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Abstract. A constructive algorithm based on the theory of spectral pairs for constructing nonuniform
wavelet basis in L2(R) was considered by Gabardo and Nashed. In this setting, the associated translation
set is a spectrum Λ which is not necessarily a group nor a uniform discrete set, given Λ = {0, r/N} + 2Z,
where N ≥ 1 (an integer) and r is an odd integer with 1 ≤ r ≤ 2N−1 such that r and N are relatively prime and
Z is the set of all integers. In this article, we continue this study based on non-standard setting and obtain
some inequalities for the nonuniform wavelet system

{
f
µ
j,λ(x) = (2N) j/2f

(
(2N) jx − λ

)
e−
ιπA

B (t2
−λ2), j ∈ Z, λ ∈ Λ

}
to be a frame associated with linear canonical transform in L2(R). We use the concept of linear canonical
transform so that our results generalise and sharpen some well-known wavelet inequalities.

1. Introduction

Frames were widely studied by Duffin and Schaeffer [9] in the light of non-harmonic Fourier series in
year 1952. They were further investigated in 1986 by Daubechies et al.[7]. This process of frame study
continued. The unique and interesting properties of frames and their duals make them able to play an
important role in the characterization of signal and image processing, Image processing, signal spaces,
sampling theory and many other fields. To be precise, we can say a frame is a collection of functions or
signals in a separable Hilbert space which allows stable but not unique decomposition. Mathematically,
we can say a family

{
fk
}∞
k=1 of functions of a Hilbert spaceH is called a frame forH if we can find constant

A,B > 0 with the condition f ∈H,

A
∥∥∥ f

∥∥∥2

2
≤

∞∑
k=1

∣∣∣∣〈 f , fk
〉∣∣∣∣2 ≤ B

∥∥∥ f
∥∥∥2

2
, (1)

where A is lower frame bound while as B is the upper frame bound. When the bounds are equal, we have
a tight frame. We have a normalized tight frame when A = B = 1. The frames which are born with the joint
action of dilations and translations of finite number of signals will worth to study. To investigate these
frames, for a, b ∈ R with a > 1, and b > 0, we define the wavelet systems as

F (f, a, b) =
{
f j,k =: a j/2f

(
a jx − kb

)
: j, k ∈ Z

}
. (2)
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Email address: gyounusg@gmail.com (M. Younus Bhat)



M. Y. Bhat / Filomat 37:12 (2023), 3725–3735 3726

One should note that the systems F (f, a, b) which will become frames for L2(R) have a wide range of
applications [2, 6]. Thus it is important to impose the on f, a and b such that the systemF (f, a, b) will become
a frame. It was Daubechies, who in 1990 [7] obtained the first necessary conditions for wavelet frames,
where as, Chui and Shi [6] obtained an improved result in 1993. Cassaza and Christensen [4] modified the
results of Daubechies’s sufficient condition for wavelet frames in L2(R). This process is continuing till date.
For more details, we refer to [5, 8, 20, 23, 24]. Recently, Gabardo an Nashed [10, 11]developed the theory of
nonuniform wavelets and wavelet sets in L2(R) for which the translation set is no longer a discrete subgroup
of R, but a union of two lattices. The nonuniform wavelet frames that are developed from spectral pairs
were studied by Sharma and Manchanda [21] with the help of Fourier transforms. Actually they studied a
necessary and sufficient conditions which makes the nonuniform wavelet system to be a frame for L2(R).
More results in this subject can also be found in [15, 16, 18, 19] and the references therein.

The concept of novel multiresolution analysis in nonuniform settings was established by Shah and Lone
[14]. They call it Nonuniform Multiresolution analysis associated with linear canonical transform (LCT-
NUMRA). While as Bhat and Dar [1] introduced fractional vector-valued nonuniform MRA and associated
wavelet packets (LCT-VNUMRA) where the associated subspace Vµ0 of L2

(
R,CM

)
has an orthonormal

basis of the form
{
Φ(x − λ)e−

−ιπA
B (t2

−λ2)
}
λ∈Λ

where Λ = {0, r/N} + 2Z,N ≥ 1 is an integer and r is an odd
integer such that r and N are relatively prime. These two authors have also constructed vector-valued
nonuniform wavelet packets associated with the novel multiresolution analysis. Moreover they have
developed a necessary condition and sufficient condition for nonuniform wavelet frames associated with
linear canonical transform[2]. More results in this direction can be found in [3, 12, 13, 17, 22].

Motivated by the above described work, we present generalized inequalities for nonuniform wavelet
frames in L2(R) via linear canonical transform transform. The inequalities we proposed are stated in terms
of the linear canonical transform of the wavelet system’s generating signals, and the inequalities are better
than that obtained in [2] by Bhat and Dar.

The paper is structured as follows. In Section 2, we introduce some notations and preliminaries related
to the nonuniform wavelets related to the one-dimensional spectral pairs. Then, we establish sufficient
conditions for nonuniform wavelet frame associated with linear canonical transform.

2. Nonuniform Wavelet Frames in L2(R)

For the sake of simplicity, we consider the second order matrix µ2×2 = (A,B,C,D). Let us first introduce
the definition of Linear Canonical Transform.

Definition 2.1. The linear canonical transform of any f ∈ L2(R) with respect to the unimodular matrix µ2×2 =
(A,B,C,D)is defined by

L[ f ](ζ) =
{ ∫

R
f (t)Kµ(t, ζ)dt B , 0

√
D exp CDζ2

2 f (Dζ) B = 0.
(3)

whereKµ(t, ζ) is the kernel of linear canonical transform and is given by

Kµ(t, ζ) =
1

√
2πιB

exp
{
ι(At2

− 2tζ +Dζ2)
2B

}
, B , 0

The inversion formula corresponding to linear canonical transform (3) is defined by

f (t) =
∫
R

L[ f ](ζ)Kµ(t, ζ)dζ.

Morever the well known Parsevel’s formula of the linear canonical transform (3) may be stated as〈
L[ f ],L[1]

〉
=

〈
f , 1

〉
, for all f , 1,L2(R).

We first recall the definition of a nonuniform multiresolution analysis associated with linear canonical
transform (as defined in Ref. [14]) and some of its properties.
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Definition 2.2. For an integer N ≥ 1 and an odd integer r with 1 ≤ r ≤ 2N−1 such that r and N are relatively prime,
a nonuniform multiresolution analysis associated with linear canonical transform is a sequence of closed subspaces{
Vµj : j ∈ Z

}
of L2(R) such that the following properties hold:

(a) Vµj ⊂ Vµj+1 for all j ∈ Z;

(b)
⋃

j∈Z Vµj is dense in L2(K);

(c)
⋂

j∈Z Vµj = {0};

(d) f (t) ∈ Vµj if and only if f (2N·) e−ιπA(1−(2N)2)t2/B
∈ Vµj+1 for all j ∈ Z;

(e) There exists a signal φ in Vµ0 such that
{
φ(t − λ)e−

ιπA
B (t2

−λ2) : λ ∈ Λ
}
, is a complete orthonormal basis for Vµ0 .

Given a LCT- NUMRA
{
Vµj : j ∈ Z

}
, we define another sequence

{
Wµ

j : j ∈ Z
}

of closed subspaces of

L2(R) by Wµ
j := Vµj+1 ⊖ Vµj , j ∈ Z. These subspaces inherit the scaling property of Vµj , namely,

f (·) ∈Wµ
j if and only if f (2N·) e2ιπλζ/B

∈Wµ
j+1. (4)

Moreover, the subspaces
{
Wµ

j : j ∈ Z
}

are mutually orthogonal, and we have the following orthogonal
decomposition:

L2(R) =
⊕
j∈Z

Wµ
j = Vµ0 ⊕

⊕
j≥0

Wµ
j

 . (5)

A set of signals
{
f
µ
1 , f
µ
1 , . . . , f

µ
2N−1

}
in L2(R) is said to be a set of basic wavelets associated with the LCT-

NUMRA
{
Vµj : j ∈ Z

}
if the family of signals{

fℓ(t − λ)e−
ιπA

B (t2
−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ

}
forms an orthonormal basis for Wµ

0 .
In view of (4) and (5), it is clear that if {f1, f1, . . . , f2N−1} is a set of basic wavelets, then{

(2N) j/2fℓ

(
(2N) jt − λ

)
e−
ιπA

B (t2
−λ2) : 1 ≤ ℓ ≤ 2N − 1, λ ∈ Λ

}
constitutes an orthonormal basis for L2(R).

Given N ≥ 1, where N ∈ Z with an odd integer r under the assumption 1 ≤ r ≤ 2N − 1 such that r and
N are relatively prime, let us define

Λ =
{
0,

r
N

}
+ 2Z =

{
rk
N
+ 2n : n ∈ Z, k = 0, 1

}
. (6)

One can verify that Λ is neither a group nor a uniform discrete set. However, it is the union of Z and a
translate of Z. Furthermore, Λ is the spectrum for the spectral set Υ =

[
0, 1

2

)
∪

[
N
2 ,

N+1
2

)
and the pair (Λ,Υ)

is called a spectral pair.
With f ∈ L2(R), let us consider the nonuniform wavelet system associated with linear canonical transform

as

G(f, j, λ, µ) =
{
f
µ
j,λ =: (2N) j/2f

(
(2N) jt − λ

)
e−
ιπA

B (t2
−λ2) : j ∈ Z, λ ∈ Λ

}
. (7)

The above defied wavelet systemG(f, j, λ, µ) is a nonuniform wavelet frame for L2(R) associated with linear
canonical transform, if we have the positive constants 0 < C ≤ D < ∞ such that

C
∥∥∥ f

∥∥∥2

2
≤

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ D

∥∥∥ f
∥∥∥2

2
, (8)

is true for every signal f ∈ L2(R). To defend our main results, we require the help of the following well
known lemma.
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Lemma 2.3. Suppose that
{
fk
}∞
k=1 is a family of elements in a Hilbert spaceH such that the inequalities (1) holds for

all f in a dense subset D ofH. Then, the same inequalities is true for all f ∈H.

In the light of Lemma 2.3, let us consider the following set of signals:

D =
{

f ∈ L2(R) : f̂ ∈ L∞(R) and f̂ has compact support in R
}
.

It is obvious that D is a dense subspace of the Hilbert space. Hence, it suffices to show that the system
G(f, j, λ, µ) given by (7) is a frame for the Hilbert space if (8) hold for all f ∈ D. Further, we require the
following lemma on nonuniform wavelet frames whose proof can be omitted for the sake of brevity.

Lemma 2.4. Let f ∈ D and f ∈ L2(R). If esssup
{∑

j∈Z

∣∣∣f̂(((2N) jB)−1ζ
)∣∣∣2 : ζ ∈ [1, 2NB]

}
< ∞, then

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 = ∫

R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 ∑
j∈Z

∣∣∣∣f̂(((2N) jB)−1ζ
)∣∣∣∣2 dζ + Tf( f ), (9)

where Tf( f ) = T0 + T1 + · · · + T2N−1 and for 0 ≤ p ≤ 2N − 1,Tp is given by

Tp =
1

4N

∑
j∈Z

∑
ℓ,p

∫
R

{
f̂
(
ζ
B
+ (2N) j

p
2

)
f̂

(
ζ

(2N) jB
+

p
2

)
f̂
(
ζ
B
+ (2N) j ℓ

2

)

× f̂

(
ζ

(2N) jB
+
ℓ
2

) (
1 + eπi r

N (ℓ−p)
) dζ. (10)

Let us now establish the first sufficient condition for the nonuniform wavelet system G(f, j, λ, µ) associ-
ated with linear canonical transform given by (7) to be a frame for L2(R). Here we not only obtain various
Inequalities for the nonuniform wavelet system but also modify the already obtained inequalities in [2]. So,
we set

Ωf(m) = ess sup


∑
j∈Z

∣∣∣∣∣∣βf
(
m,

ζ

(2N) jB

)∣∣∣∣∣∣ : ζ ∈ [1, 2NB]

 , (11)

where

tf (m, ζ) =
∑
k∈N0

f̂
(
(2N)kζ

)
f̂

(
(2N)k

( ζ
B
+

m
2

))
. (12)

We also use the following set:

Θ =
{
(2N)Bk + ℓ : k ∈N0, 1 ≤ ℓ ≤ 2N − 1

}
.

Analogously for the nonuniform case, we establish the first sufficient condition as follows.

Theorem 2.5. Suppose fµ ∈ L2(R) such that

Af = ess inf
ζ∈[1,2NB]

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 − ∑
ν,ν′∈Θ

[
Ωf

(
ν − ν′

2

)
·Ωf

(
β − ν

2

)]1/2

> 0,

Bf = ess sup
ζ∈[1,2NB]

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 + ∑
ν,ν′∈Θ

[
Ωf

(
ν − ν′

2

)
·Ωf

(
β − ν

2

)]1/2

< ∞.

Then
{
f
µ
j,λ : j ∈ Z, λ ∈ Λ

}
is a frame for L2(R) with bounds Af and Bf.
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Proof. As the last series in (10) converges absolutely for every f ∈ D, we use Levi lemma to estimate Tf( f )
by rearranging the series as well as changing the orders of summation and integration . Therefore we have

∣∣∣∣Tf( f )
∣∣∣∣ ≤ 1

2NB

2N−1∑
p=0

∑
j∈Z

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)
f̂

(
ζ

(2N) jB

)∣∣∣∣∣∣

∑
ℓ,p

∣∣∣∣∣∣∣ f̂
(
ζ
B
+ (2N) j

(
ℓ − p

2

))
f̂

(
ζ

(2N) jB
+
ℓ − p

2

)∣∣∣∣∣∣∣
 dζ

=
1

2NB

2N−1∑
ν=0

∑
j∈Z

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣∣
∑

k∈N0

∑
ν,ν′∈Θ

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)

× f̂
(
ζ
B
+ (2N) j+k

(
ν − ν′

2

))
f̂

(
ζ

(2N) jB
+ (2N)k

(
ν − ν′

2

))∣∣∣∣∣∣∣
 dζ

=
1

2NB

2N−1∑
ν=0

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣∣

∑
k∈N0

∑
ν,ν′∈Θ

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) j−k

)

× f̂
(
ζ
B
+ (2N) j

(
ν − ν′

2

))
f̂

(
ζ

(2N) j−k
+ (2N)k

(
ν − ν′

2

))∣∣∣∣∣∣∣
 dζ

=
1

2NB

2N−1∑
ν=0

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣∣

∑
j∈Z

∑
ν,ν′∈Θ

∣∣∣∣∣ f̂ (
ζ
B
+ (2N) j

(
ν − ν′

2

))

×

∑
k∈P

f̂

(
ζ

(2N) j−k

)
f̂

(
(2N)k

(
ζ

(2N) jB
+
ν − ν′

2

))∣∣∣∣∣∣∣
 dζ

=
1

2NB

2N−1∑
ν=0

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣∣

∑
j∈Z

∑
ν,ν′∈Θ

∣∣∣∣∣ f̂ (
ζ
B
+ (2N) j

(
ν − ν′

2

))
×

∣∣∣∣∣∣tf
(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣
}

dζ

=
1

2NB

2N−1∑
ν=0

∑
j∈Z

∑
ν,ν′∈Θ

∫
R


∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣1/2


×


∣∣∣∣∣ f̂ (
ζ
B
+ (2N) j

(
ν − ν′

2

))∣∣∣∣∣
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣1/2
 dζ

≤
1

2NB

2N−1∑
ν=0

∑
j∈Z

∑
ν,ν′∈Θ

{∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣ dζ
}1/2

×

{∫
R

∣∣∣∣∣ f̂ (
ζ
B
+ (2N) j

(
ν − ν′

2

))∣∣∣∣∣2
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣ dζ
}1/2

≤
1

2NB

2N−1∑
ν=0

∑
ν,ν′∈Θ


∑
j∈Z

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣ dζ


1/2

×


∑
j∈Z

∫
R

∣∣∣∣∣ f̂ (
ζ
B
+ (2N) j

(
ν − ν′

2

))∣∣∣∣∣2
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣ dζ


1/2
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=
1

2NB

2N−1∑
ν=0

∑
ν,ν′∈Θ


∑
j∈Z

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
∣∣∣∣∣∣tf

(
ν − ν′

2
,
ζ

(2N) jB

)∣∣∣∣∣∣ dζ


1/2

×


∑
j∈Z

∫
R

∣∣∣ f̂ (ζ)
∣∣∣2 ∣∣∣∣∣∣tf

(
−
ν − ν′

2
,
ζ

(2N) j

)∣∣∣∣∣∣ dζ


1/2

≤
1

2NB

2N−1∑
ν=0

∑
ν,ν′∈Θ

{∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2Ωf (ν − ν′2

)
dζ

}1/2

×

{∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2Ωf (−(ν − ν′)
2

)
dζ

}1/2

=
1

2NB

2N−1∑
ν=0

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 dζ
∑
ν,ν′∈Θ

[
Ωf

(
ν − ν′

2

)
·Ωf

(
−(ν − ν′)

2

)]1/2

.

It is clear from the expression (9) in Lemma 2.3 that

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≥ ∫

R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣. − ∑
ν,ν′∈Θ

[
Ωf

(
ν − ν′

2

)
·Ωf

(
−(ν − ν′)

2

)]1/2
 dζ, (13)

and

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ ∫

R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 + ∑
ν,ν′∈Θ

[
Ωf

(
ν − ν′

2

)
·Ωf

(
−(ν − ν′)

2

)]1/2
 dζ. (14)

We take infimum in (13) and supremum in (14).Thus

Af

∥∥∥ f
∥∥∥2

2
≤

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ Bf∥∥∥ f

∥∥∥2

2
,

hold for all f ∈ D. This completes the proof of Theorem 2.5.

On the same platform as in [2], we modify the notations as:

Ξ =

{
ν ∈ R : there exists ( j, λ) ∈ Z ×Λ such that ν =

(2N) jB(λ − σ)
2

;λ , σ
}
, (15)

and for all ν ∈ Ξ, we define

I(ν) =
{

( j, λ) ∈ Z ×Λ : ν =
(2N) jB(λ − σ)

2

}
, (16)

Ω+ν (ζ) =
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)
, (17)

Ω−ν (ζ) =
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
−
λ − σ

2

)
. (18)

Having defined above notations, we reintroduce the following result as.



M. Y. Bhat / Filomat 37:12 (2023), 3725–3735 3731

Theorem 2.6. Suppose f ∈ L2(R) such that

Cf = ess inf
ζ∈[1,2NB]

{
Ω+0 (ζ) −

∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ } > 0,

Df = ess sup
ζ∈[1,2NB]

∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ < +∞.

Then
{
f
µ
j,λ : j ∈ Z, λ ∈ Λ

}
is a wavelet frame for L2(R) with bounds Cf andDf.

Proof. We first note that Ω+0 (ζ) =
∑

j∈Z

∣∣∣f̂ (ζ/(2N) j
) ∣∣∣2 by the definition of Ω+ν (ζ). We apply Lemma 2.3 to

re-estimate Tf( f ) for f ∈ D as

∣∣∣Tf( f )
∣∣∣ =

∣∣∣∣∣∣∣∣ 1
4NB

2N−1∑
p=0

∑
j∈Z

∑
ℓ,p

∫
R

{
f̂
(
ζ
B
+ (2N) j

p
2

)
f̂

(
ζ

(2N) jB
+

p
2

)
f̂
(
ζ
B
+ (2N) j ℓ

2

)

× f̂

(
ζ

(2N) jB
+
ℓ
2

) (
1 + eπi r

N (ℓ−p)
) dζ

∣∣∣∣∣∣∣
≤

1
2NB

2N−1∑
p=0

∑
j∈Z

∑
ℓ,p

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B
+ (2N) j

p
2

)
f̂
(
ζ + (2N) j ℓ

2

)∣∣∣∣∣∣
×

∣∣∣∣∣∣∣f̂
(
ζ

(2N) jB
+

p
2

)
f̂

(
ζ

(2N) jB
+
ℓ
2

)∣∣∣∣∣∣∣ dζ
=

∑
ν∈Ξ\{0}

∑
( j,λ),( j,σ)∈I(ν)

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B
+ (2N) jλ

2

)
f̂
(
ζ + (2N) j σ

2

)∣∣∣∣∣∣
×

∣∣∣∣∣∣∣f̂
(
ζ

(2N) jB
+
λ
2

)
f̂

(
ζ

(2N) jB
+
σ
2

)∣∣∣∣∣∣∣ dζ
≤

∑
ν∈Ξ\{0}

∑
( j,λ),( j,σ)∈I(ν)

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)
f̂
(
ζ
B
+ (2N) j

(
λ − σ

2

))∣∣∣∣∣∣
×

∣∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)∣∣∣∣∣∣∣ dζ
=

∑
ν∈Ξ\{0}

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)
f̂
(
ζ
B
+
ν
2

)∣∣∣∣∣∣


∑
( j,λ),( j,σ)∈I(ν)

∣∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)∣∣∣∣∣∣∣
 dζ

=
∑
ν∈Ξ\{0}

∫
R

∣∣∣∣∣∣ f̂ (
ζ
B

)
f̂
(
ζ
B
+
ν
2

)∣∣∣∣∣∣ ∣∣∣∣Ω+ν (ζ)
∣∣∣∣dζ (

By Eq. (17)
)

≤

∑
ν∈Ξ\{0}

{∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ}1/2 {∫

R

∣∣∣∣∣ f̂ (
ζ
B
+
ν
2

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ}1/2

≤

 ∑
ν∈Ξ\{0}

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ

1/2  ∑
ν∈Ξ\{0}

∫
R

∣∣∣∣∣ f̂ (
ζ
B
+
ν
2

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ

1/2

. (19)
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Put η =
ζ
B
+ ν/2. We have ν = (2N) jB(λ − σ) for ( j, λ) , ( j, σ) ∈ I(ν) that

Ω+ν (ζ) =
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)

=
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
((2N) jB)−1

(
η −
ν
2

))
f̂

(
((2N) jB)−1

(
η −
ν
2

)
+
λ − σ

2

)

=
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
η

(2N) j − ((2N) jB)−1 ν
2

)
f̂

(
η

(2N) j − ((2N) jB)−1 ν
2
+
λ − σ

2

)

=
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
η

(2N) j −
λ − σ

2

)
f̂

(
η

(2N) j

)
= Ω−ν (ζ)

(
By Eq. (18)

)
.

Therefore∑
ν∈Ξ\{0}

∣∣∣Ω+ν (η)
∣∣∣ = ∑

ν∈Ξ\{0}

∣∣∣Ω−ν (η)
∣∣∣. (20)

Again changing ζ + ν/2 to η in the last integration of (19), we obtain from (19) and (20) that

∣∣∣∣Tf( f )
∣∣∣∣ ≤  ∑

ν∈Ξ\{0}

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ

1/2  ∑
ν∈Ξ\{0}

∫
R

∣∣∣ f̂ (ζ)
∣∣∣2 ∣∣∣∣Ω−ν (η)

∣∣∣∣ dη
1/2

=

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
 ∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ dζ. (21)

Hence from (21) and (9), we get∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
Ω+0 (ζ) −

∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ dζ ≤

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 , (22)

and ∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ ∫

R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
Ω+0 (ζ) +

∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ dζ,

or, equivalently

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ ∫

R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2
∑
ν∈Ξ

∣∣∣Ω+ν (ζ)
∣∣∣ dζ. (23)

We take infimum in (22) and supremum in (23), to get

Cf

∥∥∥ f
∥∥∥2

2
≤

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ Df∥∥∥ f

∥∥∥2

2
.

The proof of Theorem 2.6 is complete.
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Remark 2.7. The crux of our results lies in the fact that the bounds obtained in Theorem 2.6 are far better than those
of Bhat and Dar [2]. To be precise, we obtained:

A = inf
ζ∈[1,2NB]


∑
j∈Z

∣∣∣∣f̂(((2N) jB)−1ζ
)∣∣∣∣2 −∑

j∈Z

∑
ℓ,0

∣∣∣∣∣f̂(((2N) jB)−1ζ
)
f̂
(
((2N) jB)−1ζ + ℓ/2

)∣∣∣∣∣


= inf
ζ∈[1,2NB]


∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 − ∑
ν∈Ξ\{0}

∑
( j,λ),( j,σ)∈I(ν)

∣∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)∣∣∣∣∣∣∣


≤ inf
ζ∈[1,2NB]


∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 − ∑
ν∈Ξ\{0}

∣∣∣∣∣∣∣∣
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)∣∣∣∣∣∣∣∣


= inf
ζ∈[1,2NB]

{
Ω+0 (ζ) −

∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ }

= Cf,

and

B = sup
ζ∈[1,2NB]


∑
j∈Z

∑
ℓ∈Z

∣∣∣∣∣f̂(((2N) jB)−1ζ
)
f̂
(
((2N) jB)−1ζ + ℓ/2

)∣∣∣∣∣


= sup
ζ∈[1,2NB]


∑
ν∈Ξ\{0}

∑
( j,λ),( j,σ)∈I(ν)

∣∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)∣∣∣∣∣∣∣


≥ sup
ζ∈[1,2NB]


∑
ν∈Ξ\{0}

∣∣∣∣∣∣∣∣
∑

( j,λ),( j,σ)∈I(ν)

f̂

(
ζ

(2N) jB

)
f̂

(
ζ

(2N) jB
+
λ − σ

2

)∣∣∣∣∣∣∣∣


= sup
ζ∈[1,2NB]

{ ∑
ν∈Ξ\{0}

∣∣∣Ω+ν (ζ)
∣∣∣ }

= Df.

With the notations in (17) and (18), we define new sets as

∆+ν = ess sup
{ ∣∣∣Ω+ν (ζ)

∣∣∣ : ζ ∈ [1, 2NB]
}
, ∆−ν = ess sup

{ ∣∣∣Ω−ν (ζ)
∣∣∣ : ζ ∈ [1, 2NB]

}
.

Theorem 2.8. Suppose f ∈ L2(R) such that

Ef = ess inf
ζ∈[1,2NB]


∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2
 −

∑
ν∈Ξ\{0}

[
∆+ν ∆

−

ν

]1/2
> 0

Ff = ess sup
ζ∈[1,2NB]


∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2
 +

∑
ν∈Ξ\{0}

[
∆+ν ∆

−

ν

]1/2
< ∞.

Then
{
f
µ
j,λ : j ∈ Z, λ ∈ Λ

}
is a wavelet frame for L2(R) with bounds Ef and Ff.

Proof. By equation (19), we have∣∣∣∣Tf( f )
∣∣∣∣ ≤ ∑

ν∈Ξ\{0}

{∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ}1/2 {∫

R

∣∣∣∣∣ f̂ (
ζ +
ν
2

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ}1/2

=
∑
ν∈Ξ\{0}

{∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 ∣∣∣Ω+ν (ζ)
∣∣∣ dζ}1/2 {∫

R

∣∣∣ f̂ (ζ)
∣∣∣2 ∣∣∣Ω−ν (ζ)

∣∣∣ dζ}1/2

≤

∑
ν∈Ξ\{0}

[
∆+ν ∆

−

ν

]1/2
∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2 dζ.
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With the same lines on Theorem 2.5, we get

∫
R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 − ∑
ν∈Ξ\{0}

[
∆+ν ∆

−

ν

]1/2

 dζ ≤
∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ,

and ∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ ∫

R

∣∣∣∣∣ f̂ (
ζ
B

)∣∣∣∣∣2

∑
j∈Z

∣∣∣∣∣∣f̂
(
ζ

(2N) jB

)∣∣∣∣∣∣2 + ∑
ν∈Ξ\{0}

[
∆+ν ∆

−

ν

]1/2

 dζ

Hence
Ef

∥∥∥ f
∥∥∥2

2
≤

∑
j∈Z

∑
λ∈Λ

∣∣∣∣〈 f , fµj,λ
〉∣∣∣∣2 ≤ Ff∥∥∥ f

∥∥∥2

2
.

This completes the proof of Theorem 2.8.

Conclusion

The paper deals with the synthesis problem for the nonuniform wavelets in the classic Hilbert space
L2(R). We here proposed two types of the nonuniform frames and prove bounds for the appropriate wavelets
using linear canonical transform. Several special transforms can be obtained from the linear canonical
transform. For example, for µ = (1,B, 0, 1), gives the Fresnel transform, for µ = (cosθ, sinθ,− sinθ, cosθ)
the LCT yields us the fractional Fourier transform whereas for µ = (0, 1,−1, 0), we reach at the classical
Fourier transform. Moreover, Bi-lateral Laplace, Gauss-Weierstrass, and Bargmann transform are also its
special cases. Our results will therefore hold true for these transformations also.
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