formal polynomial

∑
1∈G c1Y1, c1 ∈ R. The addition in R[G] is componentwise and

the multiplication in R[G] is the convolution product given by∑
h∈G

chYh


∑

l∈G

c′l Y
l

 =∑
1∈G

d1Y1 ,
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where

d1 =
∑

h+l=1

chc′l .

Let α be an automorphism of G. Then the automorphism∑
1∈G

c1X1 7→
∑
1∈G

c1Xα(1)

of R[G] is called a multiplier of R[G]. For convenience, we simply say that α is a multiplier of R[G].
We have Fpt + uFpt + vFpt + uvFpt ≃ Fpt [u, v]/⟨u2, v2,uv − vu⟩ for every non-negative integer t. Let

Ru,v,t = Fpt [u, v]/⟨u2, v2,uv − vu⟩. If x = x0 + ux1 + v(y0 + uy1) represents any element of Ru,v,t, then the
Frobenius map F of Ru,v,t/R is defined by

F(x) = xp
0 + uxp

1 + v(yp
0 + uyp

1) .

Exponent of a group G is the smallest positive integer n such that 1n gives identity of G for all 1 ∈ G. Let
N denote the exponent of G, and let M be the smallest positive integer such that pM

≡ 1 mod N. Then FpM

contains a primitive Nth root of unity ξ. Now by the fundamental theorem of finite abelian groups,

G ≃ ×t
i=1Zni ,

where ni divides ni+1, 1 ≤ i ≤ t − 1. Let a, b be any two elements of G and ai, bi be their respective factors in
Zni . Then we define a character of G with values in FpM by

χa(b) = ξ
∑t

i=1 aibi(N/ni) .

Then

• For a fixed a ∈ G, χa is a homomorphism from G to F×pM ,

• χa(b) = χb(a), and

•
∑

x∈G χa(x) = nδa,0, where δa,0 is the Kronecker delta function.

The Fourier transform of any element f =
∑
1∈G f1Y1 ∈ Fp[G] is defined by f̂ =

∑
1∈G f̂1Y1, where

f̂1 =
∑

h∈G fhχ1(h). The inverse transform is given by fh = 1
n
∑
1∈G f̂1χh(−1). For any element c = a+ ub+ vc+

uvd ∈ R[G], we define the Fourier transform of c as ĉ = â + ub̂ + vĉ + uvd̂.
Now, for any a, b ∈ G, we have

χa(pb) = χa(b)p = F(χa(b)) .

Also, for any x ∈ R[G] and 1 ∈ G, we have

F(x̂1) = x̂p1 .

Let O0,O1, · · · ,Os be the orbits of G under the map x 7→ px with di = o(Oi), 1 ≤ i ≤ s. Then using the
same argument as in [8, Theorem 3.1], we get the following result.

Theorem 3.1. Let G be a finite abelian group of odd order n. Then

R[G] ≃ R ×
Fpd1 [u, v]

⟨u2, v2,uv − vu⟩
×

Fpd2 [u, v]

⟨u2, v2,uv − vu⟩
× · · · ×

Fpds [u, v]

⟨u2, v2,uv − vu⟩
.
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Now we determine the ideal structure of Ru,v,d = Fpd [u, v]/⟨u2, v2,uv − vu⟩ for any non-negative integer
d.

Let I be any ideal of Ru,v,d. Define a mapΨ : I→ Fpd [u]/⟨u2
⟩ such that

Ψ(a + ub + vc + uvd) = a + ub .

ClearlyΨ is a ring homomorphism with the kernel

kerΨ = {vb′ ∈ I | b′ ∈ Fpd [u]/⟨u2
⟩} .

Let J = {b′ ∈ Fpd [u]/⟨u2
⟩ | vb′ ∈ I}. Then J is an ideal of Fpd [u]/⟨u2

⟩. So, J = ⟨0⟩ or ⟨1⟩ or ⟨u⟩, and hence
kerΨ = ⟨0⟩ or ⟨v⟩ or ⟨uv⟩. It is easy to verify thatΨ(I) is also an ideal of Fpd [u]/⟨u2

⟩. So,Ψ(I) = ⟨0⟩ or ⟨1⟩ or
⟨u⟩. Therefore, we have the following result.

Proposition 3.2. For any non-negative integer d, the ideals of Fpd [u, v]/⟨u2, v2,uv − vu⟩ are given by

1. ⟨0⟩, ⟨1⟩,
2. ⟨u⟩,
3. ⟨v⟩,
4. ⟨uv⟩,
5. ⟨u + vδ⟩, where δ ∈ F×

pd ,
6. ⟨u, v⟩.

It is clear that the total number of these ideals is pd + 5.
Let O0,O1, · · · ,Os be the orbits of G under the mapping x 7→ px. Let σ denote the permutation of

{0, 1, · · · , s} induced by the map x 7→ −x in G. If for every orbit of G, σ maps the orbit to itself, then σ is
called an identity map. We have the following results.

Theorem 3.3. 1. Every ideal I of R[G] can be expressed as

I = I0 × I1 × · · · × Is,

where I j is one of the ideals ⟨0⟩, ⟨1⟩, ⟨u⟩, ⟨v⟩, ⟨uv⟩, ⟨u+vδ⟩, ⟨u, v⟩ in the ringFpdj [u, v]/⟨u2, v2,uv−vu⟩, δ ∈ F×
pdj

,

0 ≤ j ≤ s. In particular, there are a total of 7(pd1 + 5)(pd2 + 5) · · · (pds + 5) ideals of R[G].
2. The dual I⊥ of an ideal I = I0 × I1 × · · · × Is of R[G] is given by I⊥ = I0

σ(0) × I0
σ(1) × · · · × I0

σ(s), where

⟨0⟩0 = ⟨1⟩, ⟨u⟩0 = ⟨u⟩, ⟨v⟩0 = ⟨v⟩, ⟨u + vδ⟩0 = ⟨u + vδ⟩ for δ ∈ F×
pdj

, 0 ≤ j ≤ s, and ⟨uv⟩0 = ⟨u, v⟩.

Proof. Part 1 directly follows from Theorem 3.1 and Proposition 3.2. For part 2, we observe that the ideals of
Fpd [u, v]/⟨u2, v2,uv−vu⟩ are ⟨0⟩, ⟨1⟩, ⟨u⟩, ⟨v⟩, ⟨uv⟩, ⟨u+vδ j⟩, where δ j ∈ F×

pdj
, and ⟨u, v⟩. Using the annihilators

of these ideals, we get part 2 of the theorem.

Now onward, the ideals of R[G] will be called abelian codes over R.

Proposition 3.4. Let I = I0 × I1 × · · · × Is ∈ R[G] be an abelian code of length n over R, and

Res(I) = R0 × R1 × · · · × Rs ,

Tor(I) = T0 × T1 × · · · × Ts ,

Res(Res(I)) =M0 ×M1 × · · · ×Ms ,

Tor(Res(I)) = N0 ×N1 × · · · ×Ns ,

Res(Tor(I)) = L0 × L1 × · · · × Ls ,

Tor(Tor(I)) = K0 × K1 × · · · × Ks ,

where R j,T j ⊆ I j are ideals of Fpdj [u]/⟨u2
⟩ and M j,N j,L j,K j ⊆ I j are ideals of Fpdj , 0 ≤ j ≤ s. Then
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1. R j = ⟨1⟩ ⇐⇒M j = ⟨1⟩ ⇐⇒ I j = ⟨1⟩ ,
2. T j = ⟨0⟩ ⇐⇒ K j = ⟨0⟩ ⇐⇒ I j = ⟨0⟩ ,
3. If I j , ⟨1⟩, then M j = ⟨0⟩ ,
4. If I j , ⟨0⟩, then K j = ⟨1⟩ .

Proof. Consider the maps Ψ : R → Fp + uFp and Φ : R → Fp such that Ψ(a + ub + vc + uvd) = a + ub and
Φ(a+ub+vc+uvd) = a. Then Res(I), Res(Res(I)) are the images of I under the mapΨ andΦ, respectively. Also,
we have Tor(I) = {b : vb ∈ I} and Tor(Tor(I)) = {d : uvd ∈ I}. It can be easily shown that R j = Φ(I j) = ⟨1⟩ if
and only if I j = ⟨1⟩ if and only if M j = ⟨1⟩. Similarly, it can be shown that T j = ⟨0⟩ if and only if I j = ⟨0⟩ if
and only if K j = ⟨0⟩. If I j , ⟨1⟩, then I j contains only some non-unit elements of Fpdj [u, v]/⟨u2, v2,uv − vu⟩,
which implies that M j = ⟨0⟩. If I j , ⟨0⟩, then ⟨uv⟩ ⊆ I j, i.e., K j = ⟨1⟩. Hence the result holds.

In the next result, we have shown that, for p = 2, the Gray image ϕ(C) of an abelian code C over R is an
abelian code in F2[G ×Z2 ×Z2].

Theorem 3.5. For p = 2, if C is an abelian code in R[G], where G is an abelian group of order n, then the Gray image
ϕ(C) of C is an F2-abelian code in F2[G ×Z2 ×Z2].

Proof. For any element a =
∑
1∈G(a1 + ub1 + vc1 + uvd1)Y1 ∈ R[G], the Gray image of a is an element of the

form a′ =
∑

(1,k,l)∈G×Z2×Z2
m(1,k,l)Y1ZkWl in F2[G ×Z2 ×Z2], where

m(1,k,l) =


a1 + b1 + c1 + d1, if (k, l) = (0, 0) ,
c1 + d1, if (k, l) = (1, 0) ,
b1 + d1, if (k, l) = (0, 1) ,
d1, if (k, l) = (1, 1) .

We show that ϕ(C) = {a′ : a ∈ C} is an ideal of the group ring F2[G × Z2 × Z2]. The addition and
multiplication by Y in F2[G×Z2 ×Z2] correspond to the ones in R[G]. Now consider the following points.

• Multiplication by W in F2[G×Z2 ×Z2] corresponds to the multiplication of elements by 1+u in R[G].

• Multiplication by Z in F2[G×Z2 ×Z2] corresponds to the multiplication of elements by 1+ v in R[G].

• Multiplication by ZW in F2[G×Z2×Z2] corresponds to the multiplication of elements by 1+u+v+uv
in R[G].

Therefore ϕ(C) is closed under multiplication by Y, Z and W. Clearly ϕ(C) is closed under multiplication
by elements of F2. Hence ϕ(C) is an ideal of F2[G ×Z2 ×Z2].

Now let I = I0 × I1 × · · · × Is ∈ R[G] be an abelian code of length n over R. Then for every h ∈ Oi,
f̂h ∈ Fpdi [u, v]/⟨u2, v2,uv − vu⟩, 0 ≤ i ≤ s, where Oi are the orbits of G under the mapping x 7→ px. Moreover,

f̂0 =
∑
1∈G

f1 ∈ I0 ⊆ R ,

for any codeword c ∈ I.
Let α be an automorphism of G. Then a partition (X,A,B) of G is called a splitting of G if X,A and B are

unions of the orbits O0,O1, . . . ,Os and α(A) = B, α(B) = A. Let τ be the permutation of {0, 1, . . . , s} induced
by the map x 7→ αx in G. In particular, when α = −1, we have τ = σ. For any ideal I = I0 × I1 × · · · × Is, we
define Iα = Iτ(0) × Iτ(1) × · · · × Iτ(s), the image of I under the multiplier α. It is, in fact, the image of I under the
isometry∑

1∈G

f1X1 7→
∑
1∈G

f1Xα
∗1 ,

where α∗ is the adjoint of α, and is an automorphism of G. The ideal I is said to be isodual by the multiplier
α if Iα = I.
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4. Duadic codes over Fp + uFp + vFp + uvFp

In this section, we assume that G is an additive abelian group of order n, where n is odd. We define duadic
codes over R = Fp+uFp+vFp+uvFp and study their properties related to self-duality and self-orthogonality.
We also study generalized duadic codes over R.

We define a duadic code of length n over R attached to a splitting (X,A,B) of G to be an ideal I =
I0 × I1 × · · · × Is of R[G] which satisfies the following conditions: if O j ⊆ X, then I j is one of the ideals ⟨u⟩, ⟨v⟩,
and ⟨u + vδ j⟩ for some δ j ∈ F×

pdj
, and if O j ⊆ A or B, then I j is any of the ideals of Fpdj [u, v]/⟨u2, v2,uv − vu⟩

satisfying Iτ( j) = I0.

For an ideal I j of Fpdj [u, v]/⟨u2, v2,uv − vu⟩, 1 ≤ j ≤ s, if I j = ⟨u⟩ or ⟨v⟩ or ⟨u + vδ j⟩, where δ j ∈ F×
pdj

, then I j

is self-dual. We call these ideals as trivial self-dual ideals.

Theorem 4.1. If no non-trivial self-dual code exists over R[G], then σ is an identity map, where σ is as defined above.
The converse need not be true.

Proof. Assume that σ is not an identity map. Then there always exists a nontrivial self-dual code I =
I0 × I1 × · · · × Is by taking I j = ⟨0⟩ if and only if Iσ( j) = ⟨1⟩. For the converse, consider for example that
G has exactly three orbits O0,O1 and O2 under the map x 7→ px. Let X = O0,A = O1,B = O2, and
I = ⟨u⟩ × ⟨uv⟩ × ⟨u, v⟩. Then σ is an identity map on the set {0, 1, 2}, but I is a nontrivial self-dual code.

Theorem 4.2. Suppose σ is not an identity map and (X,A,B) is a splitting of G given by α = −1. Then the duadic
code attached to (X,A,B) is self-dual. Conversely, every self-dual abelian code over R is a duadic code attached to a
splitting of G with α = −1.

Proof. First part follows from the definition of duadic codes. Suppose I = I0 × I1 × · · · × Is is a self-dual
abelian code. Then I = I0

σ(0) × I1
σ(1) × · · · × Is

σ(s). We have σ(0) = 0 as σ(x) = −x, which implies that I0
0 = I0. This

in turn implies that I0 = ⟨u⟩ or ⟨v⟩ or ⟨u + v⟩. Let O0,O1, . . . ,Os be the orbits of G. Define

A1 = ∪O j, where I j = ⟨u⟩ ,
A2 = ∪O j, where I j = ⟨v⟩ ,
A3 = ∪O j, where I j = ⟨u + vδ j⟩ for some δ j ∈ F

×

pdj
,

A4 = ∪O j, where I j = ⟨u, v⟩ ,
A5 = ∪O j, where I j = ⟨uv⟩ ,
A6 = ∪O j, where I j = ⟨0⟩ ,
A7 = ∪O j, where I j = ⟨1⟩ .

Now let X = A1 ∪A2 ∪A3,A = A4 ∪A5,B = A6 ∪A7. We have O0 ⊂ X, as I0 = ⟨u⟩ or ⟨v⟩ or ⟨u + v⟩. Then the
self-dual abelian code I is a duadic code attached to the splitting (X,A,B) with α = −1.

4.1. Generalized duadic codes
We define generalized duadic codes in the same way as duadic codes, except that in generalized duadic

codes there is no restriction on the ideal I0, i.e., I0 can be any of the ideals ⟨0⟩, ⟨1⟩, ⟨u⟩, ⟨v⟩, ⟨uv⟩, ⟨u + vδ j⟩ or
⟨u, v⟩.

Theorem 4.3. Let C = I0 × I1 × · · · × Is be a generalized duadic code over R attached to a splitting of G with α = −1.
If I0 = ⟨uv⟩ or ⟨0⟩, then C is self-orthogonal.

Proof. The result follows from the fact that ⟨0⟩ ⊂ ⟨0⟩0 = ⟨1⟩, and ⟨uv⟩ ⊂ ⟨uv⟩0 = ⟨u, v⟩.

Proposition 4.4. Suppose σ is an identity map on G, i.e., σ(i) = i for all i, 0 ≤ i ≤ s. If C = I0 × I1 × · · · × Is is a
duadic code attached to a splitting (X,A,B) of G, then C is isodual. Also, if C is a generalized duadic code and I0 = ⟨0⟩
or ⟨uv⟩, then Cα ⊆ C⊥, where α is the corresponding multiplier.
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Proof. We have C⊥ = I0
σ(0) × I0

σ(1) × · · · × I0
σ(s) = I0

0 × I0
1 × · · · × I0

s = C, as σ is an identity map on G. If C is a
duadic code, then I0

0 = I0. We have Cα = Iτ(0) × Iτ(1) × · · · × Iτ(s). Define τ such that Iτ( j) = I0
j . Then Cα = C⊥,

i.e., C is isodual. If C is a generalized duadic code with I0 = ⟨0⟩ or ⟨uv⟩, then I0
0 = ⟨1⟩ or ⟨u, v⟩, respectively,

i.e., I0
0 ⊆ I0, which implies that Cα ⊆ C⊥.

5. The minimum Lee distance of the duadic code over R

In this section, we discuss some results about the Lee distance of duadic codes over R, and also discuss
results related to Hamming distance of abelian codes over R. First we have the following elementary result
for the case p = 2.

Theorem 5.1. Let p = 2 and let C = I0 × I1 × · · · × Is be a duadic code of length n over R = F2 + uF2 + vF2 + uvF2,
where I j , ⟨0⟩ for any j. Then the Lee distance dL(C) of C is even.

Proof. From the definition of Lee weight on R, for any a ∈ R we have wL(a) is odd if a is a unit and wL(a) is
even when a is not a unit. Now I j , ⟨0⟩ ∀ j, then I j , ⟨1⟩ ∀ j. Therefore all coordinates in any codeword of C
are non-units. The result follows.

Theorem 5.2. The Hamming distances of all the non-trivial codes (ideals) of the ring Fpd [u, v]/⟨u2, v2,uv − vu⟩, as
given in Proposition 3.2, are the same.

Proof. The proof parallels that of [8, Theorem 5.1]. We show first that the Hamming distances of ⟨uv⟩ and
⟨u, v⟩ are the same. Let d1 = dH(⟨uv⟩) and d2 = dH(⟨u, v⟩). So, we have to show that d1 = d2. Clearly
⟨uv⟩ ⊆ ⟨u, v⟩, which implies that d1 ≥ d2. Now suppose d1 > d2. So, there exists a non-zero element
c = (c0, c1, · · · , cn−1) ∈ ⟨u, v⟩ with the Hamming weight d2 which is not in ⟨uv⟩. Then there must be a
coordinate ci in c such that ci is of the form ci = uα + vc′′ + uvc′′′ or ci = uc′ + vα + uvc′′′ for some
c′, c′′, c′′′ ∈ Fpd and α ∈ F×

pd . Now define β such that

β =

v, if ci = uα + vc′′ + uvc′′′ ,
u, if ci = uc′ + vα + uvc′′′ .

It is easy to see that βc ∈ ⟨uv⟩, and βc , 0. Since βc ∈ ⟨uv⟩, we get d1 ≤ wH(βc) ≤ wH(c) = d2 < d1, which is a
contradiction. Therefore we must have d1 = d2. Now consider the ideals ⟨u⟩, ⟨v⟩ and ⟨u+vδ⟩, where δ ∈ F×

2d .
Let d3 = dH(⟨u⟩), d4 = dH(⟨v⟩) and d5 = dH(⟨u+ vδ⟩). Clearly ⟨uv⟩ ⊆ ⟨u⟩, ⟨uv⟩ ⊆ ⟨v⟩ and ⟨uv⟩ ⊆ ⟨u+ vδ⟩, which
implies that d1 ≥ d3, d1 ≥ d4 and d1 ≥ d5. Now suppose d1 > d3, d4, d5. Then there exist non-zero elements
v′ = (v0, v1, · · · , vn−1) ∈ ⟨u⟩,w = (w0,w1, · · · ,wn−1) ∈ ⟨v⟩ and t = (t0, t1, · · · , tn−1) ∈ ⟨u + vδ⟩ with Hamming
weights d3, d4 and d5, respectively, such that none of v′,w and t is in ⟨uv⟩. Now uv′,uw,ut ∈ ⟨uv⟩ and it is easy
to see that vv′,uw and ut all are non-zero elements of ⟨uv⟩. This implies that d1 ≤ wH(vv′) ≤ wH(v′) = d3 < d1,
d1 ≤ wH(vv′) ≤ wH(v′) = d4 < d1 and d1 ≤ wH(vv′) ≤ wH(v′) = d5 < d1, a contradiction in each case. Therefore,
we must have d1 = d2 = d3 = d4 = d5.

The following result gives a sufficient condition for two abelian codes of same length over R to have the
same minimum distance.

Theorem 5.3. Let C1 = I0 × I1 × · · · × Is and C2 = I′0 × I′1 × · · · × I′s be two abelian codes of length n over R, where I j

and I′j are ideals of F2dj [u, v]/⟨u2, v2,uv − vu⟩, 0 ≤ j ≤ s. If for every j, I j and I′j are both zero or both non-zero, then
dH(C1) = dH(C2).

Proof. Since C1 is a direct product of I0, I1, . . . , Is, the minimum distance of C1 is equal to the minimum among
the minimum distances of I0, I1, . . . , Is with I j , 0. Similarly, the minimum distance of C2 is the minimum
among the minimum distances of I′0, I

′

1, . . . , I
′
s with I′j , 0. Now I j and I′j are either both zero or both non-zero

for all j. Also, from Theorem 5.2, dH(I j) = dH(I′j) for I j, I′j , ⟨0⟩. It follows that dH(C1) = dH(C2).
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6. Augmented and extended abelian codes over R

Recall that for any linear code C of length n over R, and ϵ ∈ R, the augmented and extended code (C)ϵ
is defined by

(C)ϵ = {(c, c∞) + λ(1, ϵn) | c ∈ C, λ ∈ R} ,

where c∞ =
∑n−1

i=0 ci for any c = (c0, c1, . . . , cn−1) ∈ C.

Theorem 6.1. Suppose ϵ is a unit in R, G is an abelian group of order n, and (X,A,B) is a splitting of G given by
α = −1. Let C be the corresponding generalized duadic code over R. Then (C)ϵ is self-dual if and only if ϵ2n + 1 ≡ 0
mod p.

Proof. If (C)ϵ is a self-dual code for some unit ϵ ∈ R, then (1, ϵn) · (1, ϵn) = 0 in R implies that ϵ2n + 1 ≡ 0
mod p. Conversely, it is easy to observe that (C)ϵ contains exactly p2(n+1) elements. Note also that the choice
of the ideal I0 is irrelevant when we consider the augmented and extended code. Therefore, we may assume
C to be a duadic code and take I0 = ⟨v⟩. By Theorem 4.3, C is self-orthogonal. Then for any codewords
c = (c0, c1, . . . , cn−1) and c′ = (c′0, c

′

1, . . . , c
′

n−1) in C, the following conditions are satisfied:

(c, c∞) · (c′, c′∞) = 0 , (1)
(c, c′∞) · (1, ϵn) = 0 , (2)
(1, ϵn) · (1, ϵn) = 0 , (3)

where c∞ = ϵ
∑n−1

i=0 ci and c′∞ = ϵ
∑n−1

i=0 c′i . Equation (1) holds because C is self-orthogonal and c∞, c′∞ ∈ ⟨v⟩, as
c∞ = ϵĉ0, c′∞ = ϵĉ′0 ∈ I0. For equation (2), the left hand side is equal to (n + 1)

∑n−1
i=0 ci, and for equation (3),

the left hand side is equal to n(ϵ2n+ 1). Since (n, p) = 1, therefore the result holds as ϵ2n+ 1 ≡ 0 mod p.

If R = F2 + uF2 + vF2 + uvF2, then for any a ∈ R, we have [29]

a2 =

0, if a is a non-unit ,
1, otherwise .

The following result then follows immediately from Theorem 6.1.
Corollary 1. Let p = 2, i.e., R = F2 + uF2 + vF2 + uvF2. Suppose ϵ is a unit in R, G is an abelian group of
order n, and (X,A,B) is a splitting of G given by α = −1. Let C be the corresponding generalized duadic
code over R. Then (C)ϵ is self-dual if and only if n is odd.

Theorem 6.2. Let G be an abelian group of order n and C be an abelian code in R[G]. If (C)ϵ is a self-dual code for
unit ϵ ∈ R, then ϵ2n + 1 ≡ 0 mod p and C is a generalized duadic code attached to a splitting (X,A,B) of G given
by α = −1. In particular, any self-dual augmented and extended abelian code over R is the augmented and extended
code of a duadic code.

Proof. Since (C)ϵ is self-dual, from Theorem 6.1, ϵ2n + 1 ≡ 0 mod p. Let the abelian code C be given by
C = I0× I1× · · · × Is. Consider the orbits of G. Let X′ denote the union of the orbits Oi for which each Ii is one
of the ideals ⟨u⟩, ⟨v⟩ and ⟨u + v⟩; A be the union of the orbits Oi for which each Ii is one of the ideals ⟨u, v⟩
and ⟨1⟩; and B be the union of the orbits Oi for which Ii is one of the ideals ⟨uv⟩ and ⟨0⟩. The augmented
code C is given by I0 × I1 × · · · × Is, where I0 = ⟨1⟩. From Theorem 3.3, we know that the dual of C is given
by C⊥ = I0

σ(0) × I0
σ(1) × · · · × I0

σ(s).
Let c ∈ C, and c′ ∈ C⊥. The from equation (1), we have

(c, c∞) · (c′, c′∞) = 0 .
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It is also easy to see that

(1, ϵn) · (c′, c′∞) = 0 .

Therefore (C⊥)ϵ ⊆ ((C)ϵ)⊥ ⊆ (C)ϵ, which implies that C⊥ ⊆ C.
Now if I0 = ⟨uv⟩, then we have [C : C] = |I0

0 | = p3, where [C : C] denotes the index of C in C as a subgroup.
As C⊥ ⊆ C, it can easily be shown that [C : C⊥] = |I0| = p. This means in particular that I0

σ( j) = I j for 0 ≤ j ≤ s.
This implies that (X′ ∪ {0},A,B) gives a splitting of G by α = −1, and C is therefore a generalized duadic
code attached to this splitting.

6.1. Isoduality

For a given abelian code over R, a multiplier α acts on C by permutation of coordinates. We define the
action of a multiplier α on the augmented and extended code (C)ϵ by the rule (c, c∞) 7→ (cα, c∞). Hence
((C)ϵ)α = ((C)α)ϵ. We say that (C)ϵ is isodual with respect to α if ((C)ϵ)⊥ = ((C)α)ϵ. Here we assume that σ is
an identity map.

It can be observed that a multiplierα leaves the parity-check coordinate c∞ of every codeword unchanged
while acting as a permutation on the other coordinates. The following result follows from this observation.

Theorem 6.3. Suppose ϵ is a unit in R. Let G be an abelian group of order n, and (X,A,B) be a splitting of G given
by α. Let C be an attached generalized duadic code over R. Then (C)ϵ is isodual by α if and only if ϵ2n + 1 ≡ 0
mod p.

Furthermore, if we replace C by C
α

in Theorem 6.2, we get the following result.

Theorem 6.4. Suppose ϵ is a unit in R. Let G be an abelian group of order n, and (X,A,B) be a splitting of G given
by α. Let C be an attached generalized duadic code over R such that (C)ϵ is isodual by a multiplier α. Then ϵ2n+1 ≡ 0
mod p and C is a generalized duadic code given by α. In particular, when I0 is one of the ideals ⟨u⟩, ⟨v⟩ and ⟨u + v⟩,
any augmented and extended abelian code over R that is isodual by a multiplier α is the augmented and extended
code of a duadic code attached to a splitting (X,A,B) of G given by α.

7. Type II codes over F2 + uF2 + vF2 + uvF2

In this section, we consider p = 2, so that R = F2+uF2+vF2+uvF2. Here we give a criterion for self-dual
augmented and extended abelian codes over R to be of Type II.

Definition 7.1. [1] A self-dual code over R is said to be Type II if the Lee weight of every codeword is a multiple of 4
and Type I otherwise.

In the following lemma, we use a constantA. The value of this constant is given by the authors in [1].
Lemma 1 [1] If C is a linear code over R, then for any two codewords c, c′ ∈ C, we have

wL(c + c′) = wL(c) + wL(c′) − 2Amod 4,

whereA is as defined in [Theorem 4, 1].

Theorem 7.2. Let C = I0 × I1 × · · · × Is be a generalized duadic code over R attached to a splitting (X,A,B) of an
abelian group G given by α = −1 and with I0 = ⟨0⟩. Then the Lee weights of all the codewords in C are multiples of 4.

Proof. Define a map f : C→ Z4 such that

c 7→ wL(c) mod 4 .



R. Kumar, M. Bhaintwal / Filomat 37:12 (2023), 3985–3998 3995

Since C is a self-orthogonal code, the number of units in every codeword must be even. Therefore A is
even, whereA is as defined above. Hence, from Lemma 1.

f (c + c′) = f (c) + f (c′),

i.e., f is a group homomorphism. As C is a self-orthogonal code, from Theorem 4.3 the Lee weight of any
codeword in C is even. Therefore the image of f is contained in the ideal ⟨2⟩ ofZ4. Further, since ker f is an
ideal of the ring Z4[G], the index of ker f when considered as a subgroup of Z4[G] is 1 or 2. Now suppose
C = I0 × I1 × · · · × Is, and ker f = I′0 × I′1 × · · · × I′s, where I′j ⊆ I j, 0 ≤ j ≤ s. Since the only orbit of G of size 1 is
the orbit O0 = {0}, this means that I j = I′j for all j, 1 ≤ j ≤ s, and I′0 is of index 1 or 2 in I0. But I0 = ⟨0⟩ and
hence cannot contain an ideal of index 2. Therefore, ker f = C, i.e., all the codewords in C have Lee weights
multiples of 4. Hence the result.

We divide the units of R into two subsets U1 and U2 as follows.

U1 = {1, 1 + u, 1 + v, 1 + u + v + uv} ,
U2 = {1 + v + v, 1 + u + uv, 1 + v + uv, 1 + uv} .

Then for any unit a ∈ R, we have

wL(a) =

1, if a ∈ U1 ,

3, if a ∈ U2 .

Theorem 7.3. If ϵ ∈ U1, then a self-dual augmented and extended Abelian code (C)ϵ of length n is of Type II if and
only n + 1 ≡ 0 mod 4.

Proof. Since (1, ϵn) ∈ (C)ϵ), the assumption that such a code is of Type II implies that (1, ϵn) · (1, ϵn) = n+1 ≡ 0
mod 4.

Conversely, suppose that n + 1 ≡ 0 mod 4. From Theorem 6.2, C is a generalized duadic code attached
to a splitting (X,A,B) of G given by α = −1, such that I0 = ⟨0⟩. We need to show that all words of the form
(c, c∞) + λ(1, ϵn) have Lee weights multiples of 4. For I0 = ⟨0⟩, we have c∞ = 0. Now, as n + 1 ≡ 0 (mod 4),
from Theorem 7.2, we have

wL((c, c∞)) = wL((c, 0)) ≡ 0 (mod 4) ,
wL((1, ϵn)) = wL((1, 1)) ≡ 0 (mod 4), and

wL((c, c∞) + λ(1, ϵn)) = wL((c, c∞)) + wL(λ(1, ϵn)) ≡ 0 (mod 4) .

Hence the result holds.

8. Examples

Now, we present some examples of abelian codes over R. All the computations to determine minimum
distance of codes were performed in Magma [32].

Example 8.1. Let p = 2, i.e., R = F2 + uF2 + vF2 + uvF2, and n = 9. Suppose G = Z3 ×Z3.. Orbits of G are given
by O0 = {00}, O1 = {01, 02}, O2 = {10, 20}, O3 = {11, 22}, and O4 = {12, 21}. Hence

R[G] ≃ R ×Ru,v,2 ×Ru,v,2 ×Ru,v,2 ×Ru,v,2 ,

the corresponding abelian codes of length 9 are presented in Table 1, where the codes are specified by their components
in each of the five orbits. For example, 1 − 1 − 1 − 1 − u represents the code whose components from the five orbits in
the above order are 1, 1, 1, 1, and u, respectively. The codes with ∗ denote binary optimal codes.

Example 8.2. Let p = 3, i.e., R = F3 + uF3 + vF3 + uvF3, and n = 4. Suppose G = Z2 ×Z2. Orbits of G are given
by O0 = {00}, O1 = {01}, O2 = {10}, O3 = {11}. Hence

R[G] ≃ R × R × R × R ,

the corresponding abelian codes of length 4 are presented in Table 2. The codes with ∗ denote ternary optimal codes.
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Table 1: Duadic codes of R(Z3 × Z3), R = F2 +
uF2 + vF2 + uvF2.
Abelian code(C) ϕ(C) Comments for ϕ(C)
0 − 0 − 0 − 0 − uv [36, 2, 24]∗ Self-orthogonal
0 − 0 − 0 − uv − 0 [36, 2, 24]∗ Self-orthogonal
0 − 0 − uv − 0 − 0 [36, 2, 24]∗ Self-orthogonal
0 − uv − 0 − 0 − 0 [36, 2, 24]∗ Self-orthogonal
u − (u + v) − (u + v) − 1 − 1 [36, 26, 4]∗

u − (u + v) − v − 1 − 1 [36, 26, 4]∗

u − (u + v) − u − 1 − 1 [36, 26, 4]∗

v − 1 − 1 − u − v [36, 26, 4]∗

v − 1 − 1 − u − (u + v) [36, 26, 4]∗

v − 1 − 1 − v − (u + v) [36, 26, 4]∗

u − u − 1 − v − 1 [36, 26, 4]∗

u − u − v − 1 − 1 [36, 26, 4]∗

v − 1 − 1 − (u + v) − (u + v) [36, 26, 4]∗

1 − u − 1 − 1 − 1 [36, 32, 2]∗

1 − v − 1 − 1 − 1 [36, 32, 2]∗

1 − 1 − (u + v) − 1 − 1 [36, 32, 2]∗

1 − 1 − 1 − (u + v) − 1 [36, 32, 2]∗

(u + v) − u − u − u − u [36, 18, 4] Self-dual
v − u − u − u − u [36, 18, 4] Self-dual
u − u − v − v − u [36, 18, 4] Self-dual
v − u − v − v − u [36, 18, 4] Self-dual
(u + v) − u − v − v − u [36, 18, 4] Self-dual
u − u − u − u − u [36, 18, 2] Self-dual

9. Conclusion

In this paper, we have studied duadic codes over the ring R = F2+uF2+vF2+uvF2, u2 = v2 = 0,uv = vu.
These codes have been studied here by considering them as a special class of abelian codes. Through
their residue codes and torsion codes, we have determined some characterizations of these codes. Some
conditions related to their self-orthogonality and self-duality are obtained. Also, some results related to
minimum Lee distances of duadic codes over R are presented. We have also studied Type II self-dual
augmented and extended codes over R. Some optimal binary linear codes of length 36 have been obtained
as Gray images of duadic codes of length 9 over R.
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Table 2: Duadic codes of R(Z2 × Z2), R = F3 +
uF3 + vF3 + uvF3.
Abelian code(C) ϕ(C)
0 − 0 − 0 − uv [16, 1, 16]∗

0 − 0 − uv − 0 [16, 1, 16]∗

0 − uv − 0 − 0 [16, 1, 16]∗

0 − 0 − 0 − uv [16, 1, 16]∗

1 − 1 − 1 − u [16, 14, 2]∗

1 − 1 − 1 − v [16, 14, 2]∗

1 − 1 − 1 − u ∗ v [16, 13, 2]∗

1 − 1 − u ∗ v − 1 [16, 13, 2]∗

1 − u ∗ v − 1 − 1 [16, 13, 2]∗

u ∗ v − 1 − 1 − 1 [16, 13, 2]∗

1 − u − u − v [16, 10, 4]∗

1 − u − u − (u + v) [16, 10, 4]∗

1 − u − v − u [16, 10, 4]∗

1 − u − v − v [16, 10, 4]∗

1 − u − v − (u + v) [16, 10, 4]∗

1 − u − (u + v) − (u + v) [16, 10, 4]∗

1 − v − (u + v) − (u + v) [16, 10, 4]∗

u − 1 − u − v [16, 10, 4]∗

u − 1 − u − (u + v) [16, 10, 4]∗

v − 1 − u − v [16, 10, 4]∗

v − 1 − u − (u + v) [16, 10, 4]∗

(u + v) − 1 − u − v [16, 10, 4]∗

(u + v) − 1 − u − (u + v) [16, 10, 4]∗
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