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Abstract. We consider a (p, q)-equation with unbalanced growth (double phase problem) and a logistic
reaction of the equidiffusive type. We show the existence and uniqueness of a positive solution.

1. Introduction

Let Ω ⊆ RN be a bounded domain with a C2-boundary ∂Ω. In this paper we study the following
double phase Dirichlet problem{

−∆a
pu(z) − ∆qu(z) = θ(z)u(z)q−1

− f (z,u(z)) in Ω,
u|∂Ω = 0, 1 < q < p < N,u > 0.

(1)

Given a ∈ L∞(Ω) \ {0} with a(z) ≥ 0 for a.a. z ∈ Ω and r ∈ (1,∞), by ∆a
r we denote the weighted r-Laplace

differential operator defined by
∆a

ru = div(a(z)|Du|r−2Du).

If a ≡ 1, then we have the usual r-Laplacian denoted by ∆r. In (1) the equation is driven by the sum of
two such operators with different exponents. Such an operator is not homogeneous. We do not assume
that the weight function a(·) is bounded away from zero (that is, we do not have that essinfΩ a > 0). This
means that the integrand

η(z, t) = a(z)tp + tq
∀z ∈ Ω, ∀t ≥ 0

of the energy functional corresponding to the differential operator of (1),exhibits unbalanced growth, that
is, we have

tq
≤ η(z, t) ≤ c0[tp + tq] for a.a.z ∈ Ω, all t ≥ 0, some c0 > 0.

Such functionals were first considered by Marcellini [10] and Zhikov [20] in the context of problems of the
calculus of variations and of nonlinear elasticity theory. The hardening properties of strongly anisotropic
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materials vary by the point. This leads to mathematical models described by operators as the one in
problem (1). Note that the ellipticity of integrand η(z, t) varies and depends on the point of the space. The
weight function a(·) regulates the mixture between different materials with power hardening of rates p and
q respectively. To deal with such problems, we need to move beyond the usual functional framework of the
standard Lebesgue and Sobolev spaces and use generalized Orlicz-Sobolev spaces. For such unbalanced
growth problems, there is no global (that is, up to the boundary) regularity theory. Only some local results,
which can be found in Baroni-Colombo-Mingione [1]. Marcellini [11] and the references therein. Surveys
of the recent advances on this topic can be found in Mingione-Rădulescu [12], Papageorgiou [13] and
Rădulescu [19]. This lack of a global regularity theory, eliminates many powerful tools which are readily
available when dealing with problems which have balanced growth.

The reaction (source) of (1) is logistic and it is of equidiffusive type since f (z, ·) is (p − 1)-superlinear
as x → +∞. Logistic equations are important among others in mathematical biology, since they describe
the steady state of the evolution of biological populations in the presence of variable rates of reproduction
and of mortality (see Gurtin-Mac Camy [6]). Recently there have been some existence and multiplicity
results for unbalanced double phase problems. Indicatively, we mention the works of Gasiński-Winkert
[4], Ge-Lv-Lu [5], Liu-Dai [8], Liu-Papageorgiou [9], Papageorgiou-Pudelko-Rădulescu [14],Papageorgiou-
Rădulescu-Repovš [16]. None of these works deals with logistic equations.

2. Hypotheses and Mathematical Background

As we already mentioned in the Introduction, the study of unbalanced double phase problems, requires
the use of generalized Orlicz spaces. For a comprehensive introduction to the theory of these spaces, we
refer to the book of Harjulehto-Hästo [7].

In what follows by λ̂1(q) we denote the principal eigenvalue of the Dirichlet q-Laplacian. We know (see
Gasiński-Papageorgiou [3]) that
λ̂1(q) > 0 and it is simple and isolated;

λ̂1(q) = inf

∥Du∥qq
∥u∥qq

: u ∈W1,q
0 ,u , 0

. This infimum is realized on the corresponding one dimensional

eigenspace which is included in C1
0(Ω̄) = {u ∈ C1(Ω̄) : u|∂Ω = 0} and the elements of this eigenspace have

constant sign.
We mention that C1

0(Ω̄) is an ordered Banach space with positive cone C+ = {v ∈ C1
0(Ω̄) : v(z) ≥ 0 for all

z ∈ Ω̄}. This cone has a nonempty interior given by

intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ Ω,
∂u
∂n
|∂Ω < 0},

with n(·) being the outward unit normal on ∂Ω and
∂u
∂n
= (Du,n)RN . By û1(q) we denote the positive,

Lq-normalized (that is, ∥û1(q)∥q = 1) eigenfunction corresponding to λ̂1(q) > 0. As a consequence of the
nonlinear regularity theory and of the nonlinear maximum principle, we have û1(q) ∈ intC+.

By C0,1(Ω̄), we denote the Banach space of Lipschitz continuous functions defined on Ω̄with value inR.
Our hypotheses on the coefficients a(·) and θ(·) are:

H0: a ∈ C0,1(Ω̄)\{0}, a(z) ≥ 0 for all z ∈ Ω̄, 1 < q < p < N with
p
q
< 1 +

1
N

and θ ∈ L∞(Ω) and satisfies

θ(z) ≥ λ̂1(q) for a.a. z ∈ Ω, and the inequality is strict on a set of positive Lebesgue measure.

Remark 2.1. The conditions on the weight function a(·) and the exponents {p, q}, guarantee boundness of the solutions
of (1) (see [4]), the absence of the Lavrentiev phenomenon (see [11, 12]), the validity of the Poincare inequality in
the appropriate Orlicz-Sobolev space (see [7],p.138) and lead to useful embeddings of the relavant spaces (since

p < q∗ =
Nq

N − q
).
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Recall that the integrand corresponding to the energy functional of the differential operator, is the
function

η(z, t) = a(z)tp + tq,

which is a Caratheodory function (that is, z→ η(z, t) ia measurable and t→ η(z, t) is continuous). Let L0(Ω)
be the space of all measurable functions u : Ω→ R. As usual, we identify two such functions which differ
only on a Lebesgue-null set. The generalized Orlicz space Lη(Ω) is defined by

Lη(Ω) = {u ∈ L0(Ω) : ρη(u) < ∞},

where ρη(·) is the modular function defined by

ρη(u) =
∫
Ω

η(z, |u|) dz.

We equip Lη(Ω) with the so-called “Luxemburg norm” given by

∥u∥θ = inf
{
λ > 0 : ρη

(u
λ

)
≤ 1
}
.

Then Lη(Ω) becomes a Banach space which is separable and uniformly convex (since η(z, ·) is a uniformly
convex function). We know that a uniformly convex Banach space is reflexive (Milman-Pettis theorem, see
Papageorgrou-Winkert [18], p.225).

Using Lη(Ω) we can define the corresponding generalized Orlicz-Sobolev space W1,η(Ω) by

W1,η(Ω) = {u ∈ Lη(Ω) : |Du| ∈ Lη(Ω)}

with Du being the weak gradient of u. We equip W1,η(Ω) with the normal

∥u∥1,η = ∥u∥η + ∥Du∥η for all u ∈W1,η(Ω),

where ∥Du∥η = ∥|Du|∥η. Also, we set

W1,η
0 (Ω) = C∞c (Ω)

∥·∥1,η
.

For this space, the Poincare inequality holds, that is, there exists ĉ > 0 such that ∥u∥η ≤ ĉ∥Du∥η for all
u ∈W1,η

0 (Ω). So, on W1,η
0 (Ω) we can use the equivalent norm

∥u∥ = ∥Du∥η for all u ∈W1,η
0 (Ω).

The spaces W1,η(Ω),W1,η
0 (Ω) are separable Banach spaces which are uniformly convex (hence reflexive).

The norm ∥ · ∥ and the modular function are closely related.

Proposition 2.2. (a) ∥u∥ = λ⇔ ρη( Du
λ ) ≤ 1;

(b) ∥u∥ < 1(resp. = 1, > 1)⇔ ρη(Du) < 1(resp. = 1, > 1);
(c) ∥u∥ < 1⇒ ∥u∥p ≤ ρη(Du) ≤ ∥u∥q;
(d) ∥u∥ > 1⇒ ∥u∥q ≤ ρη(Du) ≤ ∥u∥p;
(e) ∥u∥ → 0(resp.→ +∞)⇔ ρη(Du)→ 0(resp.→ +∞).

We have the following useful embeddings among the spaces introduced above.

Proposition 2.3. (a)Lη(Ω) ↪→ Ls(Ω),W1,η
0 (Ω) ↪→W1,s

0 (Ω) continuously for all 1 ≤ s ≤ q;

(b)W1,η
0 (Ω) ↪→ Ls(Ω) continuously (resp.,compactly), if 1 ≤ s ≤ q∗ (resp., if 1 ≤ s < q∗);

(c)Lq(Ω) ↪→ Lη(Ω) continuously.
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Let V : W1,η
0 (Ω)→W1,η

0 (Ω)∗ be the nonlinear operator defined by

⟨V(u), h⟩ =
∫
Ω

[a(z)|Du|p−2 + |Du|q−2](Du,Dh)RN dz for all u, h ∈W1,η
0 (Ω).

The operator is continuous and strictly monotone (thus maximal monotone too) and coercive.
The Lebesgue space L∞(Ω) is an ordered Banach space for the pointwise order, with positive (order)

cone
L∞(Ω)+ = {u ∈ L∞(Ω) : 0 ≤ u(z) for a.a. z ∈ Ω}.

This cone has a nonempty interior given by

intL∞(Ω)+ = {u ∈ L∞(Ω)+ : 0 < ess inf
Ω

u}.

If u ∈ L0(Ω), then u± = max{±u(z), 0} for all z ∈ Ω. We have u = u+ − u−, |u| = u+ + u− and if u ∈W1,η
0 (Ω),

then u± ∈W1,η
0 (Ω).

Now, we introduce our hypotheses on the perturbation f (z, x):
(H1) : f : Ω ×R→ R is a Carathéodory function, f (z, 0) = 0 for a.a. z ∈ Ω and
(i) | f (z, x)| ≤ â(z)[1 + xr−1] for a.a. z ∈ Ω, all x ≥ 0, with â ∈ L∞(Ω)+, p ≤ r < q∗;

(ii) lim
x→+∞

f (z, x)
xp−1 = +∞ uniformly for a.a. z ∈ Ω and for a.a. z ∈ Ω, x →

f (z, x)
xq−1 is strictly increasing on

R̊+ = (0,+∞);

(iii) lim
x→0+

f (z, x)
xq−1 = 0 uniformly for a.a. z ∈ Ω.

Remark 2.4. Since we look for positive solutions and the above hypotheses concern the positive semiaxis R+ =
[0,+∞), without any loss of generality, we may assume that f (z, x) = 0 for a.a. z ∈ Ω, all x ≤ 0. We point out we
do not assume that f ≥ 0. So, f may be sign-changing. On account of hypothesis H1(iii), we see that asymptotically

as x→ 0+ the quotient
θ(z)xq−1

− f (z, x)
xq−1 partially interacts with the principal eigenvalue of (−∆q,W

1,η
c (Ω)) (so we

have nonuniform nonresonance).

Example 2.5. The following functions satisfy hypotheses H1. For the sake of simplicity, we drop the z-dependence.

f1(x) = (x+)r−1 with p < r < q∗,

f2(x) = (x+)p−1 ln(x+) − (x+)τ−1 with 1 < τ < q.

Note that f1(·) is part of the classical equidiffusive reaction x→ xq−1
− xr−1 for all x ≥ 0. On the other hand, f2(·) is

sign changing.

In the sequel, we will use another modular function ρa(·) defined by

ρα(Du) =
∫
Ω

a(z)|Du|pdz for all u ∈W1,η
0 (Ω).

This function is continuous, convex, thus weakly lower semicontinuous too.
Let φ : W1,η

0 (Ω)→ R be the energy functional for problem (1) defined by

φ(u) =
1
p
ρα(Du) +

1
q
∥Du∥qq +

∫
Ω

F(z,u+)dz −
1
q

∫
Ω

θ(z)(u+)qdz for all u ∈W1,η
0 (Ω),

with F(z, x) =
∫ x

0 f (z, s)ds. Evidently, φ ∈ C1(W1,η
0 (Ω)).
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3. Positive Solution

First, we show the existence of a positive solution for problem (1).

Proposition 3.1. If hypotheses H0,H1 hold, then problem (1) has at least one positive solution u0 ∈W1,η
0 (Ω)

⋂
L∞(Ω)

and for every K ⊆ Ω compact 0 ≤ cK ≤ u0(z) for a.a. z ∈ K

Proof. On account of hypotheses H1(i), (iii), given ε > 0, we can find cε > 0 such that

F(z, x) ≥ −
ε
q
|x|q − cε|x|r for a.a. z ∈ Ω, all x ∈ R, (2)

If u ∈W1,η
0 (Ω) with ∥u∥ ≥ 1, then we have

φ(u) ≥
1
p
∥u∥q − c1∥u∥

q
r + cε∥u∥rr for some c1 > 0

(see Proposition 2.2,(2) and hypothesis H0)

≥
1
p
∥u∥q + [cε∥u∥

r−q
r − c1]∥u∥qr (since q < r).

Since q < p < r, it follows that φ(·) is coercive. Moreover, Using Proposition 2.3, we have that φ(·) is
sequentially weakly lower semicontinuous.

By the Weierstrass-Tonelli theorem, we can find u0 ∈W1,η
0 (Ω) such that

φ(u0) = inf{φ(u) : u ∈W1,η
0 (Ω)}. (3)

On account of hypothesis H1(iii), given ε > 0, we can find δ = δ(ε) > 0 such that

F(z, x) ≤
ε
q
|x|q for a.a. z ∈ Ω, all |x| ≤ δ. (4)

From Section 2, we know that the principal eigenfunction û1 = û1(q) ∈ intC+. So, we can find t ∈ (0, 1) small
such that

0 ≤ tû1(z) ≤ 0 for all z ∈ Ω. (5)

Then from (4) and (5), we have

φ(tû1) ≤
tp

p
ρa(Dû1) +

tq

q
[∥Dû1∥

q
q −

∫
Ω

θ(z)ûq
1dz + ϵ] (recall that ∥û1∥q = 1)

=
tp

p
ρa(Dû1) +

tq

q
[
∫
Ω

(̂λ1(q) − θ(z))ûq
1dz + ϵ]. (6)

Since û1 ∈ intC+ and using the properties of θ(·) (see hypotheses H0), we have

β =

∫
Ω

[θ(z) − λ̂1(q)]ûq
1dz > 0.

So, choosing ϵ ∈ (0, β), from (6) it follows that

φ(tû1) ≤ c2tp
− c3tq for some c2, c3 > 0.

We know that q < p. So, choosing t ∈ (0, 1) even smaller if necessary, we have

φ(tû1) < 0,
⇒ φ(u0) < 0 = φ(0) (see (3))
⇒ u0 , 0.
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From (3) we have

⟨φ
′

(u0), h)⟩ = 0 for all h ∈W1,η
0 (Ω),

⇒ ⟨V(u0), h⟩ =
∫
Ω

θ(z)(u+0 )q−1hdz −
∫
Ω

f (z,u+0 )hdz for all h ∈W1,η
0 (Ω).

Choosing h = −u−0 ∈W1,η
0 (Ω), we obtain

ρa(Du−0 ) ≤ 0,
⇒ u0 ≥ 0, u0 , 0 (see Proposition 1).

Therefore u0 ∈ W1,η
0 (Ω) \ {0} is a positive solution of problem (1). Theorem 3.1 of Gasiński-Winkert [4],

implies that u0 ∈W1,η
0 (Ω) ∩ L∞(Ω).

Hypotheses H1(i), (iii) imply that given ϵ > 0, we can find ĉϵ > 0 such that

f (z, x) ≤ ϵxq−1 + ĉϵxr−1 for a.a. z ∈ Ω, all x ≥ 0. (7)

Therefore we have

−∆a
pu0 − ∆qu0 = θ(z)uq−1

0 − f (z,u0)

≥ [θ(z) − ϵ]uq−1
0 − ĉϵ∥u0∥

r−p
∞ up−1

0 in Ω (recall p < r).

Choosing ϵ ∈ (0, λ̂1(q)), we infer that for some c4 > 0, we have

−∆a
pu0 − ∆qu0 + c4up−1

0 ≥ 0 in Ω.

Then Proposition 2.4 of Papageorgiou-Vetro-Vetro [17], implies that for all K ⊆ Ω compact we have

0 < cK ≤ u0(z) for a.a. z ∈ K.

Remark 3.2. Evidently we have that u0(z) > 0 for a.a. z ∈ Ω.

Next we show that this positive solution of (1) is in fact unique.

Proposition 3.3. If hypotheses H0, H1 hold, then the positive solution of (1) is unique.

Proof. From Proposition 3.1, we already have a positive solution u0 ∈ W1,η
0 (Ω)

⋂
L∞(Ω). Let v0 be another

positive solution of (1). Again, we have v0 ∈W1,η
0 (Ω)

⋂
L∞(Ω). For ε > 0, we set uε0 = u0 + ε and vε0 = v0 + ε.

We have

uε0, vε0 ∈W1,η(Ω) and uε0, vε0 ∈ intL∞(Ω)+.

Invoking Proposition 4.1.22, p.274, of Papageorgiou-Rădulescu-Repovš [15], we can say that

uε0
vε0
∈ L∞(Ω),

vε0
uε0
∈ L∞(Ω). (8)

Consider the integral functional j : L1(Ω)→ R̄ = R ∪ {+∞}
defined by

j(u) =


1
pρa(D

1
q
u ) + 1

q ∥D
1
q
u ∥

q
q if u ≥ 0, u

1
q ∈W1,η(Ω)

+∞ otherwise.
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Let domj = {u ∈ L1(Ω) : j(u) < +∞} (the effective domain of j(·)). Consider the integranal η̂(z, t) defined
by

η̂(z, t) =
a(z)

p
tp +

1
q

tq f or all z ∈ Ω, all t ≥ 0.

We see that for every z ∈ Ω,

• t→ η̂(z, t) is strictly increasing on R+ = [0,∞);

• t→ η̂(z, t
1
q ) is convex (recall q < ρ).

We set Ĥ(z, y) = η̂(z, |y|) for all z ∈ Ω, all y ∈ RN. Evidently for all z ∈ Ω, Ĥ(z, ·) is convex.
Let u1, u2 ∈ domj and set v = [tu1 + (1 − t)u2]

1
q , t ∈ [0, 1]. From Diaz-Saa[2](see Lemma 1), we have

|Dv| ≤ [t|Du
1
q

1 |
q + (1 − t)|Du

1
q

2 |
q]

1
q

⇒ η̂(z, |Dv|) ≤ η̂(z, [t|Du
1
q

1 |
q + (1 − t)|Du

1
q

2 |
q]

1
q ) (since η̂(z, ·) is increasing)

≤ tη̂(z, |Du
1
q

1 |) + (1 − t)η̂(z, |Du
1
q

2 |) (since t→ η̂(z, t
1
q ) is convex),

⇒ Ĥ(z,Dv) ≤ tĤ(z,Du
1
q

1 ) + (1 − t)Ĥ(z,Du
1
q

2 )
⇒ j(·) is convex.

Let h = (uε0)q
− (vε0)q

∈W1,η
0 (Ω). On account of (8) for |t| < 1 small we have

(uε0)q + th ∈ domj and (vε0)q + th ∈ domj.

This and the convexity of j(·) imply that the directional derivatives of j(·) at (uε0)q and at (vε0)q in the
direction h exist and using the chain rule and Green’s identity, we have

j′((uε0)q)(h) =
1
q

∫
Ω

−∆α0 u0 − ∆qu0

(uε0)q−1 hdz

=
1
q

∫
Ω

θ(z)uq−1
0 − f (z,u0)

(uε0)q−1 hdz,

j′((vε0)q)(h) =
1
q

∫
Ω

−∆a
0v0 − ∆qv0

(vε0)q−1 hdz

=
1
q

∫
Ω

θ(z)vq−1
0 − f (z, v0)

(vε0)q−1 hdz.

The convexity of j(·), implies that the directional derivative j′ (·) is monotone. Therefore, we have

0 ≤

∫
Ω

θ(z)

 uq−1
0

(uε0)q−1 −
vq−1

0

(vε0)q−1

 ((uε0)q
− (vε0)q)dz

+

∫
Ω

[
f (z, v0)
(vε0)q−1 −

f (z,u0)
(uε0)q−1

]
((uε0)q

− (vε0)q)dz. (9)

Note that∣∣∣∣∣∣∣ uq−1
0

(uε0)q−1 −
vq−1

0

(vε0)q−1

∣∣∣∣∣∣∣ ≤ 2, uε0, vε0 ∈ L∞(Ω). (10)
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Therefore using the dominated convergence theorem, we have

lim
ε→0+

∫
Ω

θ(z)

 uq−1
0

(uε0)q−1 −
vq−1

0

(vε0)q−1

 ((uε0)q
− (vε0)q)dz = 0. (11)

Also we have∣∣∣∣∣∣ f (z, v0)
(vε0)q−1 −

f (z,u0)
(uε0)q−1

∣∣∣∣∣∣ ≤ f (z, v0)

vq−1
0

+
f (z,u0)

uq−1
0

.

Hypotheses H1(i), (iii) implies that there exists c5 > 0 such that

f (z, x) ≤ |x|q−1 + c5|x|r−1 for a.a. z ∈ Ω, all x ∈ R. (12)

Using (12) we have

f (z, v0)

vq−1
0

+
f (z,u0)

uq−1
0

≤ a + c5[vr−q
0 + ur−q

0 ] ≤ c6 for some c6 > 0 ( see (10)).

Hence using once again the dominated convergence theorem, we have

lim
ε→0+

∫
Ω

[
f (z, v0)
(vε0)q−1 −

f (z,u0)
(uε0)q−1

]
((uε0)q

− (vε0)q)dz

=

∫
Ω

 f (z, v0)

vq−1
0

−
f (z,u0)

uq−1
0

 (uq
0 − vq

0)dz. (13)

If in (9) we let ε→ 0+, then using (11) and (13), we obtain

0 ≤
∫
Ω

 f (z, v0)

vq−1
0

−
f (z,u0)

uq−1
0

 (uq
0 − vq

0)dz. (14)

The strict monotonicity of x →
f (z, x)
xq−1 on R̊+ = (0,+∞) (see hypotheses H, (ii)) and (14) imply that

u0 = v0. The proves the uniqueness of the positive solution u0 =W1,η
0 (Ω) ∩ L∞(Ω).

So, finally we can state the following existence and uniqueness theorem for the Dirichlet equidiffusive
logistic problem.

Theorem 3.4. If hypotheses H0,H1 hold, then problem (1) has a unique positive solution u0 ∈W1,η
0 (Ω)∩L∞(Ω) and

for every K ⊆ Ω compact, we have

0 < cK ≤ u0(z) f or a.a.z ∈ K.
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