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Abstract. In this study, we examine the existence of solution for some ¢-Caputo fractional differential
inclusions with arbitrary coefficients with boundary values using Wardowski-Mizoguchi-Takahashi multi-
valued contractions. Our results utilize some existence results regarding ¢-Caputo fractional differential
inclusions, in particular the results of Belmor et al. (2021). Our key findings are illustrated with an example.

1. Introduction

Recently, many researchers have been studying the mathematical modelings of some physical phe-
nomenon which appear in some technological fields, for instance, physics, mechanics and chemistry based
on fractional integro-differential operators (see, for example [5-8]). The Riemann-Liouville (R-L) and Ca-
puto integro-differential operators are the most famous fractional operators which have been used. For
having a great range of investigations of the mathematical models, a new fractional integro-differential
operator, namely @-Caputo fractional derivative was introduced in [4] and used in [9] which means that
fractional order derivative with respect to an another strictly increasing differentiable function ¢. For any
a,b € R, denote by E = C([a, b], R), the space of all continuous functions j from [a, b] into R endowed the
supremum norm ||jl| = supyefa,pl1(y)- LY([a, b], R) be the Banach space of measurable functions ; : [4,b] > R

with the norm [|j|l; = fa ’ [(ENdE. AC([a, b], R) stands for the set of absolutely continuous functions from
[a,b] into R. We define ACZ([a, b], R) by

AC(abLR) = [+ [a,0] = Ry (55 )lw) € ACa, b R), 0 = s
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which is endowed with the norm given by
ey = Zp=g 1051w,

where g € C"'([a, b], R), with g’(y) > O on [4, b], and (5’_,; = 0,404...04. . Recently, Belmor et al. [9] investigated the
S———
k—times
following fractional differential inclusion (FDI) with respect to an assumed strictly increasing differentiable
function g:

Dy, 1(0) € R(L,)(0), C€[0,1,1<n<2,

equipped with the following boudary value conditions:

P
1(0) = 84)(0) = % fo 7 ()(g(p) = gt~ el ()dh = a5, x(p, 1)),

q
1) +8g5(1) = fo g ()(g(q) — gy~ x (B, j(H)dh = bI, x(q, (@),

b
I'(w)
where CDgW is the g-Caputo fractional derivative presented by Jarad et al. [4], R : [0,/] X R = P(R) is a

multi-valued map, P(IR) is the collection of nonempty subsets of R, I 039 stands for g-R-L fractional integral
d%
and g, b are two suitable chosen constants. The authors investigated the solvability of the above mentioned
problem by using the endpoint result via p-weak contractions given by Moradi and Khojasteh [3]. Moreover,
in 2005, Echenique [1] began to combine two theories of fixed-point and graph. Consider a directed graph
K such that V(K) = A and the set of its edges E(K) is such that E(K) 2 A, where A = {(¢,¢) : ¢ € A}. Also
suppose that K possesses no parallel edges. The pair (V(K), E(K)) can be used to identify K. The graph K is
called a (C)-graph, if for any sequence {c,} in A, that ¢, — ¢ and (¢, ¢u+1) € E(K) for all n € N, there exists a
subsequence {c,, } such that (¢, ¢) € E(K) for all k € IN. In this paper, first, we demonstrate the existence of a
fixed point for a weakly generalized Wardowski-Mizoguchi-Takahashi multi-valued contraction on graphs.
Then, we study the solvability of the following ¢-Caputo FDI with arbitrary coefficients and with boundary
value conditions via weakly generalized Wardowski-Mizoguchi-Takahashi multi-valued contractions:

(9-RLFI) of fractional order zon [0,1], 0 < p,q <, x, x : [0,]] X R — R are continuous functions, 6, = ﬁ

Dl (0 € R )(0), Celabl1<r<2, (1)
c1j(@) + c20,5(a) = I3, K(p, 1(p)), )
c3(b) + cadg(b) = I}, X(4,1@)), (3)

wherea <p,g<b,0< 6,y <landc;,i=1,..,4aresome coefficients, R : [a, )] xR — P(R) is a multi-valued
map and K, x : [4,b] X R — R are continuous functions.

2. Preliminaries and auxiliary notions

We collect in B all functions N : [0, 00) — [0, 1] such that

limsupN(7) <1,

J—t

forallt > 0.
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Let (A, 0) be a metric space. Following [15], let CIB(A) be the collection of all nonempty closed bounded
subsets of A. Let H be the Hausdorff-Pompieu metric on CB(A) generated by the metric ¢ which is defined

by
H(R1,R,) = maX{ sup o(@1, R»), sup o(@z, %1)} ,

@1€R ™R,
for every Rq, R, € CB(A).
0 € Ais a fixed point of multi-valued mapping R : A — P(A) provided that 6 € RO.
The following theorem has been proved by Mizoguchi and Takahashi [14]:

Theorem 2.1. [14] Let (A, 0) be a complete metric space (c.m.s.) and let R : A — CB(A) be such that
HR,R)') <8(a(1, 1), 1),
forall 1,7 € A, where ¥ € B. Then R possesses a fixed point.

Let Q represents the collection of all nondecreasing lower semi-continuous maps 4 : [0, 00) — [0, o) so

that g(s) = 0 if and only if s = 0 and lim sup £ <.
x—0* q(K)

We say that A enjoys the property (H) provided that for any increasing sequence {®,} C A, @, — ¢
as n — oo yields that @, < ¢ for each n > 0. Also it is called that R : A — P(A) admits comparable
approximative valued property whenever for every ¢ € A there exists £ € R¢ such that (¢, ) € E(K)
and d(c, Rc) = d(c, £). Another Theorem 2.1 for single-valued mappings has been studied by Gordji and
Ramezani [12].

Theorem 2.2 ([12]). In a complete ordered metric space (A, d, <), and for an increasing mapping R : A — P(A),
let @9 < R(@o) for some @y € A and

q(d(Ry,R)") < R(g(d(y, 1)Nad(, 1)

for all comparable elements j,]’ € A and for some q € Q, where ¥ € B. If either R is continuous, or, A enjoys the
property (H), then there is a fixed point of ‘R.

First, recall some counterproductive definitions of fractional differential equations. For a continuous
function R : [0, ) — R, the Reimann-Liouville integral (R-L integral) of fractional order r is defined by

T _ 1 t r—1
ITR(t) = o) fﬁ‘ (t— 1) R(r)dr. 4)
The Caputo-derivative of fractional order « is:
ca _ 1 t n—-a—1¢p (n) _
D%(t)_F(n—a)L(t_T) RM)dt m—1<a<nn=[a]+1), (5)

and the R-L derivative of fractional order « is:

t
DAR(E) = — a)(%)n fo (t— )" R(0)dt (n—-1<a<nn=][a]+1). ©6)

I'(n -

Definition 2.3. For an increasing map g with g’(s) > 0 for any s € [a, b], the g-R-L integral of order r of an integrable
function R : [a,b] — R with respect to g is defined as

1 t
15, Bt = o) j; g ()(g(t) - g)y~ R(iydh, )

when the right side of the above equality is evaluated to a limited extent.
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If g(t) = t, then the g-R-L integral 7 is the standard R-L integral 4.

Definition 2.4. ([4]) Let n = [r] + 1. For a real mapping R € C([a, b], R), the g-R-L derivative of fractional order r
is formulated as

1 1

r = d n t ’ n—r—
DL R0 = Frs o ) [ 700 gy R, ®

provided that the right side of the above equality is evaluated to a limited extent.

The g-R-L derivative of fractional order r 8 will be the standard R-L derivative 6 if g(t) = t. Based on
these operators, a new g version of the Caputo derivative has been introduced by Almeida as follows.

Definition 2.5. ([2]) Let n = [r] + 1 and R € A’([a, b], R) be an increasing map with g’(s) > 0 for any s € [a, b].
The g-Caputo derivative of fractional order r of R with respect to g is

1 1 d
(—

PR = G

y f 7 B)(0) — g Ry, ©)

provided the right hand side of equality possesses values finitely.

If g(s) = s, then the g-Caputo derivative of fractional order r 9 will be the standard Caputo derivative of
fractional order r 29. In the following, some useful specs from the g-Caputo and g-R-L integro-derivative
operators are visible.

Let A.([0,1], R) be the family of absolutely continuous functions from [0, ] into R. Define ACZ([O, I, R)
by

1 d
n _ . n—-1 — -
A0, R) = fw : [0,1] - RI5%'w € A([0, 1], R), 6, = 70 d{,}.
Lemma 2.6. ([4]) Let n = [r] + 1. For a real mapping R € A’([a, b], R),

(6ER)(@)

a (R - R(@), (10)

I, D R = R(H) - Zj)
where 85 = 6,04 - -+ 6.

Proposition 2.7. ([2], [4]) Let n = [r] + 1. For a real mapping R € A([a, 1], R),

(i) D% (R(H) - R@) = s (R() - R@),a>0,6> -1,

(i) T2 (R(H) - R@)F = b5 (R() - R@)F,a>0,6> -1,

— T(B+a+l)
2y eyB a _ qap
(iif) Dw;y(fu,g‘}’\)(t) = Iw;y%(t),o <B<a.

3. Main results

Let E be the set of all strictly increasing continuous functions g : [0, c0) — [—00, 0] so that ¢(s) = 0 if
and only if s = 1.
As examples of elements of Z:

In(w), w € (0, ),
(i) p1(@) ={ —o, w=0,
1, w = 00,
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In(w) + w, w € (0,0),

(ii) p2(w) =§ -, @ =0,

1, w=oo,
_‘/La'i'l/ C()E(0,00),
(iii) p3(@) =4 -0, =0,

1, w = 00,

_é + 1/ w € (O/OO)/
(iv) ps(w) =1 -0, w=0,
1, w=o0.

Definition 3.1. In a metric space (A, d), assume that K is a directed graph on A and R : A — P(A) be a multivalued
mapping. R is called a weakly generalized Wardowski-Mizoguchi-Takahashi multi-valued contraction if there exist
p € Eand N € B such that

P(H(Rc, R0))) < p(N(d(c, 0)) + p(M(c, 0)) (11)
forall ¢, € € Awith (¢, ) € E(K) and

M(c, €) = max{d(c, {),d(c, Rc),d((, R0), %[d(c, RO +d(¢, Ro)l}.

Theorem 3.2. Inac.m.s. (A\,d)and for a directed graph K on A, assume that R : A — P(A) be a weakly generalized
Wardowski-Mizoguchi-Takahashi multi-valued contraction satisfying comparable approximate valued property. If K
be a (C)-graph, then R possesses a fixed point.

Proof. Choose a fixed element @y € A. If @y € Ry, then we have nothing to prove. Suppose that @y ¢ R.
Since R admits comparable approximative valued property, there exists @1 € R@g such that (oo, @1) € E(K)
and d(@o, Rdg) = d(@o, @1). Itis clear that @1 # @¢. If @1 € Rwy, then @; is a fixed point of R. Suppose
that @; ¢ R®;. Then, there exists @, € Ro; such that (01, @) € E(K) and d(@1, Ro1) = d(@1,@;). It is
clear that @, # @;. According to this process, we will have a sequence {®,} in A such that ®, € Rwo,_1,
(@n-1, @) € E(K), @, # @,_1 and d(@,_1, @) = d(@,-1, R@,_1) for all n € IN.
In view of (29), we obtain that
P(A(@n+1, Dn+2)) = P(A(@n+1, RDp11)) = 9(H(RDy, RDy11)))
< p(N(d(@n, Dn+1))) + P(M(@n, @n+1)),

where
M((Dn/ (Dn+1) = max{d((Dn, (DI’H-l)r d((D‘Vll 9%(D‘rl)/ d((Dn+1/ %(DrHl)r

%[d(wn, R@ps1) + d(@p41, Roy) ]} < max{d(@y, @n+1), A(@n+1, @n+2)}-

If
max{d(@nl CDrH—l)/ d(®n+1/ cDn+2)} = d(®n+1/ CDrH—Z)/

then
PA(@n+1, Dns2)) < PRA(@n, @P1r1))) + PA(@n41, Pnr2)) < P(A(@n+1, Pnr2))

which is a contradiction. Thus
max{d(ch, (Dn+1)/ d(@nﬂ/ (Dn+2)} = d(CDn/ (Dn+1)-
Therefore,

P(Ad(@n+1, Dn12)) < PN(A(@1, @n11))) + P(A(@n, Dris1)) (12)
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for each n > 0. Put t,, := d(@;,, ®,+1). From (12), we have
P(tne1) < pN(t)) + 9(ta),  for each n > 0. (13)
Since N(f,) < 1 and g is strictly increasing, we get p(8(t,) < ¢(1) = 0. Therefore, from (13), we have
P(tns1) < 9R(t)) + (tn) < 9(ta),  for each n > 0. (14)

Since g is strictly increasing, t,4+1 < t, and subsequently, for some r > 0, t, — r*. Now, we illustrate that

r = 0. Suppose to the contrary that r > 0. Passing to the limit throw (14), p(r) < p(limsup, _,  (N(t,))) +9(r) <

9(r), which is a contradiction. Accordingly, lim t, = r = 0. We shall show that {®,} is Cauchy. If {®,} is not
n—00

Cauchy, then for some ¢ > 0 and for subsequences {®@,,} and {@,,} of {®,} one has

n; > m; > i, A(@m;, @n,;) = € (15)
and
A(@p;, Op—1) < E. (16)
Using (15), we get
& L d(@m;, @n;) < A(@py;, On=1) + A(Dy-1, Dn;) < € + A(@p;—1, Dn;)- (17)

Asi— oo, we find

Hm d(@p,, @) = €. (18)

i—o0
Also, we have

d((Dm,‘r (Dn,‘) - d((Dm,‘r (Dmi+1) - d((Dn,‘r (Dn,'+l)
< d((Dm,Hr CDn,+1)
S d((DI’Hﬂ (Dm,-+1) + d((Dm,'/ CDn,-) + d((Dl’llr (Dl’l,+1)-

As i — oo, we find

lim d((Dmi+1, (DTL,‘+1) = E&. (19)
Also,
A @11, Dpi1)) < A @1, Row,)) + HR @y, Rdy) = HR @y, Rdy,).
By (29), we find

Pd(@m11, @p11)) < PQH(RDp, Rdp,))
< pR(d(@p;, @n,)) + P(M(@yr;, D))

(20)
On the other hand,
A @m;, @n;) < M(@m;, @)
1
< max{d((Dm,r @n,v)/ d(CD;n,/ CDm,-+1)/ d(mn,r CDn,v+1)r E [d(chi, (Dm,-+1) + d(@m,-/ CDn,-+1)]}
S d((Dm,-/ CDn,-) + d((DWI,'/ (Dm,'+1) + d((Dn,-/ (Dn,-Jrl)-

As i — oo, we find

lim M(@p,, @) = .
i—o00
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Taking limit in both sides of (20),
9(e) < p(limsup,_,  N(d(@n,, @n,)) + 9(&). (21)
Since d(@y,;, @p;) — €*, thus limsup,_,  N(d(@y;, @4,)) < 1. Therefore,

p(lim sup R(d(@,, @p,)) < 0.
i—oo

Thus (21) leads to p(¢) < p(¢), a contradiction.

Consequently, {@,} is a Cauchy sequence in the c.m.s. (A, d). Hereafter, there is z € A so that

lim o, = z. (22)

We claim that d(u, Ru) = 0. Suppose to the contrary that d(u, Ru) # 0.

Since K is a (C)-graph, there exists a subsequence {c,,} such that (¢,,, ¢) € E(K) for all k € IN.

There are two cases as follows:

Case (i): R@y, # Rz for each k > N where N € N.

Case (ii): R@,, = Rz for each i > 0 where {@,,} is a subsequence of {@y, }.
In the case (i), we have

P(d(@n+1,Rz)) < p(H(Ra@,, Rz))

< p(Nd(@ny,2))) + 9(M(@r,, 2))- @3

Also,
lim M(@y,,2) = lim max{d(@y,,2), d@n, @na1), d(z, R2),
1
E[d(@nk+1,z) + d(@y,, R2)]} = d(z, Rz).

Passing to the limit throw (23), we obtain that p(d(z, Rz)) < ¢(d(z, Rz)) which is a contradiction. Thus,
d(z,Rz) = 0.
In the case (ii),
d(z,Rz) = }Lm d(@y+1, Rz) = }Lm HR o, Rz) =0.

So, d(z,Rz) = 0. Therefore in all cases, we have d(z,Rz) = 0. Now since K admits comparable
approximate valued property, there exists u € A such that u € Rz, (z,u) € E(K) and d(z,u) = d(z, Rz).
Consequently, d(z, u) = 0 and so z = u € Rz. The proof is completed. [

We gather all nonempty compact subsets of A in P, (A).

Corollary 3.3. In a c.m.s. (A,d), and for a directed graph K on A, assume that R : A — P, (A) be a weakly
generalized Wardowski-Mizoguchi-Takahashi multi-valued contraction. Moreover, assume that Graph(R) = {(c, ) :
¢ € Re} C E(K). If K be a (C)-graph, then R admits a fixed point.

We are now ready to present and demonstrate the key outcomes of this study. From now on, assume
that A = C([a, b], R) is the Banach space of all continuous functions from [, b] to R with the supremum
norm

Ifllec = sup{lf(t)| : t € [a,b]}.

In [11] we have the subsequent supplementary lemmas:
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Lemma 3.4. [11] Let S, p1, p2 be real continuous functions on [a,b], 1 <r < 2,0 < 60,14 <2, p,q € [a,b] and
ci(i =1,2,3,4) are some constants. Then j € Acé([a, b], R) is a solution of the following fractional boundary value
problem

Dl )(0) =80, Lelabll<r<2,
c1)(a) + ¢284)(a) = I pr(p), (24)
c3J(b) + c104)(0) = 1., p2(9),

if and only if j be faitful in the following fractional order integral equation

b
1(6) = L]({’)+f Ky (¢, h)S(h)dh, (25)

where

_ r—1 — —
(9(0)—-g(i) " c3( q(!]éflz(rf)](a))ﬂz)(g(b) _ g(h))r—l

I(r)
KCm =gty gl g0 ashst
4 c3(—c1 —g(a))+ca —_
(=a1(g(O)—g(a) )(g(b) _ g(h))r 1

gl'(n

ca(—c1(g(€)—g(a))+ca .
St O (o) _ giryy-2; e <t <b

and
Ly(t) = é{[cs(g(f) — 9(@) + ca] TS p1(p) + [c1(9(0) — 9(@)) - Cz]fs+;gpz(q)},

with

G = c1c3(g(b) — g(@)) + det(C),

c:[ @ G }
C3 C4
Lemma 3.5. [11] Tuke ,
Kg = sup |Ky(€, )|dh

tefa,b] Ja
and 1
M, = LOZD (IO IO 18 - g + ea] 22,
where
Cij = lcil(g(b) — g(@)) +Icjl; 1,7 €{1,2,3,4}.
Then K, < M,

Definition 3.6. A function | € A%([a, b], R) is a solution of the inclusion problem (1) provided that for some function
p € LY([a,b], R) with p(£) € R(L, j(0)), j satisfies the conditions (2), (3) and CD;W](f) =p(), aelelab],1<r<
2, where g € Cg([a, b], R) with g’ > 0 on [a, b].

For any j € E, define

Sw, = {p € L'(a, b, R) : p(¢) € R(¢, 1(0)) ae € € [a,b]}
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and the operator K : E — $,(E) associated with the problem (1)-(3) by

b
KO ={feE: /O =10+ [ K(@homanoe s, (26)

where

Ly(6) = é{[mgw) — 9(@) + ca] T, K(p, 1(p)) + [c1(9(0) = (@) — 2] 7. x4, ]<q>>}.

Theorem 3.7. Suppose that
(i) R :[a,b] xR = Pe,(R), K, x : [a,b] X R — R are continuous functions.

(ii) there are functions ¢ € E and N € B satisfying

H(R(E, 1), R(,0)) < A%gp*l(mxuu — o) + (i — o))

roe+1
K6, )~ K(,0)] < Cf GO D1 o5 — o1) + (e — o),

4(9(p) — g(a))?

YIGIT (1 + 1)

I(Cm) = x(6 ) < =0 o (9w = 0D) + 9~ 2)),

(@) = gl@)r
forall € € [a, bl and u,v € R with u # v, where a, B,y 2 0and a + f+y < 1.

Then, the problem 1 admits a solution.

Proof. We shall show that the operator K : E — $,(E) defined in 26 admits at least one fixed point. We
prove that K is a weakly generalized Wardowski-Mizoguchi-Takahashi multi-valued contraction, i.e.

P(H(Kj1,K72)) < 9N(ll71 = 721D) + 971 — 7211) (27)

forall j1,72 € Ac;([a, b],R). Now let j1, 12 € Acé([a, b],R) and f; € Kj1. Then there exists g1 € Sx ;, such that
forany ¢ € [a,b], f1(£) = L, (£) + fab K, (¢, h)o1(h)dh. By hypothesis (ii) we have

H(R(E, 11(6)), R(E, 12(0)) < A%go-l(mxuh(f) = 12(0D) + 9(1(0) = 2(O)).
Then there exists z € R(£, j2(£)) such that
lo1(£) — 2l < M%gfl(p(x(lh(f) = 12(OD) + 91 (0) = 12(O)), € € [a, b].
Define U : [a,b] — P(R) by
) = {zeR: |50 -2l < A%p-l(mxah(f) = 12(00) + 9(1(6) = 12(6)D)}-

Measurability of U(€) N R (¢, j2(£)) unable us to find a measurable selection g, (£) for U(£) N R (¢, 2(£)). Thus,
o € L'([a,b], R), 02 € R(¢, J2(¢)) and

l01(0) = 21 < 297 (P10 = 120N + 91 (0) = 12(O), € € [a,b]
g
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We define fo({) = L, ({) + fhK (¢,h)ox(f)dh, € € [a, b]. Then for each ¢ € [a, b],

1f1<f - (0] < [En@ - L] + [ 1K ﬁ>||%<f 1) -
< &llcslo®) - gt@) + leal| |20, K@, 1 <p)> K(p, 12 p»
+ i [lealtg®) - g@) + leal]| 7@, 1 (@) - G @ 1)
+ [ K (e m[R(E ]1<h>> R(C, Jz<h>>|dh

= |19 (p,mp)) ~ 1% Kp, (o))
#1010 = 7110, 120D

+ [ Ky mn\m )~ R (1) |an

< S s [ 9/ 00(a(p) — 9" |, 1) — K (h, o)
fér w5 [ 9/ ()(g(@) — g0, 11 1) = x(, po(i) |

+ [ IGEW[RE 1) - RAE, )]

< B %sfl{@(x(ﬂh = 12ID) + 9llj1 ~ mn} I g () - g(m))°dn

(28)
+ Bl ey P —1{ (Rl = 72l) + 9(lljn — ]2||)} g )@ - gt)dn
+A%@‘l{@(8(||]1 = 12lD)) + 9y — lel)} fuh |K,(€, 1)|dh
< Np‘l{@(N(llh - 7210) + (1 — lel)}
+W’_1{@(N(I|J1 - 12I0) + 9l - lel)}
+0450_1{80(N(||]1 = 72I)) + el — ]2||)}
=(@+p+ y)@‘l{ga(?*(llh = 72lD)) + ol — lel)}
< W‘l{@(x(llh = 2l)) + 9l = ]2||)}-
Therefore
1A = fall < 97 el — 720l) + 971 — 721)]
and so
H(Kj1,Kp2) < 9 ol = 721) + o171 = 72l)] (29)
which yields that

PUIR 71 = Rpall) < 9l = pall) + 9l = palD-
Therefore by Corollary 3.3 , R possesses a fixed point and so the problem 1 possesses a solution in
Acy(la, b, R). O
g

Example 3.8. Consider the differential inclusion of fractional order

Dy Sg](f) €lo, 160 6ig|(]€()[|)| tell,2],9(0) =
0+ 20,10 = 21 K, ), Kl = N e (30)
2)(2) = 304)(2) = I}, X3, ), X () = 91!2;“ e,
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 2u|
Ro,u) =10, 765 \/;6+3|u|]'

Note that,

Here,r:1.5,c1:1,cz:2,63:2,C4:—3.a:1,b:2,p:%,qz%,@z%,andy:—

1 2
e 3
and
G = c1c3(g(b) — g(a)) + det(C) = (1)(2)(2b — 2a) — 7 = -3,

Ci2 = leal(g(b) — g(@) + le2| = (2b — 2a) + 2 = 4,

Cz4 = lcsl(g(b) — g(a)) + lcal =2(2b—2a) +3 =7.

@72 4 V2 80, \/780 160\/7
Mrm{? 5@ +3]3)= 19 =

Take a =B =y = 5. Then

PGTO+1) _ (OTG) _3vVr _ 1 [3n
Coag(p) —9@)° 78 -2 72 14V 27

YIG+1)  — QOIG) _ ivr 9
= —V2n
Cra(g(q) = g@)t 4L - 2)3 4(%)% 128

Now, for any fi € [a,b] = [1,2] and u,v € R, we have

B i m 2|ul _ 2[v|
HR(#,u) - R(#,0) = 15 [‘ 216+3lul ~ 6+30]

/‘ [l ol ‘
3160 211+l 1+ L

19 [x -l
3160 V2 (1 + Lul)(1 + 1fol)

19 [n Jul-pl
160 \ 21+ 1(Jjul - [ol)

31
19 [m_lu-o
T 3160 V 21+ Lju-of

= o (R — o) + p(lu — o)),

A

241, te(0,m),
where N(t) = % and T(t) =4 —oco0, t=0,
1, t=o00

3787
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On the other hand,

1 3| |ul 9|
h,u) — K < — 4= -
K1, ) 7‘('”)’—14‘/2‘1+%|u| T

L1 o -kl

14N 2 1+ 3(|lul = o)

1 3 |lu-—19|

14V 2 1+ u-o

ro+1
i %W(WW“ — o)) + p(u - o)),

IN

9V2m|  ul lol
128 1+l 1+ %Ivl'

_9VIn il

T 128 14 3 (llul - [l

_9V2m fu-ol

T 128 14+ -9

T(u+1
B %@‘MN(IM —))) + p(lu - o).

X, 10) = x(,0)] <

Also, a + B + v = 1. Therefore, all the conditions of Theorem 3.7 are fulfilled. Thus, by this theorem the problem 30
possesses a unigue solution.
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