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Measures of noncompactness in the Banach space BC(R; X R;, E) and
its application to infinite system of integral equation in two variables
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Abstract. The purpose of this paper is to study the existence of solutions to an infinite system of Volterra-
Hammerstein type nonlinear integral equations in two variables in Banach space BC(R, X R,, E) using
functions that are defined, continuous and bounded on R, X R,, taking values in a given Banach space E.
The method used in our research is linked to the creation of a suitable measure of noncompactness in the
space of functions defined, continuous and bounded on R, X R, with values in the space (. consisting

of real bounded sequences endowed with the standard supremum norm. An example exemplifies our
investigations.

1. Introduction and Prelimaneries.

This section is for establishing the notation utilized in the paper. We also provide concepts that

serve as the foundation for our research, as well as certain information about the theory of measures of
noncompactness that are pertinent to our concerns.

Integral equations are well-known for their use in the description of a wide range of real-world
occurrences, and they form a significant area of nonlinear functional analysis. Obviously, the theory of
integral equations and the science of differential equations are intertwined (see[[1, 4, 7, 9, 10, 14, 17, 18]]).
Recently, various effective attempts have been made to apply the idea of measure of noncompactness to the
study of the existence and behaviour of nonlinear integral equation solutions (see[[5, 6, 12, 16]]).

The mentioned constraint is not addressed in this paper. To demonstrate the applicability of the
constructed measures of noncompactness , we provide formulas that express the constructed measures
in the Banach space BC(IR; X R, {«), where {., denotes the classical Banach sequence space consisting
of bounded real sequences and is equipped with the standard supremum norm. These measures of
noncompactness are also used to prove the existence of solutions of an infinite system of quadratic integral
equations of Volterra-Hammerstein type.

We will use the standard notation. Namely, by the symbol R we will denote the set of real numbers
while IN stands for the set of natural numbers.
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The Kuratowski measure of noncompactness for a bounded subset D of a metric space X is defined as
a(D) = inf {5 >0:D c U Dy, diam(D;) <6, for1<i<m< oo},

where diam(D;) denotes diameter of the set D;.

Another important measure of non-compactness is the Hausdorff measure of non-compactness, which
is defined as

¢(D) = inf {e > 0: D has a finite e-net in E }

It can be shown that the Hausdorff measure of noncompactness ¢ is regular and it is equivalent to
the Kuratowski measure a(X). More precisely, for an arbitrary set X € Mg, the following inequalities hold
(see[5]):

P(X) < a(X) < 2¢(X). (1.1)

Let (X, |I.]l) be a Banach space, R, = [0, o), the symbols X and Conv(X) denote closure of X and convex
closure of X respectively. Let Mg denote the family of non-empty bounded subsets of E and N its
subfamily consists of relatively compact subsets of E. We now define (MNC) axiomatically given by Banas
and Goebel[5].

Definition 1.1 [5] Let X be a Banach space. A function ¢ : Mx — [0,+o0) is said to be measure of
non-compactnes in X if it satisfies the following axioms:
1. The family ker ¢ = {E € Mx : ¢(E) = 0} is a nonempty and ker ¢p C Nx.
E1 C Ey = ¢(E1) < ¢(Ey).
$(E) = ¢(E).
¢$(Conv(E)) = ¢(E).
G(AE1 + (1 — AE) < AP(Eq). + (1 — A)P(Ey) forall A € (0,1).
If (E;) is a sequence of closed sets from Mx such that E,.1 C E,, and ;7111_{{}@ ¢(Em) = 0, then the

AN S

intersection set E..= [ E, is non-empty.
m=1

The family ker ¢ appearing in axiom (i) will be called the kernel of the measure of noncompactness
¢. Let us notice that the set X, described in axiom (vi) is a member of the family ker ¢. Indeed, it is a
simple consequence of the inclusion Xo, C X, for p = 1,2, ... and axiom (vi) which implies the inequality
P(Xeo) < P(X,) for p = 1,2,.... Hence we have ¢(X) = 0. Consequently, ¢(X«) € ker¢p. The above simple
observation is quite important in applications.

Let BC(R+ xR, ) be the Banach space of all real bounded and continuous functions on IR, xR, equipped
with the standard norm

llxll = sup{lx(w, s)| : w,s > 0}
For any nonempty bounded subset X of BC(R; X R;),x € X, > 0and € > 0, let
Q%(x,€) = sup {lx(w, s) —x(u,0)| : w,s,u,v € [0,C],lw—ul<els—0 < e},
QX e) = sup {Qc(x, €):x€ X},
Q5(X) = lim, Q%(X, €),
e—0
Qo(X) = lim QG(X),

P(X) = Qo(X) + p(X)
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where

p(X) = lciir(}{sup{sup{lx(w,sl tw,s = O

xeX
Similar to [8], the function ¢ can be shown to be measure of noncompactness in the space BC(R; X R;) (as
defined in definition (1.1)).

The aim of this study is to create measures of noncompactnness in the Banach space BC(R. X R, E)
using functions that are defined, continuous and bounded on R, X RR,, taking values in a given Banach
space E and its application to the solvability of infinite system of nonlinear integral equations of Volterra-
Hammerstein type in two variables.

2. Measures of noncompactness in the space BC(R; x R, E).

Assume that E is an infinite dimensional Banach space and that ¢ is a measure of noncompactness
defined in E.

Consider the Banach space BC(IR, X R,, E) which consists of functions that are defined, continuous
and bounded on R, X R, and have values in the space E. We consider the space BC(R; X IR, E) with the
supremum norm

IIlles = sup {llx(ao, 9l : w,s € R x R,

where the symbol ||.|[r denotes the norm of the space E. BC(R, X R4, E) is clearly a Banach space with the
above mentioned norm.

Simultaneously, we consider the space C; = C([0, CJ%,E), where C > 0 is arbitrarily fixed. Recall, that
the C; defines norm as

Idlc = sup {llx(aw, )lle = w,s € [0,C]}.

If we take a function x € BC(IR; X Ry, E), we can consider the restriction X2 of x to the square [0, C]* is an
element of the space C¢.

Let us take an arbitrary and bounded set X, X ¢ BC(R: X IR,, E) for the reminder of this section. Next,
let us define the quantity QQ*(x, €) for an arbitrarily fixed function x € X and for € > 0 as follows

Q% (x,€) = sup {le(w,s) —x(u,0)g:w,s e Ry XRy,lw—ul<e|s—0v] < e}. 2.1)

Observe that lin(} Q%(x,€e) = 0if and only if the function x = x(w, s) is uniformly continuous on the interval
€—
R; X R,. On the other hand notice that for any C > 0 we have

Q%(x,€) < Q%(x,¢€), (2.2)
where Q¢(x, €) denotes the modulus of continuity of restriction x|o ] in the space C¢ i.e.,
Q%(X, €) = sup {le(w,s) —x(u,v)|lg:w,s €[0,C],lw—ul<e|s—1v| < e}.
Next, we define
QX e) = sup {Qc(x, €):x€ X},
Qi(x) = lim Q%x, €).



T. Jalal, A. H. Jan / Filomat 37:12 (2023), 3791-3817 3794

Since the function € — Q°(X, €) is nondecreasing and nonnegative for € > 0, indicating that the above
limit exists and is finite. Finally, we put

Qo(X) = Ch_r)?o Q5(X). (2.2.1)
Further, assume that ¢ = ¢(X) is a given measure of noncompactness in the Banach space E. For an
arbitrarily fixed number w,s € R; X R, denoted by X(w, s) the cross section of the set X at w, s; that is,

X(w, s) = {x(w,s) : x € X}. Obviously, X(w, s) is a subset of the space E.
Next, for a fixed C > 0, let us put

$(X) = sup{p(X(w,s)) : w,s € [0,L]}. (2.2.2)

Observe that the function ¢ — X (X) is nondecreasing and bounded from above since the set X is a bounded
subset of the space BC(R+ X R+, E). Indeed, we have

IX(w, s)lle < IX(w, s)llc(r, xR, ,E) < ©0
for any w,s € R; X R,. Consecutively, we define the following quantity
P (X) = lim ¢ (X).
In addition, we have lirr(} Q(x, €) = 0 for every arbitrary function x € BC(R; X Ry, E).
€—

Take a look at the following example :

Example 2.1: Consider the space BC(IR; X R;) = BC(R; X R4, R X R). Take the function x = x(w, s) in the
space defined on the interval [0, 1] x [0, 1] as the function with graph being the pyramid with base equal

the interval [0, 1] X [0, 1] and with the height equal to 1. Analogously, we define consecutively the function

x on the intervals [1,1 + %], [1+ %, 1+ % + %] etc.

Then for any € > 0 we have that O*(x,€) = 1. Hence, we get that lin(} 0O%(x,€) = 1. But on the other
€—

hand we have that lirr(} Q%(x,€) = 0 for any C > 0.
Further, taking into account (2.1), for X € Mpcr, xR, ,r) We define
QO%(X,€) = sup {Q°°(x, €):x€ X},
Qr(X) = lirr(} Q%X €). (2.3)

It is self-evident that Q*(X) = 0 if and only if functions from the set X are equicontinuous on R, X R,, or
equivalently, functions from X are equiuniformly continuous on R, X IR,.

let us have a look at the function Em which is defined on the family X € Mpc(r, xR, F) according to the
formula

e (X) = lim §(X), (2.4)
where
¢(X) = sup {¢(X(w, s)) : w,s € [0,C]}. (2.41)

It is worth noting that the existence of the limit in (2.4) is due to the fact that the function C — ¢ (X) is
nondecreasing and bounded from above on R, X R,. Indeed, because the set X is a bounded subset in the
space BC(R; X R,, E), a constant ¢ > 0 exists such that

sup {le(w,s)l,E cw,s € Ry X ]R+} <c
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for any x € X. Thus fixing arbitrarily w,s € R, X R, we conclude that
sup {le(w, S)lg:xe€ X} < c. This implies that the measures of noncompactness ¢(X(w, s)) are bounded from
above for w,s € Ry X R,.

Now, for C > 0 let us put

ar(X) = sup{sup{llx(w, S :w,s > C}.

xeX

Let us note that the function ¢ — a¢(X) is nonincreasing and bounded on R, X R,. As a result, there exists
a finite limit

() = lim e (X). (2.5)

Let us consider various values related to monitoring the behaviour of functions from the set X at infinity.
Namely, for C > 0 let us put:

ﬁdX)=i£{mWWKWJ)—ﬂ%vaﬂ%&%vZCL

Bul(X) = lim (). 26)
Next, for w,s € R; X R, let us define

diamX(w, s) = sup {le(w,s) -y(w,9)lg:x,y € X}
and

e(X) = wlsiglw diamX(w, s). (2.7)

Finally, by linking (2.3)-(2.7), we can define the following quantities by linking (2.3)-(2.7):

Pa(X) = QY(X) + ¢ (X) + ao(X), (2.8)
Pp(X) = QF(X) + P (X) + Beo(X), (2.9
Py (X) = QY(X) + ¢ (X) + Voo (X). (2.10)

We show that the function ¢,, ¢g and ¢, defined by formulas (2.8)-(2.10) are measures of noncompctness
in the space BC(R+ X R, E) under some assumptions concerning the measure of noncompactness ¢. Now
we recall some results due to Nussbaum [20] which will be utilized in our reasoning process.

Lemma 2.2. Let a; = a¢(X) denote the Kuratowski measure of noncompactness in the space C; = C([0, C], E).
Then

1 _ —
max {EQg(X),aC(X)} < ae(X) < 205(X) + T(X), (2.100)
where the quantity a; was defined by (2.41)
In what follows let us notice that linking inequalities (2.100) and (1.1), we derive the estimates
11 — —
139600 + 00| £ 900 < 210500 + 5,01 (2.10)

for any C > 0.
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Then, we are ready to create our main result.

Theorem 2.2. Assume that ¢ is the Hausdorff measure of noncompactness in the Banach space E. Then
the functions ¢,(X), ¢p(X) and ¢, (X) defined by (2.8)-(2.10) are measures of noncompactness in the space
BC(R; X R4, E) such that

P(X) <2¢p(X), (2.11)
P(X) <4y (X), (2.12)
Pp(X) <2¢4(X),  ¢y(X) < 2¢a(X) (2.13)

for an arbitrary set X € Mpc(r, xR, E)-

Proof: We first prove inequality (2.11). To this end, fix a set X € Mpc(r, xR, r). From definition (2.2.1) and
(2.2.2), we have

Q5(X) <Qo(X), (2.14)
P(X) <P (X) (2.15)

for a fixed C > 0. On the other hand, taking an arbitrary fixed number € > 0 and using (2.6),we find a
number (y > 0 such that for any arbitrary C > (y, we have

Be(X) < Boo(X) + €. (2.16)
Using (2.16) and the definition of f;, we infer that
sup {|lx(w, s) - x(u, V)lle : ,5,u,0 > Co} < foo(X) +€ 2.17)

for an arbitrary function x € X.
Let us fix an arbitrary number C, C > (. Then keeping in mind estimate (2.10.1) and inequalities (2.14) and
(2.15), we obtain the following innequality:

Pc(X) < 2Q0(X) + b (X).

Hence we infer that, for an arbitrary fixed number 6 > 0, we can find (2Qy(X) + aw (X)+0)-netx1,x3, ..., X Of
the set X in the space C([0, ], E). This means that for an arbitrary function x € X there exists / € {1,2,...,m}
such that

llx(w, s) — Xi(w, s)||g < 2Qo(X) + P (X) + 6 (2.18)

for w,s € [o, (].

Now, consider the extension x; of the function x;(I = 1,2,...,m) on the interval R, X R, defined in the
following way:

xi(w,s)  for w,s €[0,C],
xi(w,s) = (2.19)
x1(0) for w,s > C.

Obviously, we have x; € BC(R, x Ry, E)(I = 1,2,..,m). Further, using (2.17) and (2.18), for an arbitrary
w,s > Cwe get
llx(w, s) = xi(w, s)lle < |lx(w, s) = x(Olle + [1x(C) — x1(w, 9)lle
< Boo(X) + € + [1X(0) = Tl < Boo(X) + € +2Q0(X) + P (X) + 6
< 200(X) +2¢(X) + 2Beo(X) + € + 6.
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From the above estimate, it follows that the functions x1, x», ..., x,; form a finite (ZQO(X) + Zam(X) +2B0(X) +

€+ 6)-net of the set X in the space BC(R; X R, E). Consiquently, we have

P(X) < 2Q0(X) +2¢(X) + 2Be(X) + € + 6.
Since , € and 0 were choosen arbitrary, we obtain

P(X) <2¢p(X).
This proves inequality (2.11).

In order to prove (2.12), take an arbitrary € > 0. Then, we can find a number y > 0 such that for
w,s > (o the following inequality is satisfied:

diamX(w, s) < e(X) + €. (2.20)

Furthermore, arguing in the same way as previously, we deduce that, for an arbitrary fixed number C > (o,
the set X considered in the space C([0, C], E), that is, the set

XC = {x|[olc] X € X},

has, for an arbitrary 6 > 0, a finite (20y(X) + $M(X) + 6)-net composed by functions X7, X7, ..., X;; belonging
to the space C([0, C], E).

Now, let us choose arbitrary functions z1, 2y, ...,z € X such that, for any 7 € {1,2, ..., m}, the inequality
llzi(w, s) — Xi(w, s)|E < 2Q0(X) + b, (X) + (2.21)

is satisfied for w, s € [0, C].
Further, taking an arbitrary function x € X , we can find i € {1, 2, .., m} such that

lx(w, s) = Xi(w, 9)lle < 2Q(X) + P (X) +6 (2.22)
for an arbitrary w, s € [0.C]. Next taking (2.21) and ( 2.22), we get

llx(@w, s) = zi(w, $)lle < |lx(w, 5) = Xi(w, s)lle + llxi(w, ) + zi(w, s)lle

< 2(Qp(X) + ¢ (X)) + 26 (2.222)
for an arbitrary w, s € [0.C].
Now, combining (2.20) and (2.222) for an arbitrary number w, s € R, X IR;, we obtain

lhx(w, 5) = zi(w, $)lle < max{2(2Q(X) + ¢, (X)) + 26,e(X) + €]
< 4Q(X) +2¢(X) + e(X) + € + 20.

From the above estimate, we deduce that the functions z1, zy, ..., z,;, form a finite (4Q(X) + 2500 (X) +e(X) +
€ + 20)-net of the set X in the space BC(R, X R, E). Thus, we have

P(X) < 4¢,(X) + € + 20.

Hence, taking into account the arbitrariness of the numbers € and 6, we derive the inequality (2.12).

It is simple to verify that S (X) < 2a0(X) and e(X) < 2a.(X) for an arbitrary set X € Mpcr, xR, E)-
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Next, consider the kernals of the functions ker ¢,, ker ¢g and ker ¢, which are represented by the
families ¢,, ¢ and ¢, respectively. It is worth noting that the family ker ¢, is nonempty because it contains
the set consisting of the function equivalent to 6 on R, X IR;. We can infer the inclusions ker ¢, C ker ¢y
and ker ¢, C ker ¢,, from the inequalities mentioned before. This demonstrates that the families ker ¢g and
ker ¢, are both nonempty.

Further, fix arbitrary C > 0 and consider the quantity ¢, on the space C; = C([0, C], E) defined for Mc,
by the formula

Pac(X) = Q5(X) + P (X).

Obviously in the space C¢, ¢, is a measure of noncompactness. This means that ¢, meets the requirements
(1)-(6) of definition (1.1) on the family Mpc(r, xR, E)-
Similarly we can show that the quantities ¢4 and ¢, also satisfy the conditions (2)-(6) of definition (1.1).

Now, we prove that ¢, satisfies the condition (1) of definition (2.1). To this end assume that ¢,(X) = 0
i.e., assume that X € ker¢,. then in view of (2.8) we have that QF(X) = 0 and 500(X) = 0 and aw(X) = 0.
Therefore, for each € > 0 there is > 0 such that a¢(X) < e.

In view of compactness of the set X]jp ] in the space C; we deduce that there is a finite set T € X such
that the restriction Tl is an e-net of the set X]jo ;. Hence we conclude that T is a 2e-net of X in the space
BC(R+ X R, E). But this implies that X is relatively compact and we have that ker ¢, C Npc(r, xR, E)-

This shows that (1) is true . In the same way, we can show ¢y and ¢, satisfy condition (1).

In what follows we show that ¢, ¢s and ¢, satisfy axiom (6) of definition (1.1).

Note that in view of Example (2.1), axiom cannot be expressed in the same way as axioms (2)-(5). This is
due to the fact that the equality

Q%(X, e) = sup{Q-(X,€) : L > 0}

is not true, in general, for € > 0.
Obviously, the equality

Q%X e) = sup{QC(X, €):0=0}
is also not true.

As an example, consider a sequence closed sets (X,) from the family Mpcr, xR, £) ssuch that X,,,1 € X,
forn=1,2,...and lim ¢,(X,) = 0. As a result, in view of (2.8) we have
n—oo

lim QF (X,) =0, (2.23)
lim ¢ (X,) =0, (2.24)
lim aeo(X,) = 0. (2.25)

Using (2.3), we can also derive that the following inequality holds for any k > 0.
Q% (Xur1, k) < Q¥ (X, k).

Now, let us pretend that (w;, s;) is a sequence of nonnegative real numbers dense in the interval R, XIR,.
Next, consider the sequence of functions x,, = x,(w,s) for w,s € R, X R, such that x, € X,, forn =1,2,....
Using the diagonal procedure, without loss of generality we may assume that the sequence (x;) is pointwise
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convergent on the set of points of the sequence (w;, s;). Finally, let us define the function x., on the set of
points of the sequence (w;, s;) by putting

Xoo = lim x,,(w;, s;)

n—oo

for each i = 1,2,.... We show that the function x. is uniformly continuous on the set of points of the
sequence (wj, 5;).

To this end let us observe that for arbitrary fixed indices i, j and for arbitrary natural number n we

obtain

1% (Wi, 57) = Xeo(W), SHIIE < NXeo(wi, 5i) — X (Wi, i)l|E + [l (Wi, 5i) — xu(w;, 55)lIE
17°] 17°]
+ ”xn(wjr S]) - xoo(wj/ S])”E
< Ixeo(wi, 8i) = xn(wi, sl + Q(Xy, [wi — wjl, Isi = sj])

+ ”xn(wjr S/) - xoo(wj/ S])”E
Hence, letting n — oo we get

[l¥eo (@01, 81) = Xoo(wj, sl < lim QF (X, lw; = wjl, Isi = sj). (2.26)

From the above estimate and (2.23) it follows that the function x, is uniformly continuous on the points of
sequence (w;, 5;) .

Now, applying a theorem on the extension of functions , we deduce that the function x. can be extended
uniquely to a function being uniformly continuous on R, X R.. Obviously, from (2.26), we get

[1Xeo (W, 8) = Xoo (11, V)||Ig < lim Q% (X, [w — ul, |s — v|) (2.27)
n—o00

for arbitrary w, s, u,v € Ry X R,.
The function x, is then shown to be the uniform limit of the function sequence (x,). let us fix arbitrarily
a number € > 0 and choosing 6 > 0 such that

lim Q°(X,,, k) <

n—oo

(2.28)

N ™

for any number k such that 0 < k < 0.
Indeed, to demonstrate the above mentioned fact, we can deduce fromm equality (2.23) that for a fixed
€ > 0 we can find a natural number ng such that

€
(&S] < —
Q7(Xn) < 4

for n > ny. As a result of of (2.3), we may deduce that there exists a number 6 > 0 such that

+

Q% (X, k) <

=~ m
= m
N ™

for each k such that 0 < k < 6 and for n > ny.
From this fact we infer inequality (2.28) for k such that 0 < k < 6.
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Now, let us choose (wj, s;) such that [|(w, s) — (w}, s))I| < k. Then, we have

lxeo(w, 8) — xn(w, Sl < [1Xeo (W, 8) = Xoo (Wi, $i)llE + IXeo (W), 57) — Xn(w), $)lIE
+ |lxu(wj, s7) = xu(w, s)llE-

Hence, in view of (2.27) and (2.28) we obtain

[I¥eo (0, 8) = xu(w, 8)lle < Tim Q% (X, k) + oo (w), 5) = X (W), 5l + Q7 (X, K.

From the above estimate, we get
lim [lx, (w, ) — Xeo(w, S)|lE < €
n—sc0
for all w, s € R, X R,. Hence we derive that
r}g{}o Iy = XoollBc (R, xR,,E) = O. (2.29)

As indicated by the above equality, the function x., is uniform limit of the function sequence (x,) on the
interval R, X R,. Particularly, from (2.29) we conclude that x., is a cluster point of all sets X,(n = 1,2, ...).
As a result, we infer that x, € X, forn =1,2,.... Thus X = N}, X,, is nonempty intersection.

Finally, we deduce that the function ¢, satisfies axiom (6) of Definition 1.1 by linking the obtained
conclusion with equalities (2.24) and (2.25).

Similarly, we can show that functions ¢y and ¢, satisfy axiom (6) of Definition 1.1

Thus, functions ¢,, ¢p and ¢, are measures of noncompactness in the space BC(R; X Ry, E). This
completes the proof.

We will now look at the kernels of the measures of noncompactness ¢,, ¢3 and ¢, which are defined
by formulas (2.8), (2.9) and (2.10), respectively.

It is worth mentioning that the kernel ker ¢, of the measure ¢, is made up of all bounded subsets X
of the space BC(IR; x Ry, E) such that the functions from X are uniformly continuous and equicontinuous
on R, X R, and with the same rate, it tends to zero at infinity. Furthermore, all cross sections X(w, s) of
the set X are relatively compact in Banach space E. Similarly, the kernel ker ¢4 of measure ¢4 defined by
(2.9) consists of all X of the space BC(IR; X R+, E) such that the functions from X are uniformly continuous
and equicontinuous on R, X R; and in Banach space E, all cross sections X(w, s) of the set X are relatively
compact. Furthermore, all functions from X tend to limits uniformly with respect to the set X.

Finally, to describe the kernel ker ¢, of measure of noncompactness ¢, defined by (2.10), note that it
contains all bounded subsets X of BC(IR; x R, E) which are locally continuous on R, X R, and such that
the cross section X(w, s) of X are relatively compact in E for any w, s € R+ X R,. Apart from this, at infinity
the thickness of the bundle formed by graphs of functions from X tends to zero.

Also, note that measures of noncompactess ¢, pg and ¢, defined by formulas (2.8)-(2.10) are not
complete. That is to say, the kernels ker ¢,, ker ¢g and ker ¢, are proper subfamilies of the family
Npcr, xR, E)- let us fix a nonzero vector xp € E. In the space BC(R; X R, E) consider the functions x =
x(w,s), y = y(w, s) defined as follows:

x(w, s) = xosin(w, s),  y(w,s) = yo cos(w, s)

for w,s € Ry X R;. Take the set X = {x, y}. Obviously X is a compact subset of the space BC(R+ X R+, E)
since it is finite. Moreover, it is easy to check that Q7 (X) = 0 and ¢_,(X) = 0, where the quantities Q* and
¢, are defined by (2.3) and (2.4), respectively.
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On the other hand, when the values a, f and e defined consecutively by formulas(2.5), (2.6) and
(2.7), it clear that

teo(X) = lxolle, Boo(X) = 2llxolle, e(X) = V2llxolle.
Thus the set X does not belong to the families ker ¢,, ker ¢5 and ker ¢,

Taking into mind our subsequent applications of the measures of noncompactness ¢, ¢p and ¢, to
the theory of infinite system of integral equations, we shall consider as the Banach space E the sequence
space {«, containing of all sequences (x,) being bounded. We limit ourselves to the study of real sequences.
Obviously, the space {. will be endowed with the classical supremum norm

Il = eIl = sup il p = 1,2,
where x = (x,) € lw.

Consider the space BC(R+ X R4, E) consisting of functions x : Ry X Ry — £« which are continuous and
bounded on R, x R,. Obviously, such a function can be written in the form

x(w, 8) = (xp(w,s)) = (x1(w, s), x2(w, 9), ...)

for any w, s € Ry X R, where the sequence (x,(w, s)) is an element of the space (., for fixed (w, s). The norm
of the function x = x(w, s) = (x,(w, s)) is defined by the equality

(x|l = sup{llx(w,S)IIgw cw,s € Ry X ]R+} = sup {sup{lxp(w,s)l p= 1,2,...}}.

w,s€R XIRy

We then provide formulas that expresses measures of noncompactness ¢4, ¢g and ¢, in connection with
measures of noncompactness in the space €.

At the beginning let us fix a set X € Mpcwr,xr,,r). For € > 0 and for an arbitrary function x(w,s) =
(x4(w, s)) belonging to the set X consider the modulus Q*(x, €) defined before, which is now stated in the
following form

Q%(x,€) = sup{llx(w,s) — x(u, v)llle, : w,5,u,v € Ry xRy, [w—u| < €,ls — | < €}

=sup { sup{|x,(w) — x, ()|, |x,(s) = xp(0) : p = 1,2,..} :w,s,u,v € Ry X Ry,

|w—u|£€,|s—v|$e}.

Then, using the aforementioned formula and (2.3), we get

QO%(X,e) =sup { sup { sup{lx,(w) — x, ()], |xp(s) = xp(0) : p = 1,2,..} s w,s,u,v € Ry X Ry,
xeX peN

lw—ul<e€ls—1v| < e}}
In the end, we put
QrX) = lin& Q% (X, e)
€

= lim{sup { sup { sup{|x,(w) — x, ()|, |xp(s) = xp(0) : p = 1,2,..} s w,s,u,v € Ry X Ry,
€20\ rex peN

lw—ul<els—1v < e}}}. (2.30)
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To define the second term ¢_ of the measures ¢, ¢p and ¢, given by formulas (2.8)-(2.10), we will assume
that in the space {w, we take into account the measures of noncompactness ¢!, ¢p* and ¢* defined on the
family My, as follows:

d'(X) = 1}1—{?0{ sup {sup{lxll 1> p}}},

x=x;€X

¢2(X) = %1_1;{)10{ sup {sup{lxp -xl:pg2 n}}},

x=xieX
H*(X) = r}l_)rg sup diamX,
where
Xp={xy:x=(x;) € X}
and
diamX, = sup{lx, — y,| : x = (x;), y = (v;) € X}.

We can now define the terms (p;f(i = 1,2,3) related with these formulas based on the above mentioned
formulas. Namely X € Mpc(r, xR, r) and for a fixed C > 0 we put :

¢ (X) = sup{dp'(X(w,s)) : w,s € [0.C]}

= sup {lim{ sup {sup{lxl(w, s)|: 1> p}}}}, (2.31)

w,s€[0,C] p—e x=x;€X

PA(X) = sup{p*(X(w,s)) : w,s € [0.C])

= sup {lim{ sup {sup{lxp(w, 8) —x4(w,9)l : p,q 2 n}}}}, (2.32)

w,s€[0,C] =0 y=xeX

P> (X) = sup{p*(X(w,s)) : w,s € [0.C])
= sup {3%10 sup{sup{lxp -yl x=x(w,s),y = y(w,s) € X}}}. (2.33)
w,s€[0,C]

As a result, we arrive at the following formulas:

93 (X) = lim ¢! (X)

= lim{ sup {lim{ sup {sup{lxl(w, s)|: 1> p}}}}}, (2.34)

Lo w,s€[0,C] P20 y=xiex
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o (X) = lim ¢*(X)

= lim{ sup {lim{ sup {sup{lxp(w, 8) —xg(w,8)| : p,q = n}}}}}, (2.35)
Cooo ) se0,0] T Ly=xiex
2(X) = lim ¢ 3 (X
92(X) = lim 97°(X)
= lim{ sup {lim sup{sup{lxp =yl :x = x(w,s),y = y(w,s) € X}}}}. (2.36)
(>0 w,s€[0,] n—o0

Now, we define Banach space BC(R; X R, E) as the third term of the constructed measures of noncompact-
ness. let us observe that based on formulas (2.5), (2.6) and (2.7), we get:

o (X) = lim ac(X)

= lim{ sup {sup{sup Ix,(w,s)| : w,s > C}}}, (2.37)
oo x=x(w,s)eX peN
B30 = lim Be(X)
= lim{ sup {sup{sup Ixy(w, 8) — xp(u, )| : w,s,u,0 2 C}}}, (2.38)
C—oo\yoyex peN

e(X) = lim supdiamX(w,s)

= lim {sup{sup{sup Ix,(w,s) — yp(w,s)l : x = x(w,s),y = y(w,s) € X}}}} (2.39)

w,5—00 peN

Finally,we can present nine formulas expressing suitable measures of noncompactness in the Banach space
BC(R x R, E) by remembering formulas (2.8)-(2.10) expressing measures of noncompactness in the Banach
space BC(R; X R4, E) and taking into account the above obtainned formulas (2.30)-(2.39). As a result, we
have:

Pa(X) = QF (X) + LX) + aw(X) (2.40)
fori=1,2,3. Similarly, we obtain

Pp(X) = QF(X) + 9L (X) + Puu(X) (2.41)
fori = 1,2,3. Finally, we can define the measures of noncompactness related to the term e = ¢(X), by putting

Pe(X) = QP (X) + 9L(X) + e(X) (242)
fori=1,2,3.

In order to accomplish this, we prove the following lemma.
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Lemma 2.3. The following equality is satisfied
Pou(X) = supp(X(w,s)) : w,s € Ry X Ry},
where ¢_, is defined by formula (2.4).

Proof. Obviously, for any C > 0 we have
sup{p(X(w,s)) : w,s € [0, (]} < sup{p(X(w,s)) : w,s € Ry X R, }.
Hence, we get

b.(X) = lim {suplp(X(@w,9)) : w,s € [0, ]} < supldp(X(w,s) : w,5 € Ry xR, ). (243)

To prove the converse inequality, let us denote
0 = sup{p(X(w,s)) : w,s € Ry x R, }.
Further, fix an arbitrary number € > 0. Then we can find wy, sp € R+ X R; such that
0 — € < p(X(wo, s0)).
Hence, for C > wy, sp we obtain
0 — € < supl{p(X(w,s)) : w,s € [0, ]} (2.44)
Since the function ¢ — sup{p(X(w, s)) : w,s € [0, (]} is nondecreasing, we get
sup{p(X(w,s)) : w,s € [0,C]} < lim { sup{o(X(ew, 5) : w,s € [0, I}, (2.45)
Combining (2.44) and (2.45), we have
6—€< %1_1)‘{)10 { sup{p(X(w,s)) : w,s € [0, C]}}. (2.46)
Consequently, in view of the arbitratiness of the number €, we derive the following inequality
6 < lim { suplo(X(w,5) : w,s € [0, 11} = b, (X). (2.47)
Finally, linking (2.43) and (2.47) we obtain the desired equality.

Now, let us notice that taking into account Lemma (2.3) and formula (2.34) expressing the quantity ¢, in
the case of the space BC(IR: X R+, E), we obtain the following corollary.

Corollary 2.4. The quantity (2.34) can be expressed by the formula

P (X) = sup{lim{ sup {sup{lxl(w, s) 1> p}}}}.
w,5>0 p—e x=x;€X

We recall a useful fixed point theorem of Darbo type [8, 13] at the end of this section.

Let us assume that E is a Banach space and ¢ is a measure of noncompactness (as defined in Definition 2.1)

in the space E.

Theorem 2.5. Assume that Q is a nonempty, bounded, closed and convex subset of a Banach space E and
T : Q — Qis a continuous operator such that there exists a constant k € [0.1) for which ¢(T(X)) < k¢(X) for
an arbitrary nonempty subset X of Q. Then there exists atleast one fixed point of the operator T in the set Q.

Remark 2.6. It can be shown that the set Fix T of all fixed points of the operator T belongs to the family ker

¢.
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3. Existence of solutions of infinite systems of integral equations on the Banach space BC(R, x R,,E) .

We willlook at the infinite system of Volterra-Hammerstein type nonlinear quadratic integral equations
with the form

xp(w,s) = ay(w,s) + fy(w, s, x,(w, s), xp41(w, s), ...)
xf(; j{; ky(w, s, u,0)g,(u, v, x1(u, ), x2(u, v), ...) dudo (3.1)

forw,s e Ry xRy and forp=1,2,....

Our considerations concerning the solvability of the infinite system of integral equations (3.1) will
proceed by a lemma which will be used in our later arguments.

Lemma 3.1. Let the function x(w, s) = (x,(w, s)) be an element of the space BC(R; X RR;, {~). Then the space
(xp) is equibounded and locally conxvex on Ry X R.

Proof. First, let us note that the function x = x(w, s) acts continuously from R; X R; into {.. Hence, we
deduce that, for each C > 0, the function x(w, s) is uniformy continuous on the interval [0,]. Thus for a
given € > 0, we choose a 6 > 0 such that ||(w5, s2) — (w1, 51)ll < 6 for wy, wy, 51,52 € [0, C] implies that

llx(ws, s2) = (wr.s1)lle., = supflay(wz) — xp(w1)l, Ixp(s2) = xp(s1)l : p=1,2,...} <e.
This means that |x,(w2) — x,(w1)| < €, |xp(s2) — xp(s1)| < eforp=1,2,....
Summing up, we conclude that for any € > 0 there exists 6 > 0 such that, for arbitrary wy, w,,sq,s; €
[0, C] such that [|(w2, 82) — (w1, $1)|| < 6 and foreachp = 1,2, ..., we have |x,(w2) — x,(w1)| < €, [xp(s2) —xp(51)| < €.

Thus, the function sequence (x;) is equicontinuous om the interval [0, C]. Hence it follows that the mentioned
function sequence (x;) is locally equicontinuous on R, x R,.

On the other hand the function x = x(w, s) is bounded on R, x R, implies that there exists a constant
M > 0 such that ||x(w, s)lle, < M for w,s € Ry X R,. Thus, we obtain the desired equiboundedness of the
sequence (x,) on the interval R, X IR,.

Now we will look at the assumptions that will be used to study the infinite system of integral equations
3.1).

(i) Thesequence (a,(w, s))is an element of the space BC(Ry X R4, ). Moreover, the functions a, = a,(w, s)
are equicontinuous on R, X R,.

(ii) The functionsk,(w,s,u,v) = k, : Ry XIR; xRy xRy — RRare continuous on the set Ry xRy XRy XR,(p =
1,2,..). Apart from this the functions w,s — k,(w,s,u,v) are equicontinuous on the set R, X R,
uniformly with respect to u,v € R, X R, i.e, the following condition is satisfied

Yes0 J550 YpeN YiuoeR, xR, vwl,ZUz,S1,Sz€R+XIR+[|w2 —w| <4182 —51| <0
= (w2, 52,1, 0) = ky(awr, 51,14,0)| < €]

(iii) There exists a constant G; > 0 such that

w

fflk,,(w,s, u,v)|dudov < Gy
[

0

foranyw,s € Ry xRyandp=1,2,....
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(iv) The sequence (k,(w, s, u,v)) is equibounded on R; X Ry X Ry X R, i.e, there exists a constant G, > 0
such that |k,(w, s, u,v)| < G, forw,s,u,v € Ry xRy andp =1,2,....

(v) The functions f, are defined on the set R,y X R, X R* and take real values for p = 1,2, .... Moreover, the
functionsw, s — f,(w,s, x1, x2, ...) are equicontinuous on IR XIR; uniformly with respecttox = (x,) € €«
i.e., the following condition is satisfied

Yes0 J550 YpeN YiuoeR, xR, le,zuz,sl,szeR+XR+[|w2 —w| <9182 —s1| <0
== |f}7(w2/ SZ/ xl/ x2/ ) - fp(wll Sl/ xl/ x2/ )| S E]'

(vi) There exists a function / : Ry X R, — R, X R, such that [ is nondecreasing on R, x R,, [(0) = 0,/ is
continuous at 0 and the following is satisfied

\fo(a,5,%1, %2, ) = fo(e0,5,y1, Y2, )| < 1) sup {lx; = il : 7 > p}

for any r > 0, for x = (x;),y = (i) € {w such that ||xllc, < 7,|lylle, < rand for all w,s € Ry X Ry and
p=12,..

(vii) Thesequence of functions (7;7) where ]_fp (w,s) =| fp (w,5,0,0,0,...)|isan element of the space BC(R+ X R, {w).
Assume that we can define the finite constant based on assumption (vii).

F= sup{J_‘p)(w,s) cw,s € Ry xRy, p=1,2,..}5

Now we formulate the final assumption about the infinite system (3.1).
(viii) The functions gp are defined on the set R, X R X R* and take real values for p = 1,2, .... Moreover,
there exists a function m : Ry X Ry — Ry XR; on R, XIR,, continuous at 7 = 0, m(0) = 0 and such that
the following condition is satisfied

lgp(w, s, x1,%2,...) = gp(w,s, y1, Y2, ...)| < m(r)supflx; — yil : i > p}

for any r > 0, for x = (x;),y = (i) € {w such that ||x|lc, < 7,|lylle, < rand for all w,s € Ry X Ry and
p=12,..
(ix) The operator g defined on the space R, X R, X s by the formula

(gx)(w,s) = (gp(w, s,%)) = (q1(w, s, x), g2(w, 5, %), ...)

is bounded i.e., there exists a positive constant g such that [|[(gx)(w, s)llc, < g for any x € £ and for
eachw,s € R; X R,.

(x) There exists a positive constant M suc that for any w,s € Ry X R, n € IN and for each x = x(w,s) =
(xu(w, s)) € BC(R+ X R4, £s) the following inequality holds

fflgp(u,v,x(u,v)ldudv:ffIgp(u,v,xl(u,v),xl(u,v),...IdudvSZ\_/I.

(xi) There exists a positive solution r( of the inequality
A +FgGy +gGirl(r) < r
such that
GGal(ro) + (rol(ro) + F)Gimro) < 1
where the constants F, g, G; were defined above and the constant A was defined in the following way

A =sup{lay(w,s) :w,s € Ry XRy,p=1,2,..}.
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Remark 3.2. Observe that from assumption (vi) we deduce that for any r > 0 and for x = x5,y = y; € {w
such that ||x|l¢, <7, [lylle, <7 and forw,s € Ry X R,,p € N, the following inequality is satisfied

lfp(w,s, x1,%2,...) = fp(w,s,x1, %2, ..)| < 1(r)llx = ylle.,,

where [ = [(r) is the function is the function from assumption (vi).
Similarly, from assumption (viii) we infer that

lgp(w, s, x1,x2,...) = gp(w, 8, y1, Y2, ..)| < m(r)llx = ylle.,

for w,s € Ry xRy,p € IN and for r > 0, provided x = x;,y = y; € €« such that ||xll,, <7, [lylle. <. The
function m = m(r) appears in assumption (viii).

Now we can express our existence result in terms of an infinite system (3.1).

Theorem 3.3. Under assumptions (i) — (xi) the infinite system of integral equations (3.1) has atleast one
solution x(w,s) = (x,(w,s)) in the space BC(R; X Ry, £w). Moreover, the function x = x(w, s) is uniformly
continuous on the interval R, X R,.

Proof. We start with defining three operators F, V, Q on the space BC(IR; X R+, {) in the following way:
(Fx)(wl S) = ((pr)(w/ S)) = (fp(wr s, x(w, S))) = (fp(wr 5,X1 (w/ S)/ xZ(wl S)/ ))/

(Vx)(w,s) = (Vpx)(w,s)) = (ffkp(w, s, u,0)gp(u, v, x1(1, v), x2(14, V), ...) dudv),

(QX)(w,s) = (Qpx)(w, 5)) = (ap(w,5) + (Fpx)(w, s)(V,x)(w, s)).

At the begining we show that the operator F transforms the space BC(R; X IR,, {s) into itself.
To this end let us choose a function x = (x,(w, s)) € BC(R+ X R4, {«). Fix a number n € IN and take
w,s € R® X R,. Then, in view of the imposed asssumptions and Remark (3.2), we obtain

[(Fpx)(w, s)| < |fp(w, s, x1(w, 5), x2(w, 8), ...) = fp(w,s,0,0,..)| +|f,(w,s,0,0,..)
< U(llx(w, 9)lle..) supllxI(w, s) : i = p} + |f,, (w, s)|

< I(llxllBer, xr, £ )XlBCR, xR, £.0) + F- (3.2)

Next, we show that the function Fx is continuous on R, X IR,. In order to show this fact we will utilize the
continuity of an arbitrary function

x = x(w,s) = (x,(w,s)) € BC(Ry X Ry, {eo)
on the interval R, X R;. This means that the following condition holds
Ves0 J550 Yy soeRe xR, Vaws,eR, xR, [lw —wo| £0,|s =50l £ 6
= ||x(w, s) — x(wo, 50)|[{fe} < e]. (3.3)

Further, fix € > 0 and wyp,s0 € Ry X R,. Next, choose 6 > 0 according to condition (3.3). Then, for
w,s € R, X Ry such that ||(w, s) — (wy, sp)|| < 6, in view of remark (3.2), we obtain
I(Fpx)(w, s) = (Fpx)(wo, so)l < |fg(w, s, x1(w, 5), x2(w, ), ...) = fu(Wo, So, x1(w, 5), X2(w, s), ...)|
+ [(|lx(w, 9)lle.)Ix(w, s) = x(wo, so)lle.,
< fp(w, s, x1(w, s), x2(w, 9), ...) = fp(wo, S0, x1(w, 8), X2(w, 5), ...)]
+ I(|IxllBc(r, xR, £.0) )E- (3.4)
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Now, keeping assumption (v) in mind, we can select a number 6 > 0 in such that

lfp(w, s, x1(w, s), x2(w, 5), ...) = fp(wo, so, x1(w, 5), X2(w, 5), ...)| < €

for ||(w,s) — (wo,s0)ll < 6 and for n = 1,2,.... We can get the following estimate by combining this fact with
(3.4).

[(Fpx)(w, ) = (Fpx)(wo, so)| < (1 + I(||xlBc(r, xR, £.)))E

forp =1,2,... and for any w,s € R; X IR, such that ||(w,s) — (wo, 50)|| < 0. This shows that the function Fx is
continuous at point wy, sp € Ry X R,. Since wy, sy was choosen arbitrary we conclude that the function Fx is
continuous on IR, XIR,. Joining the above deduced property of Fx with the earlier established boundedness
of Fx we infer that the operator F transforms the space BC(R; X Ry, £) into itself.

We now are going to show that the above mentioned operator V transforms the space BC(Ry X R+, {)
into itself. To this end, similarly as above, take a function x = x(w,s) = (x,(w,s)) € BC(R+ X Ry, {s). Then,
for arbitrarily fixed numbers w,s € R, X R, and p € IN, based on assumptions (iii) and (ix), we get

V)0, )] < f f Iy a0, 5, 1, O)lg 1 0,11, 0), 221, ), )| o

Sfflk,,(w,s,u,v)l?dudvSyfflkp(w,s,u,v)ldudvS?Gl. (3.5)
[ 0 0 0

The derived estimate, in particular, shows that the function Vx is bounded on the interval R, XIR,. Next, fix
€ > 0 and determine a number 6 > 0 according to assumption (ii). Then, for arbitrary wi, wy, 51,5, € Ry xRy
such that [|(wy,s2) — (w1,51)ll £ 0, on the basis of assumptions (ii) and (ix)(assuming, for example, that
(wn, 1) < (wy,2)), we have

[(Vpx) (w2, 52) — (Vpx)(wn, 1)

wy S
<| [ [ ot 00,0310, 0,0, .
- kp(wll S1, U, U)gp(u/ 0, X1 (1/[, v)r xZ(ul U)/ ) dudo
[ [
wy S
+ ky(w1, 81, u,0)g,(1, v, x1(11, v), x2(14, 0), ...) dudv
- ky (w1, s1,u,0)gp (1, v, x1(u,v), X2(1, v), ...) dudo
[ [
wy S2
< f f lkp (w2, 82,1, ) — kp(wn, 51, u, 0)|g, (1, v, x1(u, v), ...)| dudo

+ flkp(wl/sll u, U)”gp(u; U,xl(u, U),...)ldud?f

wr 81
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< Qk(0)|gp(u, v, x1(u, ), X2(1t, v)....)| dudo

w2 Sy
+ Galgy(u, v, x1(u, v), ...)| dudo,

wr S1

where G; is a constant from assumption (iv) and €x(6) denotes a common modulus of equicontnuity of the
sequence of functions w,s — k,(w, s, u, v) (according to the assumption (iii)). Obviously we have (x(6) — 0
as 6 — 0.

Let us now notice that, using assumptions (ix) and (x), we can obtain the following estimate from the
previous one.

[(Vypx) (w2, 52) = (Vpx)(w1, 51)] < MQk(B) + GG20. (3.6)
Hence, we get
I(Vx)(ws, 52) — (Vx)(w1,51)lle, < MQk(S) + §Ga0.

This shows that the function Vx is continuous on the interval R, X R;. We conclude that the operator V
transforms the space BC(R; X Ry, {») into itself by linking the boundedness of the function Vx with its
continuity on Ry X R,.

Taking into account the fact the space BC(R; X R4, {») is a Banach algebra in terms of coordinatewise
multiplication of function sequences and keeping in mind the definition of the operator Q and assumption
(i), we deduce that for an arbitrarily fixed function x = x(w,s) € BC(R: X R;, {«) the function (Qx)(w, s) =
(Qpx)(w, 5)) = (ap(w, s) + (Fpx)(w, s)(Vpx)(w, s)) transforms the interval R, X R, into the space (.

Indeed, in virtue of the fact that ((F,x)(w, s)) € {w for any w,s € Ry X R, and in the light of estimate (3.5),
we get

Q) (w, s)| < lay(w, s)| + gGal(Fpx)(w, 5)|

for any p € IN. In view of (3.2) this yields that (Qx)(w, s) = ((Qpx)(w, s)) € {« for every w,s € Ry X R,.

Next, let us notice that the continuity of the function Qx on R, X R, follows easily from the continuity
of the functions Fx and Vxv= on the interval R, X R,. Similarly, if we use assumption (i), we may infer the
boundedness of the function Qx on R, X R,.

Finally, by combining all the above established properties of the function Qx we infer that the operator Q
transforms the space BC(R; X R,, {) into itself.

Now, let us observe that in view of estimates (3.2) and (3.5), for an arbitrarily fixed p € IN and
w,s € Ry XR,, we have

(Qp)(aw, )| < lap(aw, )| + [(Fpx) (0, )|V x) a0, )
< A+ (1, slle, ), slle,) + F[gGr

As a result, we arrive at the following estimate:

IQxllBc(r, xR, £.) < A + FgG1 + gG1l(lIxllBe(r, xR, e)IXIBER, xR, £0) -

Based on the aforementioned estimate and assumption (xi) we conclude that there exists a number ry > 0
such that the operator Q transforms the ball B, (in the space BC(IR, X R+, {s)) into itself.

In what follows we show that the operator Q is continuous on the ball B,,. To achive this, it is sufficient
to show the continuity of the operator F and V seperately, taking into account the representation of the
operator Q.

So, let us fix an arbitrary € > 0 and choose x € B,,. Next, take an arbitrary point y € B,, such that
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lIx = yllBcr. xR,,£.) < €. Then, for a fixed p € N and for w,s € R, X Ry, in view of assumption (vi) and
Remark (3.5), we have

[(Fnx)(w, s) — (Fuy)(w, s)| =|fu(w,s, x1(w,s), x2(w,s), ...) = fu(w,s, y1(w,s), y2(w,s), ...)]
< (ro)llx = yllBcw, xR, ¢.) < Uro)e.

Hence, we obtain

IFx = Fyllpcr, xR, £.) < (ro)e.

We may deduce the intended continuity of the operator F on the ball B,, based on this approximation.
In what follows, let us choose arbitrary points x = (x;),y = (y;) € By,. Thus in view of assumption
(viii), for fixed w,s € Ry X Ry and p € N, we obtain

|(Vpx)(w, ) = (Vpy)(w, s)|

w

< f f lky(w, s, u, 0)|lgy(u, v, x1(u, 0), X2(1t, v), ...) = gp(u, v, y1 (1, v), y2(, v), ...) dudo

0
w

< fflkp(w, s, u, v)|m(ro) sup{lx;(u, v) — y,(u,v)| : i > p}dudo

< m(ro) f f (a0, 5, 1, 0)(x(t, 0) — y(u, Ol ) diudo

w

< m(ro) supillx(u, v) — y(u, v)lle, : u,v € Ry X ]R+}ff|kp(w, s, u, v)| dudo.
[

0

Keeping assumption (iii) in mind, we arrive at the following inequality

[(Vyx)(w,s) = (Vyy(w,s))| < Gim(ro)llx — yllBor, xR, £.)-

We deduce that the operator V is continuous on the ball B,, based on the above-mentioned approximation.

In the sequel, let us fix an arbitrary number € > 0. Next, choose w,s,u,v € R; X R, such that
ll(w,s) — (u,v)|| < € and take a nonempty set X of the ball B,,. Then, for a function x = x(w, s) = (x,(w, s)) € X
and for an arbitrarily fixed natural number p, estimating similarly as in (3.4), we get

(F)(@,9) = (Fpx)(w, 5)| < 1(ro) supllxi(aw, s) = xi(1,0)] = > p)
+sup{|fy(w, s, x1,x2,...) = fp(u,0,x1,x2,..)| : |[w—u| <€,
Is — ol < € lIxlle, = l1(xp)lle., < 70}
< (r)Q¥(x,€) + QL (f,€), (3.7)

where

QL (f,€) = sup{sup |f,(w, s, x1, %2, ...) = fy(1,0,x1,%2,..) : [w —u| < €,|s —v| <,
peIN

llxlle., = 11(xp)lle, < o}

Obviously, in view of assumption (v) we have QL (f,€) — 0 as € — 0.
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Now, from estimate (3.7) we deduce that
Q= (Fx, €) < I(10)Q™(x, €) + QL (f, €). (3.8)

Further, let us observe that the same assumptions as above, asssuming additionally that (w,s) > (i, v),
similarly as in (3.6) we can obtain the following estimate

I(Vp2)(@w, 5) = (Vpx(it, 0))] < MQy(€) + GGoe,

where the symbol ()(e) denotes the modulus of equicontinuity of the sequence of functions w,s —
ky(w,s, t1,12) ie.,

Q(e) = sup { sup{lky(w, s, 11, 2) — kp(u, 0,71, T2) : W,8,, 1,0, 71, T2 € Ry X Ry,
peN

T1,To S w,S,7T1, T < u,0,|w—u|l<¢€,|S—19 < e}}.

Obviously ((e) — 0ase — 0.

Let us now take note of the fact that, based on the preceding calculation, we have
Q®(Vx,€) < MQy(€) + §Gae. (3.9)

Now, for a fixed function x € X and for arbitrary numbers w, s, u,v € R; X R;, taking into account the
representation of the operator Q, we have

1(Qx)(w, ) = (Qx)(u, V)lle.,
< lla(w, s) = a(u, v)lle., + 1(Vx)(@w, s)lle NI(Fx)(w, s) = (Fx)(u, 0)lle.,

IEX)(w, 0)lle, (V) w, s) = (V) (u, 0)lle.,,

where we denoted a(w, s) = (a,(w, 5)).

Further, fix € > 0 and assume that ||(w, s) — (4, v)|| < e. Utilizing (3.3), (3.5), (3.8) and (3.9), from the
above inequality we get

Q®(Qx, €) < Q°(av, €) + §G1Q(Fx, €) + (rol(ro) + F)(MQyx(€) + §Gae)
< Q%€ + G [l(ro)Q""(x, o) +QL(f, e)]
+ (rol(ro) + F)(MQx(€) + §Gze).

As a result, keeping in mind the above established properties of functions € — QL (f,€),e = Qk(e) and
assumption (i), we obtain

Q7 (QX) < gG1l(ro)QA%(X). (3.10)

In what follows we will consider the second term of the measure of noncompactness ¢? defined by the
formula (2.42) for i = 3. That term is denoted by ¢_? and is expressed by formula (2.33). To this end fix a
set X C B,, and take arbitrary x = x(w, s), y = y(w, s) € X. Then, for arbitrarily w,s € R, x R, and k € N, we
have :

Q) (w, 5) = (Qky)(w, s)| = [(Frx)(w, s)(Vix)(w, 5) = (Fry)(w, s)(Viy)(w, s)|
< |(Vi)(w, s)l|(Fex)(w, s) = (Fxy)(w, s)|
+|(Eey) (@, s)lI(Vix)(w, 5) = (Viy)(w, s)l. (3.11)
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Further on, we are going to estimate the terms appearing on the right hand side of inequality(3.11). To
this end, fix a natural number n and a number C > 0. Then, for t € [0,(] and for p € IN,q > p, based on
assumptions (viii) and (iii), for arbitrary functions x, y € X, we obtain

I(Vyx)(w, ) = (Vay)(w, s)l

< f f k20,5, 1, 0)llg (1,0, %111, 0), %210, 0), )
- gq(u/ 0,11 (1/[, Z])/ yZ(u/ U)/ )l dudv

< m(ro) fflkq(w, s,u, v)I( sup{lxi(u, v) — yi(u.v)| : i > q}) dudv

Sm(m)fflkq(w,s,u,v)l{ sup {sup Ixi(w,s)—yi(w,s)|}}dudv

w,s€el0,L]  i>p

< Gum(ro){ su[looq{{ suplsupllxi(w,s) = yi(w,5)  x = x(w,5), ¥ = y(aw,) € X }}.
w,s€[0, izp

Hence, we get

sup {{suplsupllxi(w,s) = yi(w, ) x = x(w,5), ¥ = y(w,) € X))}
w,s€[0,C] i>p

< Glm(ro){ su[gq{{ sup{supllxi(w, s) = yi(w,s)| : x = x(w,5), y = y(w, s) € X}}}}.
w,s€0, zp

The above estimate yields (cf.formula 2.33):
P2(VX) < Gim(ro)p 2 (X). (3.12)

Similarly as above, for an arbitrarily fixed p € N, w, s € Ry X R, and for x = x(w, s), y = y(w, s) € X, utilizing
assumption (vi), we obtain

|(Fpx)(w, 5) = (Fpy)(w, )| < I(ro) supllxi(w, s) = yi(w,s)| : i = p}.

As a result, we arrive to the following estimate:

sup {sup { supll(Fx)(@,s) — (Fiy)(w, s)| : x = x(w, s), y = y(w,s) € X}}}

w,s€[0,C] " i>p
< l(ro){ sup {{sup{sup{lxi(w, s) = yi(w,s)| : x = x(w,s), y = y(w,s) € X}}}}.
w,s€[0,C] i>p
We can now conclude the following inequality using the above estimate and formula (2.33).
S(FX) < (ro)p (X). (3.13)

Finally, joining estimates (3.2), (3.5), (3.11), (3.12) and (3.13), we obtain

2(QX) < FGul(ro)p2(X) + (ro)ro + F)Gum(ro)p2(X). (3.14)
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In the sequel we will consider the third term of the measure of noncompactness ¢ defined by (2.42) i.e.,
the term e(X) expressed by formula (2.39).

Thus, let us fix a nonempty subset X of the ball B,, and the functions x = x(w, s), y = y(w, s) € X. Next,
fix C > 0 and take w,s > C. Then, for an arbitrary natural number p, on the basis of calculations performed
before estimate (3.12), we obtain

IV, 0)(w,5) = (V) (@, 5)] < Gm(ro){sup{sup Ixi(aw, 8) — yiCa, s>|}}.

w,s>C N i>p

The above estimate yields
sup {sup{sup (Vo) (w,s) = (Vpy)(w,s)| : x = x(w, ),y = y(w,s) € X}}
w,s2C peN

< Glm(ro){sup{sup{sup |(x,,)(w,s) - (yp)(w, s):x=x(w,s),y =y(w,s) € X}}}

w,5>C peN
Consiquently, we get
e(VX) < Gym(rg)e(X). (3.15)

Following that, we derive the following inequality using the same reasoning as in the calculations that
preceding estimate (3.13).

e(FX) < I(rp)e(X). (3.16)
Finally, linking estimates (3.2), (3.5), (3.11), (3.15) and (3.16), we obtain
e(QX) < GGl(ro)e(X) + (I(ro)ro + F)Gam(ro)e(X). (3.17)

Now, combining estimates (3.10), (3.14), (3.17) and keeping in md formula (2.42) expressing the measure of
noncompactness ¢3, we get

$2(QX) < FGil(ro) AT (X)
+[7Gro) + Coltr0) + HGm(r) |00

N [ycll(ro) + (rol(ro) + F)Glm(r())]e(X).

Hence, we derive the following estimate

$2QX) = [FGal(r) + (ol(r0) + BIGum(ro) 63%) (3.18)

Further, taking into account the above obtained estimate, in view of the facts established in the
conducted proof, assumption (xi) and Theorem 2.5 we deduce that there exists atleast one element x €
B,,which is the fixed point of the operator Q in the ball B,,. Obviously the function x = x(w, s) is a solution
of infinite system of integral equations (3.1) in the space BC(IR; X R+, {c).

Moreover, in view of remark and the description of the kernel of measure of noncompactness ¢, g and
¢, located after the proof of Theorem 2.2, we conclude that the function = x(w, s) is uniformly continuous
on the interval R, X R.. This completes the proof.

The following example exemplifies the above result:
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Example 3.4. Let us consider the following infinite system 0f nonlinear quadratic integral eqyuations of the
Volterra-Hammerstein type

Xp(w,s) =

a(w + s) ( b zx,(w, 5) ZXp41 )
L+p2+(ws)?  \p2+ws)?  1+x3(w,s) p+x3(w,s)

Xof f 1+ p((uo)? + (ws)?) ot p+ (o) Jaudo (3:19)

forp=1,2,..and w,s € R, X R,. Also, we assume 4, b, z appearing in the above are positive constants.
Observe that infinite system (3.19) is a particular case of system (3.1) if we put

ap(w,s) = %, (3.20)

Jol@rs: 31,32, ) = p? +lzws)2 lic,;c(;zlvs,)s) p +Z;C§;u,s)' (3.21)
ky(w,s, u,v) = - p((zwu):+ (ws)z)l (3.22)
gp(w, s, x1,%2,...) = arctan(%) (3.23)

forp=1,2,..and w,s € Ry X R,.

In order to show that the infinite system of integral equations (3.19) has a solution in the Banach space
BC(R+ X R4, €w) it is sufficient to apply Theorem (3.3). To this end, we have to show that the functions
defined by formulas (3.20)-(3.23) satisfy assumptions (i)-(xi) of Theorem (3.3).

Atthebegining let us observe that the functions a;,(w, s) defined by (3.20) satisfy the Lipschitz condition
with the constant [ = 1 for p = 1, 2, .... Thus, these functions are equicontinuous on R, X R,. Moreover, we
have

A =sup{lay(w,s) :p=1,2,...,w,s € Ry xRy} = 1.

This shows that the assumption (i) is satisfied.
Further, let us notice that the function k,(w, s, u,v) defined by (3.22) (p = 1,2,...) is continuous on
R: X R+ X Ry X R,. additionally, uusing standard tools of differential calculus it is easy seen that

1
|kp(w2/ SZ/ Z’l/ U) - kp(wllsll Z’l/ U)l S E'(ZUZ/ SZ) - (wlrsl)l

forp = 1,2,3,... and for wy, wy,s1,52 € Ry X R;. This means that the sequence of functions (k,(., u,v)) is
equicontinuous on R X R, uniformly with respect to u,v € R, X R,.
Summing up, we see that there is satisfied assumption (ii).

Next, let us observe that for each p € IN and for arbitrary w,s, u,v € R, X R, we have the following
estimate

wo __wo
1+ pwo)?> = 1+ (uv)?

1
Ik,,(w,s,u,v) < < E

1
Hence it follows that the sequence k,(w, s, u, v) is equibounded on R, x R, with the constant K; = 5 This
shows that there is satisfied assumption (iv).
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On the other hand we obtain

w

( o o 11+ 2p(ws)?
fflkp(w,s,u,v)ldudv—ff1+p((uv)2+(ws)2) dudv—z(m)

0

< l1r12 < 11r12.
2p 2

Next, let us notice that the functions f, = f,(w,s, x1,x2, ...) given by (3.21) act from Ry X Ry X R* — R(p =
1,2,...). Additionally, taking into account that the functions f, do not depend explicity on (w, s), we conclude
that there is satisfied assumption (v).

In order to verify assumption (vi) let us fix a number r > 0 and take x = (x;) such that ||x||¢, < 7. Then,
keeping in mind formula (3.21), for an arbitrary natural number p and w, s € R, X R,, we have

b |xp| |xp+1|
| fow, s, x1,x0,..)| < + [ + ]
fil ) pr+ws? L1+ p+ad

< 7+ (s + z(|xp)| + [xpal)

< ;T(ws)z +z(|xp) + 2zsupflxi| : i > p}.

This shows that the inequality from assumption (vi) is satisfied with the following functions

I(r) = 2z

- b -
forp =1,2,... Since f,(w,s) = ;ﬁ we infer that lim f, (w,s) = 0 uniformly with respect to p € N.

=+ (ZUS) w,8—00
Apart from this we have that lim f p(w,s) =0 forany w,s € Ry X R,.
pA)OO

Summing up we see that assumption (vi) is satisfied. Moreover, let us notice that

F= sup{fp(w,s) w,s € Ry xRy,p=1,2,..} =b.

Next, let us fix a number r > 0 and take x = (x;), ¥ = (y;) such that [|x|l,, < 7, [|[yllc. < 7. Then, keeping in
mind formula (3.21), for an arbitrary natural number p and w, s € R, X R, we have
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|fp(wr S, X1, X2, ) - fp(w/ S, Y1, Y2, )l

<5 Yoo W Xpe1  Ypr1
T+ 1+ p+x3 p+y3

P + 207 = Yp = YpX3l IpXpa1 + Xpi1 3 = PYpr1 = Yp1X3|

1+ +y7) (p+xD)(p +y3)
< (Y7 = ypxD) + (Wpyi = ¥p}) [Xp+1 — Yps1
_zlx,,—yp|+z 1 v 5 Yy . .
(1 +x)A +yy) (p+x3)(p+y3)
+ Z(xpy% - ypx%) + (ypﬂ]/% - y,,ﬂx%)
(p+x3)(p +v5)
[y1l |x1]

<2 - + ( + ) _

2 =yl v DA+y  A+D)A+ b=yl

|]/2| |XQ|
2 - ( ) _

+ 22 = Ypual 9\ DA+ 121+ 1) bz = 2]

< 2zx, — ypl + yrixs — yal + 2zlxp401 — Zpa| + zH|x2 — 2o
< (4z + 2r2)|lx — zlle, = 222 + 7)llx — zl|e,, -
Thus see that assumption (vii) is satisfied with the function m(r) = 2z(2 + r).

In the next step of our proof we are going to verify assumptuion (viii). To this end fix arbitrarily € IN
and consider the function g,(w, s, x) = g,(w, s, x1, X2, ...) defined by formula (3.23) i.e,.

) ‘ ( X1+ Xp )
w,s,X1,X,...) = arctan| ———— .
g 2 p + (ws)?

Then, from the estimate

lea] + [yl - 1] + [
p+wsy?— p

We deduce that the operator g defined in assumption (viii) by the equality

gp(w,s,x1,%2,...) <

(!]x)(w/ S) = (gp(w/ S, .X')) = (gl(w/ S, x)/QZ(w/ s, .X'), )

transforms the set Ry X Ry X € Into £w.
Further on, fix w,s € Ry X R, and take x = (x;), ¥ = (¥i) € . Then we have

X1+ Xp zZ1+2p
p+ sy p+(wsy

x1—z1 X — 2l
|1 1, P T
p p

lgp(w, s, x) — gp(w,s,2)| < '

. This allows us to derive te following estimate:
lI(gx)(w, 5) = (92)(w, 9)lle.. = supllgp(w, s, x) = gp(w,s,2)| : p € N}

Ssup{'xl;z1 + pr;zpl :peIN}

Xy — 2
SZsup{lprfp'

.pe ]N} <2l — 2lr..

From the above estimate we infer that the operator g satisfies assumption (viii).
Moreover, it is easily seen that for an arbitrary x € £, and w, s € R, X R, we get

Tt

l(g)(w, s)lle., = sup{gy(w,s,x) : p € N} < >
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N = 7
This means that the operator g satisfies the assumption (ix) with constant G = 7

Finally, let us consider the first inequality from assumption (x). Obviously, in our case that inequality
has the form

T o422 <1 (3.24)

2vV2 4

On the other hand, taking the second inequality required in assumption (x), we get

zg In2(2 + 1) < 1. (3.25)

1 b
It is easy to check that choosing z < p—— and taking ry > 24 —, we can easily verify that both

V2 2y
inequalities (3.24) and (3.25) are satisfied.
Thus, in the light of Theorem (3.3), we infer that infinite system of nonlinear integral equations (3.19) has
atleast one solution belonging to the ball B,, in the space BC(R; X R, {).
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