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Some effect of drift of the generalized Brownian motion process:
Existence of the operator-valued generalized Feynman integral

Jae Gil Choi?

#School of General Education, Dankook University, Cheonan 31116, Republic of Korea

Abstract. In this paper an analytic operator-valued generalized Feynman integral was studied on a very
general Wiener space C,;[0, T]. The general Wiener space C,;[0, T] is a function space which is induced by
the generalized Brownian motion process associated with continuous functions a and b. The structure of
the analytic operator-valued generalized Feynman integral is suggested and the existence of the analytic

operator-valued generalized Feynman integral is investigated as an operator from L'(RR, v5,) to L(IR) where
Vs is a o-finite measure on R given by

Avs, = exp{(SVar(a)uz}du,

where 6 > 0 and Var(a) denotes the total variation of the mean function a of the generalized Brownian
motion process. It turns out in this paper that the analytic operator-valued generalized Feynman integrals
of functionals defined by the stochastic Fourier-Stieltjes transform of complex measures on the infinite
dimensional Hilbert space C;,b[O, T] are elements of the linear space

() LR, v5,), LV (R)).

6>0

1. Introduction

Before giving a basic survey and a motivation for our topic we fix some notation. Let C, C; and
C. denote the set of complex numbers, complex numbers with positive real part and nonzero complex
numbers with nonnegative real part, respectively. Forall A € C;, A2 = VA (or A~1/2) is always chosen to
have positive real part. Furthermore, let C[0, T] denote the space of real-valued continuous functions x on
[0, T] and let Cy[0, T] denote those x in C[0, T] such that x(0) = 0. The function space Cy[0, T] is referred to

as one-parameter Wiener space, and we let m,, denote Wiener measure. Given two Banach spaces X and Y,
let £(X,Y) denote the space of continuous linear operators from X to Y.
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Let F be a C-valued measurable functional on C[0,T]. For A > 0, ¢ € L*(R), and & € R, consider the
Wiener integral

OEPO = [ F e (A + Eima(o) 1)
0l0,

In the application of the Feynman integral to quantum theory, the function ¢ in (1.1) corresponds to the
initial condition associated with Schrodinger equation.

In [1], Cameron and Storvick considered the following natural and interesting questions. Under what
conditions on F will the linear operator I,(F) given by (1.1) be an element of L(L*(R), L*(R))? If so, does
the operator valued function A — I,(F) have an analytic extension, write [{"(F) (it is called the analytic
operator-valued Wiener integral of F with parameter A), to C.? If so, for each nonzero real number g, does
the limit

) = lim 1(F)
AeCy

exist in some topological (normed) structure? The functional Ji"(F) (if it exists) is called the analytic
operator-valued Feynman integral of F with parameter g.

Cameron and Storvick in [1] introduced the analytic operator-valued function space “Feynman integral”
J3(E), which mapped an L*(IR) function ¥ into an L%(R) function JE)Y. In [1] and several subsequent
papers [2, 3, 15-22], the existence of this integral as an element of L(L*(R), L?(R)) was established for
various functionals. Next, the existence of the integral as an element of £(L}(R), L*(IR)) was established in
[4, 5, 14, 23]. Finally, the L, — L, theory (1 <p < 2and 1/p + 1/p’ = 1) was developed as an element of
L(I’(R), L7 (R)) in [24].

The Wiener space Cy[0, T] can be considered as the space of sample paths of standard Brownian motion
process (SBMP). Thus, in various Feynman integration theories, the integrand F of the Feynman integral
(1.1) is a functional of the SBMP, see [1-5, 14-24].

Let D = [0, T] and let (Q3, ¥, P) be a probability space. By the definition, a generalized Brownian motion
process (GBMP) on D x () is a Gaussian process Y = {Yi}ep such that Yy, = 0 almost surely and for any
0<s<t<T,

Yi = Ys ~ N(a(t) - a(s), b(®) - b(s)),

where N(m,0?) denotes the normal distribution with mean m and variance 2, a(t) is a continuous real-
valued function on [0, T] and b(t) is an increasing continuous real-valued function on [0, T]. Thus a GBMP
is determined by the continuous functions a(t) and b(t). The function space C,[0, T'], induced by GBMP,
was introduced by Yeh [25, 26] and was used extensively in [6-13]. The function space C,;[0, T] used in
[6-13] can be considered as the space of sample paths of the GBMP.

The generalized Feynman integral studied in [6, 7, 9, 10] are scalar-valued. In this paper, the analytic
operator-valued generalized Feynman integral (AOVGFeynman’'l) of functionals F on the general Wiener space
Cap[0, T]is investigated as an element of L(LY(R,vs,), L*(R)), where vy, is a measure on R given by

dvs, = exp{éVar(a)uz}du,

and where 6 > 0 and Var(a) denotes the total variation of the mean function a of the GBMP. It turns out in
this paper that the AOVG'Feynman'ls of functionals defined by the stochastic Fourier—Stieltjes transform
of complex measures on the infinite dimensional Hilbert space C, [0, T], the space of absolutely continuous
functions in C, [0, T], are elements of the linear space

() LE R, vs,), L2 (R)).
0>0

Note that when a(t) = 0 and b(t) = t, the GBMP is an SBMP, and so the function space C, [0, T] reduces
to the classical Wiener space Cy[0, T]. But we are obliged to point out that an SBMP used in [1-5, 14-24]
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is stationary in time and is free of drift. While, the GBMP used in this paper, as well as in [6-13], is
nonstationary in time and is subject to a drift a(f). It turns out, as noted in Remark 4.2 below, that including
a drift term a(t) makes establishing the existence of the analytic operator-valued generalized function space
integral (AOVGEFSI) and AOVG Feynman'l of functionals on C,;[0, T] very difficult.

In [13], Chang, Skoug and the current author introduced the analytic operator-valued Feynman integrals
J 3” (F) of finite-dimensional functionals F : C,;[0, T] — C, having the form

F(x) = f( fo L outxt) ..., fo ! Gn(t)dx(t))

where f : R" — C is a Lebesgue measurable function, fOT O(t)dx(t) denotes the Paley—Wiener-Zygmund
stochastic integral with x in C,;[0, T], and {04, ..., 0,,} is a set of functions of bounded variation on the time
interval [0, T] such that

T
f 0;(t)0,(t)dmyq(t) = 6  (Kronecker delta),
0

and where my ), denots the Lebesgue-Stieltjes measure induced by the variance function b and the mean
function a of the GBMP Y. But, in [13], the topological structures between the domain and the codomain of
the operator “Ji"” was not discussed.

The results in this paper are quite a lot more complicated because the GBMP Y referred to above is
neither stationary nor centered. We refer to the reference [6, 7, 9] for an unusual behavior of the GBMP.

2. Preliminaries

In this section, we briefly list some of the preliminaries from [6, 7, 9, 10] that we need to establish our
results in next sections; for more details, see [6, 7, 9, 10].

Let (C,4[0, T1, B(C, 5[0, T1), 1) denote the function space induced by the GBMP Y determined by contin-
uous functions a(t) and b(t), where B(C, [0, T]) is the Borel o-field induced by the sup-norm, see [25, 26].
We assume in this paper that a(t) is an absolutely continuous real-valued function on [0, T] with a(0) = 0,
a'(t) € L[0, T], and b(t) is an increasing, continuously differentiable real-valued function with b(0) = 0 and
b'(t) > 0 for each t € [0, T]. We complete this function space to obtain the complete probability measure
space (Cy [0, T1, W(C, [0, T1), 1) where W(C, [0, T]) is the set of all u-Carathéodory measurable subsets of
Capl0, T

We can consider the coordinate process X : [0, T] X C,4[0,T] — R given by X(t,x) = x(t) which is a
continuous process. The separable process X induced by Y [26] also has the following properties:

(i) X(0,x) =x(0) =0 for every x € C,;[0, T].
(ii) For anys,t € [0, T] with s < tand x € C,[0, T1, x(t) — x(s) ~ N(a(t) — a(s), b(t) — b(s)).

Thus it follows that for s, t € [0, T], Cov(X(s, x), X(t, x)) = min{b(s), b(t)}.

A subset B of C,;[0, T] is said to be scale-invariant measurable provided pB is ‘W(C,,[0, T])-measurable
for all p > 0, and a scale-invariant measurable set N is said to be scale-invariant null provided u(pN) = 0
for all p > 0. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.). A functional F is said to be scale-invariant measurable provided F is defined on a
scale-invariant measurable set and F(p -) is W(C,;[0, T])-measurable for every p > 0.

Let Li/b[O, T] be the separable Hilbert space of functions on [0, T] which are Lebesgue measurable and
square integrable with respect to the Lebesgue-Stieltjes measures on [0, T] induced by b(t) and a(t): i.e.,

T T
Lib[O,T]:{v: f 2(s)db(s) < +o0 and f vz(s)dlal(s)<+oo}
0 0
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where |a|(t) denotes the total variation function of a(t) on [0, T]. The inner product on Lgh[O, T] is defined

by (1,0), = fOT u(H)o(Hd[b(t) + lal(t)]. Note that [lull,, = (4, u)sp = 0 if and only if u(f) = 0 a.e. on [0,T]
and that all functions of bounded variation on [0, T] are elements of Lg ,[0, T]. Also note that if a(t) = 0 and
b(t) = t, then L2 [0, T] = L?[0, T]. In fact,

(L2,10, TL 11 llp) € (L2410, T1 11 llos) = (L0, T, 11 - II2)

since the two norms || - [lp and || - ||> are equivalent.
Throughout the rest of this paper, we consider the linear space

t
c;,0,T] = {w € Cul0, T] : w(t) = f 2(s)db(s) for some z € 12,0, T]}.
0

Forw € C;,b[O, T], with w(t) = fot z(s)db(s) fort € [0, T], let D : C;lh[O, Tl — Lg ,10, T1 be defined by the formula

w'(t)

Dw(t) = z(t) = 7)) (2.1)
Then C/, = C/ [0, T] with inner product

T

T
(ZU1, ZUz)C;b = f DZU1([’)DZU2(t)db(t) = f Zl(t)Zz(t)db(f)
’ 0 0
is also a separable Hilbert space.

Note that the two separable Hilbert spaces L2, [0, T] and C/, [0, T] are topologically homeomorphic under
the linear operator given by equation (2.1). The inverse operator of D is given by

t
(D7'2)(t) = fo 2(s)db(s)

fort € [0, T].
In this paper, in addition to the conditions put on a(f) above, we now add the condition

T
fo @ (P dlal(t) < +oo. 22)

Then, the function a : [0, T] — R satisfies the condition (2.2) if and only if a(-) is an element of C’ [0, T], see
[11, 12]. Under the condition (2.2), we observe that for each w € C’ [0, T] with Dw = z,

a’(t)
b'(t)

T T T
(w,a)c, = f Dw(t)Da(t)db(t) = f z(t) db(t) = f z(t)da(t).
' 0 0 0

Next we will define a Paley-Wiener-Zygmund (PWZ) stochastic integral. Let {g]-};?il be a complete
orthonormal set in C; b[O, T] such that for each j = 1,2,..., Dg; = a; is of bounded variation on [0, T]. For
eachw =Dz ¢ c b[O, T], the PWZ stochastic integral (w, x)™ is defined by the formula

T n T n T
(w,x)” = lim f Z(w,gj)C;ngj(t)dx(t): lim f Z f 2(s)atj(s)db(s)aj(t)ddx(t)
n—eo Jg = 2 n—eo Jg = 0

for all x € C,[0, T] for which the limit exists.
It is known that for each w € c b[O, T], the PWZ stochastic integral (w, x)™~ exists for uy-a.e. x € C;3[0, T].

IfDw=z¢ Lib[O, T] is of bounded variation on [0, T], then the PWZ stochastic integral (w, x)~ equals the
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Riemann-Stieltjes integral fOT z(t)dx(t). It also follows that for w,x € C’ [0, T], (w,x)™ = (w, x)c;,. For each
w € C,[0,T], the PWZ stochastic integral (w,x)™ is a Gaussian random variable on C,[0, T] with mean
(w,a)c , and variance ||[w||?, . Note that for all wq,w, € c b[O, T,

a, ab /

[ w02 du) = @i, + o2, s,
Copl0,T] ’ ’ ’

Hence we see that for wy, w, € C;,b[O, T], (wn, wz)c;/b = 0if and only if (wy,x)~ and (wy, x)~ are independent
random variables. We thus have the following function space integration formula: let {e;,...,e,} be
an orthonormal set in (C;rb[O, T 1 - ”C;,b)’ and given a Lebesgue measurable function r : R" — C, let
R : Cyp[0, T] — C be given by equation

R(x) = r((e1,x)7, ..., (en, %)7).

Then

f (e, X" - en, X)) ()
Cap[0,T]

n . (p: , )2
= (27'5)_"/2 f r(ua, ..., u,) exp { - Z W}m{l codu,

=1

[ R
Capl0,T]
(2.3)

in the sense that if either side of equation (2.3) exists, both sides exist and equality holds.
The following integration formula is also used in this paper:

I LTS
f]R exp{—au’ + puldu = \/;exp {4—0(} (2.4)

for complex numbers « and  with Re(a) > 0.

3. Analytic operator-valued generalized function space integral

In this section, we introduce the definition of the AOVGFSI as an element of £(L'(R), L*(R)). The
definition below is based on the previous definitions in [3-5, 14, 22-24].

Definition 3.1. Let F : C[0,T] — C be a scale-invariant measurable functional and let h be an element of
C’ [0, TI\{0}. Given A >0,y € L'(R) and & € R, let

(IW(E;y)(E) = f FOA™2x + QA2 (h,2)™ + E)dp(x). 3.1)

Cap[0,T]

If 1) (F; h)y is in L (IR) as a function of & and if the correspondence ¢ — 1,(F; h)y gives an element of L(L'(R), L*(R)),
we say that the operator-valued generalized function space integral (OVGFSI) 1, (F; h) exists.

Let T be a region in C such that Int(T') is a simply connected domain in C,. and Int(I') N (0, +00) is a nonempty
open interval of positive real numbers. Suppose that there exists an L(LY(R), L™ (R))-valued function which is
analytic in A on Int(T) and agrees with I,(F; h) on Int(T) N (0, +00), then this L(L'(R), L*(R))-valued function is
denoted by I5"(F; h) and is called the AOVGFSI of F associated with A.

The notation || - ||, will be used for the norm of operators in £(L!(R), L*(RR)).
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Remark 3.2. (i) In equation (3.1) above, choosing h(t) = fot db(s) = b(t) € C. [0, T], we obtain

T T
(h,x)" =(b,x)” = j(; Db(t)dx(t) = fo dx(t) = x(T).

In this case, equation (3.1) is rewritten by

(uwmmma=~f (V2 1 )9 x(T) + E)du(x). 32)

Capl0,T]

Moreover, if a(t) = 0 and b(t) = t on [0, T, then the function space C,p[0, T] reduces to the classical Wiener space
ColO, T] and the definition of the OVGFSI 1, (F; b) in equation (3.2) agrees with the definitions of the operator-valued
function space integrals I, (F) with A > 0 defined in [1-5, 14-24].

(ii) In the case that a(t) = 0 and h(t) = b(t) = t on [0, T], choosing T = C. N{A € C : |A] < Ag} for some
Ao € (0,+00), then the definition of the AOVGFSI I™(F; ) (if it exists) agrees with the definitions of the analytic
operator-valued function space integral 13" (F) associated with A > 0 defined in [23, 24].

4. The ¥(C,p[0, T]) theory

In [6, 8], Chang, Choi and Lee introduced a Banach algebra ¥ (C,,[0, T]) of functionals on function
space C,4[0, T], each of which is a stochastic Fourier transform of C-valued Borel measure on C;,b[O, T],
and showed that it contains many functionals of interest in Feynman integration theory. In [6, 7], the
authors showed that the analytic (but scalar-valued) generalized Feynman integral exists for functionals in
F (Cop[0, T]). In this section, we show that the AOVGFSI I3*(F; h) is in L(LY(R), L*(R)) for functionals F in
F(CaslO, TI).

Let M(C;/b[O, T]) denote the space of C-valued, countably additive (and hence finite) Borel measures
on C;,b[O, T]. We define the Fresnel type class ¥ (C,[0, T]) of functionals on C,;[0, T] as the space of all
stochastic Fourier-Stieltjes transforms of elements of M(C;,b[O, T]); that is, F € F(C,;[0, T]) if and only if
there exists a measure f in M(C;/b[O, T1) such that

R = [ explitw 07 f@ @)

Cu,b 011

fors-a.e. x € C,,[0, T].

More precisely, since we shall identify functionals which coincide s-a.e. on C,;[0, T], ¥ (C,[0, T]) can
be regarded as the space of all s-equivalence classes of functionals having the form (4.1).

We note that M(C/, [0, T]) is a Banach algebra under the total variation norm and with convolution as
multiplication. The Fresnel type class ¥ (C, [0, T]) also is a Banach algebra with norm

A== [ i)

In fact, the correspondence f +— F is injective, carries convolution into pointwise multiplication and is a
Banach algebra isomorphism where f and F are related by (4.1). For a more detailed study of functionals
in F(Cap[0, T1), see [6, 8].

Remark 4.1. If F is in F(C,p[0, T]), then F is scale-invariant measurable and s-a.e. defined on C,p[0, T]. If x in
Copl0, T] is such that F(x) is defined, then by (4.1) and the definition of the PWZ stochastic integral, it follows that
F(x+ &) = F(x) forall £ e R.
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Let ki be a (fixed) functionin C/ | [0, T]\{0}. Then for any functionwin C/ [0, T], we obtain an orthonormal

set {e1, e2(w)} in C/ [0, T], by the Gram-Schmidt process, such that i = ||h||/C;h€1 and
w = (w,e1)c; €1 + Puwea(w) (4.2)
where
1/
_ _ 2 2
po == @ enc,all, =[lol, - @ el |

Throughout this paper, we will use the following notations for convenience:

1/2

A
M(/\, h) = (W) ’ (4.3)
V(A& 0;h,w) = exp{ ! —[(ir@ - &)+, w)qb)2 — 11l Nl ]} 44
2/\||h||c;b ’ ab ab
A _ )2
L(A;&,0;h) = exp{a(ﬁhnf) } 4.5)
Cp

HOLE o) { (‘/X(v =& -(h, ll)c;,b)z} (46)

76,05 = - s .
o 200,

A) = exp {%ﬁw(@(ww)%} = exp {%[nwngh -@e, | @, 47)

and

EEDDE =MAN [ [ OV L0 L0 v AN ) 49

for (A, &,v,h,w, ) € E+ x R? x (C;b[O, TI\{0}) x C;,b[O, T] x L'(R). In equation (4.7) above, w, e; and e, are
related by equation (4.2).

Remark 4.2. Clearly, for A > 0, [H(A;&,v;h)| < 1 for all (§,0,h) € R? x (C;b[O, TI\{O}). But for A € EJ,,
|[H(A; &, v; h)| is not necessarily bounded by 1. Note that for each A € C., Re(A) = 0 and Re(VA) = [Im(VA)| = 0.
Hence for each A € C,,

| — R \/X 1 \/X - I’l, ’ (h/a)zr
HOL &, 030) = exp {_[Re()\)+lIm(2/\)](v g)2+[ e(VA) + ilm( 2)](v T 2c,,} @9)
2lInle, Ihlle, 2lInle,
and so
— Re(VA)(0 - &)(ha)e (A
HOLE, 03] = ex _ Re()(© g)2+ e(VA)(v = &)(h,a)c, c, @.10)
p

22, Iz, 22,

Note that for A € C,, the case we consider throughout Section 4, Re( VA) > [Im(VA)| > 0, which implies that
Re(A) = [Re( VA)]2 - [Im(VA)]2 > 0. Hence for each A € C,, 0 < |Arg(A)| < m/2 and so

[Re(VA)? 1( Al

1
Re(d) ~ 2\Re(A) i 1) - E(Sec Arg(d) +1). (1D
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For (A,h) € C, x (C, [0, TI\{0}), let
(h,a)e,
4I|hll2

S(A;h) = exp {(sec Arg(A) +1) } (4.12)

Using (4.10), (4.11), and (4.12), we obtain thatfor all A € C4,

[H(A; &, 0;1)
{ Re()@—&f  Rel V(@ - &)h,a)c, a>é;,,,}
=exp{ —
2R, Iz, " 2R,
ab ab ) ) (413)
= op (-2 [0-9- D iy o [ REODE B0, (h'“)C;,b}
2l Re() ] Re(h) 2l 2IKR,
< S(A; h).
These observations are critical to the development of the existence of the AOVGFSI I(F; h).
One can see that for all (A, &,v,h,w) € C; X R? X (C’b[O TI\{0}) x C’b[O T],
[V(A; &0, w)L(A; &, 05 1)
(2@ - &) + B w)e, ) ~ I, Twi?, |
~ exp{ Fwc, c, c, N &( v—& )2}
2 ,
2AIHI, 2\lltlle, (4.14)

- o R

2 2 _ 2
e [0 leolle, (h,w)%]}
ab

<1

7

because (h, w)2 < ||h||2 ||w||2 Howeuver, the expression (4.7) is an unbounded function of w for w € c [0, T],

because ﬁw(ez(w) a)c wzth

e(w) =

1
ﬁw[ ”h”2 (h, w)e h] (4.15)

ﬁw[ - (w, 61)%61] =—
is an unbounded function of w for w € C/,[0,T]. Throughout this section, we thus will need to put additional

restrictions on the complex measure f corresponding to F in order to obtain the existence of our AOVGFSI I3"(F; h)
of Fin F(Cap[0, T).

In order to obtain the existence of the AOVGEFSI, we need to impose additional restrictions on the
functionals in ¥ (C, [0, T]).
For a positive real number g, let

k(qo; w) = exp {290 llwllc: llallc: } (4.16)
and let
T = {1 € ot m(1 712 = R < 20012}, 417)

Define a subclass 7 of 7 (C,;[0, T]) by F € ¥% if and only if

f o k(qo; w)d fl(w) < +oo. (4.18)

ab 0T
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Then for all A € T,
lA(A; w)| < k(qo; w). (4.19)

Remark 4.3. The region Iy, given by (4.17) satisfies the conditions stated in Definition 3.1; i.e., Int(I'y,) is a simple
connected domain in C, and Int(I'y)) N (0, +00) is an open interval. We note that for all real q with |q| > qo,

(—ig)™12 = 1/ 2Ig] + isign(q)/ /2Iq]. Also, by a close examination of (4.17), it follows that —iq is an element of the
region I'y,. In fact, Ty, is a simple connected neighborhood of —iq in C,..

Lemma 4.4. Let qo be a positive real number and let F be an element of F%. Let h be an element of C’ [0, T]\{0}

and let Ty, be given by (4.17). Let (K\(F; h)y)(&) be given by equation (4.8) for (A, &,¢) € Tgy X R x LY(R). Then
KA(F; h) is an element of L(L'(R), L*(R)) for each A € Int(Ty,).

Proof. Let I'y, be given by (4.17). Using (4.8), (4.3), (4.4), (4.5), (4.6), (4.7), (4.14), the Fubini theorem, (4.13),
and (4.19), we observe that for all (1, &, ¢) € Int(T',) X R x L'(RR),

|(KA(F; ) (@)
< M(IA|; h) f f [v@)||[V(A; & vk, w)LA; & 05 )| x [H(A; & v; h)||AG; w)|dod| f(w)
10,71 JR

< M(AL ) fR l@)|[HO £, 0 1)do fc o) (420)

< Pl S(A; B)M(IAL; h) f k(qo; w)d|f(w)
c,l0T]
< 400,

where S(A; h) is given by equation (4.12). Clearly K (F; h) : L1(R) — Lo (RR) is linear. Thus, for all A € Int(I';,),
IKA(F; W)llo < S(A; h)M(MI;h)f k(qo; w)d| fl(w)
C,, 10,71

and the lemma is proved. [J

Lemma 4.5. Let qo, F, h, T, and (Ky(F; h){)(&) be as in Lemma 4.4. Then (K (F; h)Y)(&) is an analytic function of
A on Int(Ty)).

Proof. Let A € Int(T'y,) be given and let {A;};°, be a sequence in C, such that A; — A. Clearly, 0 < |[Arg(1)| <
1/2. Thus there exist Oy € (Arg(A), /2) and ny € IN such that A; € Int(I';;) and 0 < |Arg(A;)| < 6y for all
| > ng. We first note that for each [ > ny,

[Re(VA)P* _ 1 ( Al
Re(d;)  2\Re(A))

+ 1) = %(sec Arg(A) +1) < %(SGC Op +1).

Using this and the Cauchy-Schwartz inequality, it follows that for all > 1y and ¢ € L'(R),

[0 @)||V(A; & 0B, w)L(A; & 0 H(AL &, v AA; W)

_Re(W)@-&?  Re(A)
2, 2ANPIRE,

Re(VA)(@ - &)a)c, (o)

1/2
ab -1/2 2 P
- _Im/\ Wl —(w,e ’ e\w),a)c
I, g, kel = @ e, | (eae) >cu,b}
a,b ab

= ()| eXP{

(2, ol =, w)2, |
, : , (4.21)
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Re(h)(o - & Rel V)@= &ha)e, Wz,

< |L/z(v)( exp { - -
2||h||%;,h ||h||é;,h 2||h||f‘;;’b

12
— Im(A~Y 2)[||w||%;,b - (w, 61)%] (e2(w), ﬂ)c;,b}

_ Re(A) Re(VA) ?
- |Eb(’0)‘ eXP { - 2”]’1”%/ [(’0 - é) - Re(Al) (h/ a)C;'b:l
R A 2 (h/ a)z,/]h
+ —2|[|]’1|T2( \/R_é)(])\l)(h/ a)é;/b - 2”h“2C - Im()\—l/Z)[Hw”am — (w, el)é;/b]l/Z(gz(w), a)c;,h}
Cp Cob

(hr a)Z, 2
< |9 (@) exp { st BV a2 [t~ e, ] e, ﬂ)c;rbl}
2 , ,

(h/ a)zl 2
~ oo exp { 57 BETIE 4 i1, |
Cop

(h,a)2,

< |1/z(v)( exp { 4||h||é:: (sec By + 1)}k(q0;w)

where e;(w) and k(qo; w) are given by (4.15) and (4.16), respectively. Since ¢ € L'(R), and f, the corresponding
measure of F by (4.1), satisfies condition (4.18), the last expression of (4.21) is integrable on the product
space (R x C’ [0, T], m; X f), as a function of (v, w), where m;, denotes the Lebesgue measure on R. Hence

by the dominated convergence theorem, we see that the right-hand side of equation (4.8) is a continuous
function of A on Int(I';;). Next we note that for all (¢, v, h, w) € R? x (c [0, TI\{oh) x C [0, T1,

V(A & v;h,w)L(A; E,v;h)H(A; &, v; h)A(A; w)

is an analytic function of A throughout the domain Int(I'y)). Thus using (4.8), the Fubini theorem, and the
Morera theorem, it follows that for every rectifiable simple closed curve A in Int(T'y,),

fA K (F Bg)(©)dA
= M(A: ) fc o fR lp(v)( fA V()\;E,v;h,w)L()\;é,v;h)H(/\;é,v;h)A()\;w)d/\)dvdf(w)

=0.

Therefore for all (¢, 1, 1) € R X (C, [0, TI\{0}) x LY(R), (K (F; h)¢)(&) is an analytic function of A throughout
the domain Int(I';,). O

Theorem 4.6. Let qo, F, h and Ty, be as in Lemma 4.4. Then for each A € Int(T'y,), the AOVGFSI I{"(F; h) exists
and is given by the right-hand side of equation (4.8). Thus, I2"(F;h) is an element of L(L'(R), L*(R)) for each
A € Int(Ty,).

Proof. Let (A, &,1) € (0, +00) X R X LI(IR). We begin by evaluating the function space integral
(L(E; hg)(E) = f FAT2x + AT 2(h, 2)™ + )du(x)

Copl0,T
»[0,T] (4.22)

- f f explid ™2 (w, x) WA 2 (1) + E)df@)du().
Culom1 Je [T
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Using the Fubini theorem, we can change the order of integration in (4.22). Since ) € L'(R), f € M b [0,T]),
and (k, x)~ is a Gaussian random variable with mean (h, a)c , and variance ||1|%, , it follows that for A > 0,
a ab

. -1/2 ~
WAme@ﬂsJ;wnj;mﬂhMA ()" + ldu(d i)
< M(ALR) fc o fR WEIH; & 03 hydod| fiw)

< M(ALB) fc on fR 1(0)ldud] fl(w)
= MOALRIILIA

< +o00.

Next, using (4.22), the Fubini theorem, (4.2), (2.3), (2.4), (4.3), (4.4), (4.5), (4.6), and (4.7), it follows that
(W(EY)(E)

Sl A IR Y
¢, 1011 Je,0011 ’

X exp {m—m(w, er)c,, (61,30 + i1 2B ea(aw), x)N}dy(x)d Fw)

A )f
=5z Ikl ua + &)
(2” C,,[0T] JR2¢ ot

. L Yan-@ae,)?  (Vin - (@) ac,?
X exp {z(w, sen)cy, U1+ iBollz - 5 L § : }dulduzdf(ZU)
A2 . (VAug - (e1,a)c,)?
= (_) f f lP(”thfh”l + &)exp {l(w’ el)c/hul B , }dul
2n ¢, 1011 JR " ” 2

_MOGh w,e 1)c (\/_(0—5)—||h||c (€1lﬂ)c )2
( )f f v@ewpli ||h|| C-9- 22, fio

x exp{ - orfh ﬁﬁ ey, jaf@
= M(A; ) f f POV E 05 b, W)L &, 0; WHA; €0 DA w)dod f(w)
c,l011 JR

= (K\(E:H)(E).

Hence we see that the OVGFSI I, (F; h) exists for all (A, ) € (0, +o00) X (C;’b[O, TI\{0}).
Llet IMEh)y = Ka(F;h)y for all A € Int(l;,). Then by Lemmas 4.4 and 4.5, we obtain the desired
result. [J

5. The analytic operator-valued generalized Feynman integral

In this section we study the AOVG'Feynman'l J"(F; h) for functionals F in 7 (C, [0, T]). First of all, we
note that for any g € R\ {0} and any (&, 0, h, w) € R* X (€ [0, TI\{o}) x C, [0, T],

|V(—iq,‘ &,v;h,w)L(-ig; &, v; h)‘ =1
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LetA =—-ig e E+ —C,. Then
= =iq = \lql/2 ~ isign(q) vql/2.
Hence for A = —ig with g € R \ {0}, [Re(y/=ig)]* — [Im(+/—ig)]* = 0, and so

V2l a)c, (0 - &) - (b2,
201, }

|H(—z'q; é,v;h)| = exp{

which is not necessarily in L7(IR), as a function of v, for any p € [1, +c0]. Hence K_,-q(F ; ) might not exist as
an element of £(L'(R), L*(RR)).

Let g = -1 and let /1 be an element of C’ b[O T] with ||h||c =1 and with (i, a),; > 0 (we can choose & to
be ﬂ/||6l||ca in C’/ [0,T]). Lety : R — Cbe defmed by the formula

102 i \/E(h, a)c Y (h, a)é \ \/E(h, a)c v
P(V) = VX[0,400)(V) exp{— - 5 “ooy > b . o }

We note that

(h, “)?:;lb V2(h, ﬂ)q’bv}

W(U”:Z’X[o,m)(v)exp{ 2 4

and hence 1 € LP(IR) for all p € [1,+o0]. In fact, i is also an element of Cy(IR), the space of bounded
continuous functions on R that vanish at infinity.
Let F(x) = 1. Then F is an element of ¥ for all g9 € (0, +0), and (K_;(F; h){)(&) with g = —1is given by

: 1/2
(Ki(1;hY)(E) = f¢(v)H(z &, v;h)do. (5.1)

Next, using equation (4.9) with A = i and VA = Vi = (1+1i)/ V2, we observe that

_ -2 (ae,@-8 ihac,e-8 ®* %,
H@;&,0;h) = exp{ ) 3 + V2 T2 }
and hence,
V2(h,a)c: 0 &2
Y(O)HG; E,v;h) = UX[0,+00) (V) XP {TC“’ +i&v — % _ (1}1 )(h a)cy, } (5.2)

which is not an element of L*(IR), as a function of v, for any p € [1, +oo].
Then, using equations (5.1) and (5.2), we see that

wmpE© = (o) exp{-E (5 ) ae, g} [ oros exp{tha +igoldo.

Hence, choosing & = 0, and using the fact that (, “)C;h is positive, we see that

+00 \/E h, ,
|(Ki(1; YY) (O)| = (2) 7172 fo vexp{#}dv — too,
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In fact, for each fixed & € IR, we observe that

= +00’

2(h,a)c v
(K1 9)(@)] = 2m) 12 exp{— %(h,a)qrbé}‘ f}R OX(0,409(0) exp{TC"'h +i£v}dv

and so (K;(1; h)i) is not an element of L¥(RR) even though 1 was an element of L!(RR). Hence K_y(F; )y =
Ki(1;h)y is not in L(LY(R), L*(RR)).

In this section, we thus clearly need to impose additional restrictions on ¢ for the existence of our
AOVGFeynman’l.

For any positive real number §, let vs, be a measure on R with

Avs, = exp{éVar(a)uz}du

where Var(a) = |a|(T) denotes the total variation of 4, the mean function of the GBMP, on [0, T] and let
LY(RR, vs,) be the space of C-valued Lebesgue measurable functions ¢ on R such that ¢ is integrable with
respect to the measure vs, on R. Let || - [l;s denote the LY(R,vs,)-norm. Then for all 6 > 0, we have the
following inclusion

LY(R,vs0) & L'(R) (5.3)

as sets, because |[|l; < |[i|ls for all ¥ € LY(R).
Let L(LY(R, vs,), L*(R)) be the space of continuous linear operators form L}(RR, v ) to L*(R). In Theorem
4.6, we proved that for all ¢ € LY(R), [2"(F; h)y is in L*(R). From the inclusion (5.3), we see that for all

Y € LY(R, vs,), LME; h)y is in L*(R). Furthermore, for all 6 > 0,
LLY(R), L¥(R)) € LILY(R, vs,), L*(R)), (5.4)

as sets.
Now, the notation || - [|,s will be used for the norm on £L(L!(RR, vs,), L(IR)). We already shown in (4.20)
that for all (A, &,¢) € Int(T;,) x R X L'(R),

|(Ki(E:y)(©)] < M(AL; ) fm W @)IHQ; € 05 h)|do fc o AR 1)

ab

But, by the same method, (4.13), and (4.19), it also follows that for any 6 > 0 and all (A, &, ¢) € Int(I';,) X R X
Ll (IR/ vb,ﬂ)/

|[(KAE; yy)(&)|
< Mk [ o0 0o [ ol

abt™’

(5.5)

< M(|A|; h) jl; |¢(0) exp{6Var(a)o?)||H(A; &, v ; h)|do fc o |AA; w)|dIf1(z)

ab

< MO [ porexplovaraiio [ anwuico)

ab 0,
<ha(SUHMIALR | kgosedlfi(w))
., [0T]
and so
IKa(FsPllos < SUMAALR) [ Kaos i)
c,[01]

Thus we have the following definition.
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Definition 5.1. Given a non-zero real number q, let Ty be a connected neighborhood of —iq in C, such that Int(T'y)
satisfies the conditions stated in Definition 3.1. If there exists an operator JN(E; h) in LILY(R, vs,), L*(R)) for some

6 > 0 such that for every ¥ in L\(R, vs,),

|[Ja(E; by — M E; ||, — 0
as A — —iq through Int(T'y), then J3*(F; h) is called the AOVG Feynman’l of F with parameter q.
Theorem 5.2. Let qo, F, h and 'y, be as in Lemma 4.4. Then for all real q with |q| > qo, the AOVG'Feynman'l of F,
];‘“(P; h), exists as an element of LILY(R,vs,), L*(R)) for any 6 > 0, and is given by the right-hand side of equation
(4.8) with A = —igq.

Proof. First, we will show that K_j(F;h) is an element of L(LYR,vs,), L*(R)). Note that for every 6 > 0,
|H(—ig; &, v; h)| exp{—6Var(a)u?} is bounded by 1. Hence for any 6 € (0, +o0) and every v € LY(R, v5),

L|¢(U)|(H(—iq;£,v;h)|dv

= fl; |¢(v)| exp {6Var(a)u2}|H(—iq; E,v; h)| exp { - 6Var(a)u2}dv
< |WYlh,s-
Also, by a simple calculation, it follows that
\V(~ig; &,v; h,w)||L(=ig; &, 05 )| = 1.
Thus, using these and (4.19), it also follows that for all real g with |g| > g0,
|(K-ig(E; g (©)|
< M(lql; h) fc o f]R [v©)||V(~ig; £ 0;h,w)||L(~ig; & v; )| |[H(=ig; &, v ; h)||A(~ig; w)|dod| fI(w)
anl0r

= M(|ql; h) fR lv@)||H(=ig; &, v 1)|do fc o |A(~ig; w)|d| fI(z) (5.6)

abt™”

< Wtha(Mtabhy [ Kgeomfico))
C,4l0Tl

Therefore we have that

K-y Es )y | . < ||¢||1,5(M(|q|;h) f k(qo; w)d| fl(w))

C,,l0T]

and

[K-atEim],, < Mgty [ Koo i),

’ 0,71

and implies that K_;,(F; h) € L(LY(R,vs,), L (R)).

We now want to show that the AOVG'Feynman'l Ji"(F; h) of F exists and is given by the right-hand side
of (4.8) with A = —ig. To do this, it suffices to show that for every ¥ in L'(R, vs,)

||Kig(E; )y = BM(E; hyy|| . — 0
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as A — —ig through Int(I';,), where I';; is given by equation (4.17). But, in view of Lemmas 4.4, 4.5, Theorem
4.6, and equation (5.4), we already proved that I{"(F; h) = Ky(F; h) for all A € Int(T';) and that K,(F; h) is an

element of L(LY(R,vs,), L*(R)). Next, by (5.5) and (5.6), we obtain that for all (A, &, ¢) € Iy X R X L'(R,vy),

|Ka(E; ) ()

191, o{SADMAALR) [, .y Ko )L fI@)], A € Int(Ty,)

g1l oMl 1) [, 1oy ko ) fI(0)}, A =—iq, g € R\{0}
< +00.

Moreover, using the techniques similar to those used in the proof of Lemma 4.5, one can easily verify that
there exists a sufficiently small ¢ > 0 satisfying the inequality:

(KA (F; myy) (&)
(h,a)?,
2 (40 . .
< ||¢||1,5(exp{4”h”é (6—0 + 1)}M(1 T gl ) fc o k(qo; w)d| fl(c0)
< 400

forall A € Ty, N{A € C:IA- (=ig)l < €0} (We have already commented in Remark 4.3 that I', is a simple
connected neighborhood of —ig in C,). Hence by the dominated convergence theorem, we have

Alirg IGEF; ) (&) = Alin_ni (KA(E; m))(&) = (K-ig(F; h))(E)
AeInt(FZO) AeInt(FZO)

for each & € R. Thus J7"(F; h) exists as an element of L(LYR,vs,), L*(R)) and is given by the right-hand
side of equation (4.8) with A = —ig. O

It is clear that given two positive real number 6; and 6, with 6; < 6,
L'(R, v5,0) € L'(R, vg,,0) € L\(R).
Thus it follows that
LL'(R), L”(R)) € LIL'(R, vs,0), L(R)) & LIL'(R, v5,4), L(R)).

Let
L(R) = | L'(R, o)
0>0
and let
BLM(R), L (R) = [ LL (R, o), L7(R)).

6>0
We note that L(R) and B(L*(R), L*(R)) are not normed spaces. However we can suggest set theoretic
structures between them as follows: since L(RR, vs,) C L'*(R) ¢ L}(RR) for any 6 > 0, it follows that
LLY(R), L*(R)) € BL"(R), L™(R)) € LIL'(R, v5,40), L(R)).
From this observation and Theorem 5.2, we can obtain the following assertion.

Theorem 5.3. Let qo, F, h and Ty, be as in Lemma 4.4. Then for all real q with |q| > qo, the AOVG'Feynman'l
J3"(F; h) exists as an element of B(LY(R), L*(R)).

Remark 5.4. If b(t) = t and a(t) = 0 on [0, T], the function space C,[0, T] reduces to the classical Wiener space
Col0, T]. In this case, the three linear spaces L*(R), L'(R, v0) and L*°(IR) coincide each other. Furthermore, the three
classes L(L'(R), L*(R)), B(L'(R), L*(R)), and L(L (R, vs0), L*(R)) also coincide.
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6. Examples

In this section, we present interesting examples to which our results in previous sections can be applied.
Let M(IR) be the class of complex-valued, countably additive Borel measures on B(R). For n € M(R),
the Fourier transform 7 of 17 is a C-valued function defined on R, given by the formula

n(u) = f expliuv}dn(v).
R
(1) Let wp € C’ [0, T] and let n € M(R). Define Fy : C,;[0, T] — C by

Fi(x) = 1((wo, x)7).

Define a function ¢ : R — C/ [0, T] by $(v) = vwy. Let f = o ¢, Itis quite clear that f is in M(C/ [0, T])
and is supported by [wy], the subspace of C;,b[O, T] spanned by {wy}. Now for s-a.e. x € C,4[0, T],

f exp{i(w, x)"}df(w) = f expli(w, x)~}d(n o ¢~ (w)
,[0,T] " o10,T]

abt™’ abt™’

- f}R expli((v), %) )di(0)

:\fﬂ{exp{i(wo,x)wv}dﬂ(v)
= 1((wo, x)7).

Thus F; is an element of F(C, [0, T]).
Suppose that for a fixed positive real number g9 > 0,

| exe {2l ol o) < +oo. 6.1)
A e,

It is easy to show that condition (6.1) is equivalent to condition (4.18) with f = no¢~!. Thus, under condition
(6.1), Fy is an element of % and so, by Theorem 5.2, J3"(F1; h) exists as an element of L(LY(R, vs,), L*(R))
for all real g with |g| > qo, all h € C’ [0, T]\{0}, and any 6 > 0. Moreover ]3“(1—"1 ; h) is an element of the space
B(L*(R), L*(R)) by Theorem 5.3.

Next, we present more explicit examples of functionals in ¥ (C, ;[0, T]) whose associated measures satisfy
condition (6.1).

(2) Let S : C',[0,T] — C [0, T] be the linear operator defined by Sw(t) = J(;t w(s)db(s). Then the adjoint
operator S* of § is given by

S*w(t) = t (w(T) = w(s))db(s)
0

and for x € C,,[0, T], (5'b,x)~ = fOT x(t)db(t) by an integration by parts formula.
Given m and ¢? in R with 02 > 0, let 1), ,2 be the Gaussian measure given by

Tmo2(B) = (276712 fB exp{— © ;Gf‘)z}dv, B ¢ B(R). 6.2)

Then 1, 2 € M(R) and

T2 (1) = f exp{iuo}dng, 2 (v) = exp{ - %ozuz + imu}.
R
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The complex measure 1,, ,» given by equation (6.2) satisfies condition (6.1) for all gy > 0. Thus we can apply
the results in argument (1) to the functional F; : C,;[0, T] — C given by

Fa(0) = (o, 2)") = exp { = 0w, )" + imaun, 2. 63)

For example, if we choose wy = S*b, m = 0 and ¢® = 2 in (6.3), we have

Fa(x) = exp{ —[(SD, x)~]2} = exp { - (j: x(t)db(f))2}

for x € C,[0, T1.

We note that the functional F3 is in Ng>0F %, and so that for every nonzero real number g, the
AOVGFeynman'l J5"(Fs; h) exists as an element of B(L“(RR), L*(R)).

(3) Let F4 : Cyp[0, T] — C be given by

Fa(x) = exp {i fo ' x(t)db(t)}.

Then F; is a functional in F(C,,[0, T]), because

Fa(x) = expli(S'b, x)") = f expli(w, x)")dC(aw)
c,l07]

a,

for s-a.e. x € C,,[0,T], where C is the Dirac measure concentrated at S*b in c b[O, T]. The Dirac measure
C also satisfies condition (4.18) with f replaced with C for all g9 > 0; that is, Fy € Ny»0F 7, and so that for
every nonzero real number g, the AOVG‘Feynman’'l ]3“(1:4 ; h) exists as an element of B(L'*(R), L*(R)).
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