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Abstract. In this paper, we considerΠ−Nekrasov matrices, a generalization of {P1,P2}−Nekrasov matrices
obtained by introducing the set Π = {P1,P2, ...,Pm} of m simultaneous permutations of rows and columns
of the given matrix. For point-wise and block Π−Nekrasov matrices we give infinity norm bounds for the
inverse. For Π−Nekrasov B−matrices, obtained through a special rank one perturbation, we present main
results on infinity norm bounds for the inverse and error bounds for linear complementarity problems.
Numerical examples illustrate the benefits of new bounds.

1. Introduction

In the paper by Varah, see [28], upper bound for the infinity norm of the inverse for strictly diagonally
dominant matrices was obtained. In recent years, Varah bound was modified in many different ways, in
order to obtain infinity norm bounds of the inverse for different subclasses of H−matrices, see [7, 9, 17, 18,
21, 22].
The most direct application of these results lies in determination of upper bounds for the condition number
of a matrix:

κ(A) = ∥A∥∥A−1
∥.

Also, many researchers have used results on bounding the norm of the inverse for bounding errors in linear
complementarity problems, see [11, 12, 14, 25]. In this paper we expand these results to other matrix classes,
such as Π−Nekrasov, block Π−Nekrasov and Π−Nekrasov B−matrices.

The starting point in the following considerations is the well-known class of Nekrasov matrices. Unlike
the class of strictly diagonally dominant matrices, Nekrasov class is not closed under simultaneous per-
mutations of rows and columns. Therefore, different authors have considered modifications of Nekrasov
condition involving permutation matrices. One way to define a generalization of Nekrasov class is to
consider so-called Gudkov matrices, matrices that can be transformed to Nekrasov matrices through a
similarity permutation, see [16]. Another modification of Nekrasov condition was given in the form of
{P1,P2}−Nekrasov matrices, see [8]. For a matrix to be {P1,P2}−Nekrasov, the permutation P1 should re-
pair some of the rows in the original matrix (transforming these rows to Nekrasov-dominant rows), while
P2 should repair the remaining rows. The most common choice for P1 and P2 consists of identical and
counteridentical permutation.

2020 Mathematics Subject Classification. 15A18; 15B99
Keywords. Linear complementarity problem, Nekrasov matrices, Permutations, Infinity norm bounds.
Received: 11 May 2022; Revised: 09 October 2022; Accepted: 25 January 2023
Communicated by Marko Petković
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Email addresses: dunjaarsic@uns.ac.rs (Dunja Arsić), maja.nedovic@uns.ac.rs (Maja Nedović)
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Conditions that involve permutation matrices, especially similarity permutations of rows and columns,
have interesting interpretations in applications. For instance, in relation with the adjacency graph, a
similarity permutation can be viewed as relabeling the vertices of the graph without changing the edges,
see [24]. Changing the order in which the nodes are approached in a specific algorithm can, in some
cases, significantly affect the performance of the algorithm. In this paper we consider involving additional
permutations in order to improve results on infinity norm bounds for the inverse and error bounds for
linear complementarity problems. We present norm bounds for the inverse both in point-wise and the
block case of Π−Nekrasov matrices.

There are matrices that, in the point-wise case, don’t belong to the class of H−matrices at all, but, for some
choices of partition of the index set, do belong to block Π−Nekrasov matrices. For these matrices, well-
known bounds for the norm of the inverse in the point-wise case cannot be applied, but block case bounds
can be applied. This is true for matrices with zero diagonal entries, that often appear in mathematical
models in ecology or population biology. Namely, when modelling ecological systems, self-interactions of
included populations are often considered to be zero, see [15]. Therefore, the corresponding matrices have
all the diagonal entries equal to zero. These matrices are called hollow matrices and they don’t belong to
the class of H−matrices in the usual point-wise sense. Therefore, when dealing with hollow matrices, none
of the results and tools developed for H−matrices can be applied. In some of these cases we can use the
block approach.

The main results of the paper refer to the class ofΠ−Nekrasov B−matrices. This class is a generalization
of Π−Nekrasov class (in the real case) through a rank one perturbation. It is the subclass of the class of
P−matrices, real square matrices with all principal minors positive. For these matrices, we obtained infinity
norm bound for the inverse and error bound for linear complementarity problems. Numerical examples
show that new error bounds can give tighter results in some cases compared to already known error bounds
for S−Nekrasov and B − S−Nekrasov matrices. Moreover, new bounds work in some cases where bounds
developed for S−Nekrasov and B− S−Nekrasov matrices cannot be applied, for any choice of the partition
of the index set into S and S.

The paper is organized as follows. In the remainder of Section 1 we recall preliminaries on Nekrasov
and {P1,P2}−Nekrasov matrices together with well-known infinity norm bounds for the inverse of these
matrices. In Section 2, we consider Π−Nekrasov matrices and block generalizations of Π−Nekrasov
matrices and define improved norm bounds compared to bounds given in [22]. In Section 3, the main
results are presented. We consider the class of Π−Nekrasov B−matrices and define infinity norm bounds
for the inverse and error bounds for linear complementarity problems for matrices in this class. Section
4 consists of numerical examples that illustrate the effectiveness of new bounds, comparisons to already
known results and concluding remarks.

It is well-known that a matrix A = [ai j] ∈ Cn,n is called strictly diagonally dominant (SDD) matrix if, for
each i ∈ N, it holds that

|aii| > ri(A) =
∑

k∈N,k,i

|aik|,

or, in the form of vectors, d(A) > r(A), where r(A) = [r1(A), ..., rn(A)]T is the vector of deleted row sums,
and the vector of moduli of diagonal entries is given by d(A) = [|a11|, ..., |ann|]T. A matrix A = [ai j] ∈ Cn,n is
an H−matrix if its comparison matrix ⟨A⟩ = [mi j] defined by

⟨A⟩ = [mi j] ∈ Cn,n, mi j =

{
|aii|, i = j
−|ai j|, i , j

is an M−matrix, i.e., ⟨A⟩−1
≥ 0, see [1]. For some subclasses of H−matrices we know how to construct a

corresponding diagonal scaling matrix that transforms the given H−matrix to an SDD matrix, see [10]. This
can be used further in obtaining eigenvalue localization, investigation of Schur complement properties, see
[27, 29], or in determining error bounds for linear complementarity problems, see [14]. In [1] it is pointed
out that for any nonsingular H−matrix A = [ai j] ∈ Cn,n, |A−1

| ≤ ⟨A⟩−1.
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Nekrasov matrices, see [16, 20], are defined by condition

|aii| > hi(A), for all i ∈ N,

or, in vector form, d(A) > h(A), where the sums hi(A), i ∈ N are defined recursively by

h1(A) = r1(A), hi(A) =
i−1∑
j=1

|ai j|
h j(A)
|a j j|

+

n∑
j=i+1

|ai j|, i = 2, 3, . . .n,

and h(A) = [h1(A), ..., hn(A)]T. For a given matrix A, A = D − L −U represents the standard splitting of A
into its diagonal (D), strictly lower (−L) and strictly upper (−U) triangular parts.

As the SDD class is closed under simultaneous permutations of rows and columns, while the class of
Nekrasov matrices is not, the following generalization of Nekrasov condition was considered.

For a permutation matrix P, of order n ≥ 2, a matrix A = [ai j] ∈ Cn,n is a P−Nekrasov matrix if PTAP is a
Nekrasov matrix. In other words, if

|(PTAP)ii| > hi(PTAP), for all i ∈ N,

or, in vector form, d(PTAP) > h(PTAP). The union of all P−Nekrasov classes by all corresponding permuta-
tion matrices P is known as Gudkov class, see [16, 26].

Suppose that for the given matrix A = [ai j] ∈ Cn,n, n ≥ 2 and two given permutation matrices P1 and P2,

d(A) > min
{
hP1 (A), hP2 (A)

}
,

where
hPk (A) = Pkh(PT

k APk), k = 1, 2.

We call such a matrix {P1,P2}−Nekrasov matrix, see [8].
Examples show, see [8], that it is possible that, for the set of two given permutation matrices {P1,P2}, the

given matrix A is neither P1−Nekrasov nor P2−Nekrasov, but A does belong to {P1,P2}−Nekrasov class.
With permutations involved, Nekrasov row sums can be expressed as follows.

Lemma 1.1 ([8]). Given any matrix A = [ai j] ∈ Cn,n, n ≥ 2, with aii , 0 for all i ∈ N, and given a permutation
matrix P ∈ Cn,n, then

hP
i (A) = |aii|

(
P(|DP| − |LP|)−1

|UP|e
)

i
,

where e ∈ Cn is the vector with all components equal to 1 and DP is diagonal, −LP strictly lower and −UP strictly
upper triangular part of the matrix PTAP, i.e., PTAP = DP − LP −UP is the standard splitting of the matrix PTAP.

Let us now recall well-known results on bounding the norm of the inverse for SDD, Nekrasov and
{P1,P2}−Nekrasov matrices.

Theorem 1.2 ([28]). Given an SDD matrix A = [ai j] ∈ Cn,n , the following bound applies:

||A−1
||∞ ≤

1
min
i∈N

(|aii| − ri(A))
.

Theorem 1.3 ([18]). Let A = [ai j] ∈ Cn,n be a Nekrasov matrix. Then

||A−1
||∞ ≤ max

i∈N

zi(A)
|aii| − hi(A)

,

where z1(A) = 1 and zi(A) =
∑i−1

j=1 |ai j|
z j(A)
|a j j |
+ 1, i = 2, 3, . . .n.
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Norm bounds for {P1,P2}−Nekrasov matrices were presented in [8]. In [30] the improved norm bound
for this type of matrices is given as follows.

Theorem 1.4 ([30]). Suppose that, for a given set of permutation matrices {P1,P2}, a matrix A = [ai j] ∈ Cn,n, n ≥ 2,
is a {P1,P2}−Nekrasov matrix. Then,

||A−1
||∞ ≤ max

i∈N

z
Pki
i (A)
|aii |

1 −min
{

hP1
i (A)
|aii |
,

hP2
i (A)
|aii |

} ,
where z1(A) = 1, zi(A) =

∑i−1
j=1 |ai j|

z j(A)
|a j j |
+ 1, i = 2, 3, . . .n, the corresponding vector is z(A) = [z1(A), ..., zn(A)]T,

zP(A) = Pz(PTAP), and for the given i ∈ N the corresponding index ki ∈ {1, 2} is chosen in such a way that

min
{
hP1

i (A), hP2
i (A)

}
= h

Pki
i (A).

In the recent paper [17], bounds for the norm of the inverse for P−Nekrasov matrices and {P1,P2}−Nekrasov
matrices were further improved in the following way.

Theorem 1.5 ([17]). Let P ∈ Rn,n be a permutation matrix of order n ≥ 2 and let A = [ai j] ∈ Cn,n be a P−Nekrasov
matrix. Then

||A−1
||∞ ≤ max

i∈N

{GPe}i
{GP⟨A⟩e}i

= max
i∈N

eT
i GPe

eT
i GP⟨A⟩e

,

where the matrix GP = GP(A) is defined in the following way

GP = P(|DP| − |LP|)−1PT.

Theorem 1.6 ([17]). Let A = [ai j] ∈ Cn,n, n ≥ 2, be a {P1,P2}−Nekrasov matrix, where P1,P2 ∈ Rn,n are some
permutation matrices. Then

||A−1
||∞ ≤ max

i∈N

{Ge}i
{G⟨A⟩e}i

,

where the matrix G = G(A,P1,P2) is defined in the following way. The i−th row of the matrix G coincides with the
i−th row of the matrix GP1 if either the i−th row of the matrix GP2⟨A⟩ is not strictly diagonally dominant or

eT
i GP1 e

eT
i GP1⟨A⟩e

≤
eT

i GP2 e

eT
i GP2⟨A⟩e

.

Similarly, the i−th row of the matrix G coincides with the i−th row of the matrix GP2 if either the i−th row of the
matrix GP1⟨A⟩ is not strictly diagonally dominant or

eT
i GP2 e

eT
i GP2⟨A⟩e

≤
eT

i GP1 e

eT
i GP1⟨A⟩e

.

Applying the previous result to P−Nekrasov case, the bound for the norm of the inverse for P−Nekrasov
matrices was further improved.

Theorem 1.7 ([17]). Let A = [ai j] ∈ Cn,n, n ≥ 2, and let P1,P2 ∈ Rn,n be permutation matrices. Assume that A is
a P1−Nekrasov matrix. Then, A is a {P1,P2}−Nekrasov matrix and

||A−1
||∞ ≤ max

i∈N

{Ge}i
{G⟨A⟩e}i

≤ max
i∈N

{GP1 e}i
{GP1⟨A⟩e}i

,

where the matrix G = G(A,P1,P2) is defined as in Theorem 1.6 and the matrix GP1 = GP1 (A) is defined as in Theorem
1.5.

Applying these results, in the following section we give norm bounds for the inverse of Π−Nekrasov
matrices in the point-wise and block case. The bounds presented in the next section improve the bounds
given in [22].
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2. Infinity norm bounds for the inverse of Π−Nekrasov and block Π−Nekrasov matrices

In [8], it is noted that {P1,P2}−Nekrasov condition could be generalized by involving more than two
permutation matrices, as follows.

Definition 2.1. Given a set of m permutation matrices Π = {Pk}
m
k=1, a matrix A = [ai j] ∈ Cn,n, n ≥ 2 is a

Π−Nekrasov matrix if

d(A) > min
k=1,...,m

hPk (A).

We could also formulate this generalization in a slightly different manner. Assume that for a given
matrix A = [ai j] ∈ Cn,n it holds that for each i ∈ N there exists a permutation matrix Pi such that |aii| > hPi

i (A).
In that way, we obtain more general condition by changing the order of quantifiers in Gudkov condition (in
the same fashion as CKV-type condition is obtained from CKV condition, see [5, 19]). Matrices satisfying
this condition belong to nonsingular H−matrices. This can be proved following the arguments given in
[17].

Lemma 2.2. Given a set of permutation matrices Π = {P1,P2, ...,Pm}, P1,P2, ...,Pm ∈ Rn,n, n ≥ 2, a matrix
A = [ai j] ∈ Cn,n is a Π−Nekrasov matrix if and only if

max
j=1,2,...,m

{eT
i GP j⟨A⟩e} > 0, i = 1, 2, ...,n.

Theorem 2.3. Given a set of m permutation matrices Π = {P1,P2, ...,Pm}, P1,P2, ...,Pm ∈ Rn,n, n ≥ 2, any
Π−Nekrasov matrix A = [ai j] ∈ Cn,n is a nonsingular H−matrix.

Proof: From Lemma 2.2 it follows that a matrix G = G(A,Π) can be composed of the rows of the matrices
GP j , j = 1, 2, ...,m such that

B := G⟨A⟩

is an SDD M−matrix. More precisely, the i−th row of the matrix G, 1 ≤ i ≤ n coincides with the i−th row of
GPk , k ∈ {1, 2, ...,m}, if

eT
i GPk e

eT
i GPk⟨A⟩e

= min
j∈L

eT
i GP j e

eT
i GP j⟨A⟩e

,

where L is a subset of {1, 2, ...,m} and the set of indices such that for every j ∈ L the i−th row of the matrix
GP j⟨A⟩ is strictly diagonally dominant.

Since the SDD matrix B is nonsingular, so are the matrices G and ⟨A⟩. Furthermore, it follows that

⟨A⟩−1 = B−1G.

Since both matrices B−1 and G are nonnegative, ⟨A⟩ is monotone, whence it is a nonsingular M−matrix.
This proves that A is a nonsingular H−matrix.

□

For the given set of permutation matrices Π = {P1,P2, ...,Pm}, the following relations between the
corresponding matrix classes hold.
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Example in Section 4 shows that there are matrices that don’t belong to any of the classes {P1,P2}−Nekrasov,
{P1,P3}−Nekrasov, {P2,P3}−Nekrasov, but do belong to a class of {P1,P2,P3}−Nekrasov matrices. Note that
in cases when the identical permutation is included inΠ, Nekrasov class is a subclass ofΠ−Nekrasov class.

According to [17], the following bound for the infinity norm of the inverse holds.

Theorem 2.4. Let A = [ai j] ∈ Cn,n, n ≥ 2, be aΠ−Nekrasov matrix, whereΠ is the set of m permutation matrices
P1,P2, ...,Pm ∈ Rn,n. Then

||A−1
||∞ ≤ max

i∈N

{Ge}i
{G⟨A⟩e}i

, (1)

where the matrix G = G(A,Π) is defined in the following way. The i−th row of the matrix G coincides with the i−th
row of the matrix GPk , k ∈ {1, 2, ...,m} if

eT
i GPk e

eT
i GPk⟨A⟩e

= min
j∈L

eT
i GP j e

eT
i GP j⟨A⟩e

,

where L is a subset of {1, 2, ...,m} and the set of indices such that for every j ∈ L the i−th row of the matrix GP j⟨A⟩ is
strictly diagonally dominant.

Proof: By Theorem 2.3, A is a nonsingular H−matrix and the matrix B = [bi j] = G⟨A⟩ is an SDD M−matrix.
G is also nonsingular and nonnegative.

In [17], it is proved that
||A−1

||∞ ≤ ||⟨A⟩−1
||∞ ≤ ||(∆−1B)−1

||∞,

where the diagonal matrix ∆ = dia1(δ1, ..., δn) is defined by the relation ∆e = Ge.
Since both B and ∆−1B are SDD matrices, by applying to ∆−1B the classical bound for the inverse of an

SDD matrix, we immediately obtain the inequality

||(∆−1B)−1
||∞ ≤ max

1≤i≤n

{Ge}i
|bii| − ri(B)

.

In order to complete the proof, it remains to observe that for the M−matrix B we have

|bii| − ri(B) = {G⟨A⟩e}i, i = 1, ...,n.
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□

Notice that if Π is the set of permutation matrices P1,P2, ...,Pm ∈ Rn,n and if A is a P1−Nekrasov matrix,
then A is also a {P1,P2}−Nekrasov matrix and a Π−Nekrasov matrix and

||A−1
||∞ ≤ max

i∈N

{G(A,Π)e}i
{G(A,Π)⟨A⟩e}i

≤ max
i∈N

{G(A,P1,P2)e}i
{G(A,P1,P2)⟨A⟩e}i

≤ max
i∈N

{GP1 e}i
{GP1⟨A⟩e}i

. (2)

In the same manner, bounds for the block case can be further improved by introducing more than two
permutations. Improvements stated in previous remarks are illustrated with numerical examples in Section
4.

Block generalizations of the class of H−matrices were considered in [23].
For a matrix A = [ai j] ∈ Cn,n and a partition π = {p j}

l
j=0 of the index set N, one can present A in the block

form as [Ai j]l×l. For rectangular blocks, ||Ai j||∞ is defined as follows:

||Ai j||∞ = sup
x∈W j, x,0

||Ai jx||∞
||x||∞

= sup
||x||∞=1

||Ai jx||∞.

Also, denote

(||A−1
ii ||∞)−1 = inf

x∈Wi, x,0

||Aiix||∞
||x||∞

, i ∈ L,

where the last quantity is zero if Aii is singular.
Now, we consider two different ways of introducing the l×l comparison matrix for a given A = [ai j] ∈ Cn,n

and a partition π = {p j}
l
j=0 of the index set N.

The comparison matrix of type I is denoted by ⟩A⟨π= [pi j], where

pii = (||A−1
ii ||∞)−1, pi j = −||Ai j||∞, i, j ∈ L, i , j.

The comparison matrix of type II is denoted by ⟨A⟩π = [mi j], where

mi j =


1, i = j and det Aii , 0,
−||A−1

ii Ai j||∞, i , j and det Aii , 0,
0, otherwise.

For a given A = [ai j] ∈ Cn,n and a given partition π = {p j}
l
j=0 of the index set N we say that A is a

block π −H−matrix of type I (type II) if ⟩A⟨π is an H−matrix (⟨A⟩π is an H−matrix).
For a given A = [ai j] ∈ Cn,n, given partition π = {p j}

l
j=0 of the index set N and for a given permutation

matrix P of the index set L , we say that A is a block π−P−Nekrasov matrix of type I (type II) if ⟩A⟨π

is a P−Nekrasov matrix (⟨A⟩π is a P−Nekrasov matrix).
For a given A = [ai j] ∈ Cn,n, given partition π = {p j}

l
j=0 of the index set N and for the given set of

permutation matrices Π = {P1,P2, ...,Pm} of the index set L , we say that A is a block π − Π−Nekrasov
matrix of type I (type II) if ⟩A⟨π is Π−Nekrasov matrix (⟨A⟩π is Π−Nekrasov matrix).

In [6] the following results can be found.

Theorem 2.5 ([6]). If A = [Ai j]n×n is a block π −H−matrix of type I and ⟩A⟨π is its comparison matrix of type
I, then

||A−1
||∞ ≤ ||(⟩A⟨π)−1

||∞.

Theorem 2.6 ([6]). If A = [Ai j]n×n is a block π −H−matrix of type II and ⟨A⟩π is its comparison matrix of type
II, then

||A−1
||∞ ≤ max

i∈L
||A−1

ii ||∞||(⟨A⟩
π)−1
||∞.
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Recently, in [22], upper bounds for the infinity norm of the inverse for block generalizations of
{P1,P2}−Nekrasov matrices of type I and type II were presented. Now we present upper bounds for
the infinity norm of the inverse for block Π−Nekrasov matrices.

Theorem 2.7. Suppose that, for a given partition π = {p j}
l
j=0 of the index set N and for the given set of permutation

matrices Π = {P1,P2, ...,Pm} of the index set L, a matrix A = [ai j] ∈ Cn,n, n ≥ 2, is a block π − Π−Nekrasov
matrix of type I. Then,

||A−1
||∞ ≤ max

i∈L

{Ge}i
{G⟩A⟨πe}i

,

where the matrix G = G(⟩A⟨π,Π) is defined in the same manner as in Theorem 2.4.

Proof: From Theorem 2.5 and the fact that a block π−Π−Nekrasov matrix of type I is a block π−H−matrix
of type I, we know that

||A−1
||∞ ≤ ||(⟩A⟨π)−1

||∞.

From the definition of block π −Π−Nekrasov matrix of type I, we know that the comparison matrix ⟩A⟨π

is a Π−Nekrasov matrix. Therefore, we can apply the upper bound for the infinity norm of the inverse
given in Theorem 2.4 to the matrix ⟩A⟨π and obtain

||A−1
||∞ ≤ ||(⟩A⟨π)−1

||∞ ≤ max
i∈L

{Ge}i
{G⟩A⟨πe}i

,

where the matrix G is defined as G = G(⟩A⟨π,Π) in the same manner as in Theorem 2.4, only considering
the matrix ⟩A⟨π instead of the matrix A.

□

Theorem 2.8. Suppose that, for a given partition π = {p j}
l
j=0 of the index set N and for the given set of permutation

matrices Π = {P1,P2, ...,Pm} of the index set L, a matrix A = [ai j] ∈ Cn,n, n ≥ 2, is a block π − Π−Nekrasov
matrix of type II. Then,

||A−1
||∞ ≤ max

i∈L
||A−1

ii ||∞max
i∈L

{Ge}i
{G⟨A⟩πe}i

,

where the matrix G is defined as G = G(⟨A⟩π,Π) in the same manner as in Theorem 2.4, only considering the
matrix ⟨A⟩π instead of the matrix A.

Proof: In a similar manner as previous, the proof follows from Theorem 2.6, the fact that every block
π − Π−Nekrasov matrix of type II is also a block π − H−matrix of type II, the definition of block π −
Π−Nekrasov matrix of type II and Theorem 2.4.

□

Theorem 2.9. Let A = [ai j] ∈ Cn,n, n ≥ 2, let π = {p j}
l
j=0 be a partition of the index set N and let

Π = {P1,P2, ...,Pm} ∈ Rl,l be a set of permutation matrices of the index set L. Assume that A is a block
π − P1−Nekrasov matrix of type I. Then, A is a block π −Π−Nekrasov matrix of type I and

||A−1
||∞ ≤ max

i∈L

{Ge}i
{G⟩A⟨πe}i

≤ max
i∈L

{GP1 e}i
{GP1⟩A⟨πe}i

,

where the matrix G = G(⟩A⟨π,Π) is defined in the same manner as in Theorem 2.4 and the matrix GP1 = GP1 (⟩A⟨π)
is defined as in Theorem 1.5.

Proof: From Theorem 2.5 and the fact that a block π − P1−Nekrasov matrix of type I is a block
π −H−matrix of type I, we know that

||A−1
||∞ ≤ ||(⟩A⟨π)−1

||∞.
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From the definition of block π− P1−Nekrasov matrix of type I, we know that the comparison matrix ⟩A⟨π

is a P1−Nekrasov matrix. Therefore, we can apply (2) to the matrix ⟩A⟨π and obtain

||A−1
||∞ ≤ ||(⟩A⟨π)−1

||∞ ≤ max
i∈L

{Ge}i
{G⟨⟩A⟨π⟩e}i

≤ max
i∈L

{GP1 e}i
{GP1⟨⟩A⟨π⟩e}i

,

where the matrix G is defined as G = G(⟩A⟨π,Π) in the same manner as in Theorem 2.4, only considering
the matrix ⟩A⟨π instead of the matrix A.

□

Theorem 2.10. Let A = [ai j] ∈ Cn,n, n ≥ 2, let π = {p j}
l
j=0 be a partition of the index set N and let

Π = {P1,P2, ...,Pm}, P1,P2, ...,Pm ∈ Rl,l be a set of permutation matrices of the index set L. Assume that A is a
block π − P1−Nekrasov matrix of type II. Then, A is a block π −Π−Nekrasov matrix of type II and

||A−1
||∞ ≤ max

i∈L
||A−1

ii ||∞max
i∈L

{Ge}i
{G⟨A⟩πe}i

≤ max
i∈L
||A−1

ii ||∞max
i∈L

{GP1 e}i
{GP1⟨A⟩πe}i

,

where the matrix G = G(⟨A⟩π,Π) is defined in the same manner as in Theorem 2.4 and the matrix GP1 = GP1 (⟨A⟩π)
is defined as in Theorem 1.5.

Proof: In a similar manner as previous, the proof follows from Theorem 2.6, the fact that every block
π − P1−Nekrasov matrix of type II is also a block π − H−matrix of type II, the definition of block π −
P1−Nekrasov matrix of type II and (2).

□

Remark 2.11. According to Theorem 10 from [17], bounds for point-wise case given in Theorem 1.6 generally
improve the bounds presented in [30] via more suitable criteria for choosing the i−th row in G = G(A,P1,P2) in cases
when the i−th row is SDD in both GP1⟨A⟩ and GP2⟨A⟩. Therefore, our bounds for the block case given in Theorem
2.7 and Theorem 2.8 generally improve the corresponding bounds in [22]. Further improvement in estimation of the
norm bound is obtained by introducing additional permutation matrices.

Previous results and remarks for the block case will be illustrated with numerical examples in Section 4.

3. Main results on LCP for Π−Nekrasov B−matrices

The linear complementarity problem (LCP) is to find a vector x ∈ Rn such that

x ≥ 0, Ax + q ≥ 0, (Ax + q)Tx = 0,

or to show that such vector does not exist. Here, A = [ai j] ∈ Rn,n and q ∈ Rn. Many mathematical problems
can be described in LCP form. It is well known that LCP(A, q) has a unique solution for any q ∈ Rn if and
only if a matrix A is a P−matrix, a real square matrix with all its principal minors positive, see [4]. An
H−matrix with positive diagonal entries is a P−matrix. In defining an upper error bound for LCP(A, q)
where A is a P−matrix, see [2], the following fact can be a starting point

||x − x∗||∞ ≤ max
d∈[0,1]n

||(I −D +DA)−1
||∞||r(x)||∞.

Here, x∗ is a solution of the LCP(A, q), r(x) = min(x,Ax + q), D = dia1(d1, ..., dn), with 0 ≤ di ≤ 1 for each
i ∈ N, and the min operator denotes the componentwise minimum of two vectors. Obviously, the upper
bound for the infinity norm of the inverse matrix of I−D+DA plays an important role in determining LCP
error bound.

If A is a certain structure matrix, more results on LCP(A, q) can be found in [11, 12, 14, 25].
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Definition 3.1. Let A = [ai j] ∈ Rn,n be writen in the form

A = B+ + C, (3)

where

B+ = [bi j] =


a11 − r+1 . . . a1n − r+1
...

. . .
...

an1 − r+n . . . ann − r+n

 , C = [ci j] =


r+1 . . . r+1
...
. . .

...
r+n . . . r+n


and r+i := max{0, ai j| j , i}. For the given set of permutation matricesΠ = {P1,P2, ...,Pm}, A is called aΠ−Nekrasov
B−matrix if B+ is a Π−Nekrasov matrix with positive diagonal entries.

Theorem 3.2. Given any diagonal matrix D = dia1(d1, d2, ..., dn) with di ∈ [0, 1] for all i ∈ N and given a set of
permutation matrices Π = {P1,P2, ...,Pm}, then if A is a Π−Nekrasov B−matrix then I −D +DA is a Π−Nekrasov
B−matrix, where I is the identity matrix.

Proof: Let A be aΠ−Nekrasov B−matrix. Then B+ is aΠ−Nekrasov matrix with positive diagonal entries
and so is the matrix I −D +DB+, according to [22]. Now, observe the matrix Ā = I −D +DA whose entries
are

āi j =

{
1 − di + diaii, i = j
diai j, i , j ,

where r̄+i = max{0, āi j| j , i} = max{0, diai j| j , i} = di max{0, ai j| j , i} = dir+i .
It follows that

Ā = I −D +DA = I −D +D(B+ + C) = (I −D +DB+) +DC = B̄+ + C̄,

and since B̄+ = I − D + DB+ is a Π−Nekrasov matrix with positive diagonal entries, we conclude that
Ā = I −D +DA = B̄+ + C̄ is a Π−Nekrasov B−matrix.

□

Lemma 3.3 ([13]). Suppose P = (p1, p2, ..., , pn)Te, where e = (1, 1, ..., 1) and pi ≥ 0 for all i ∈ N. Then ||(I+P)−1
||∞ ≤

n − 1.

Theorem 3.4. Suppose that, for a given set of permutation matrices Π = {P1,P2, ...,Pm}, a matrix A = [ai j] ∈ Rn,n,
n ≥ 2 is a Π−Nekrasov B−matrix. Then

||A−1
||∞ ≤ (n − 1) max

i∈N

z
Pki
i (B+)
|bii |

1 − min
1≤ j≤m

{
h

Pj
i (B+)
|bii |
}

,

where the matrix B+ = [bi j] is defined in (3), z1(B+) = 1, zi(B+) =
∑i−1

j=1 |bi j|
z j(B+)
|b j j |
+ 1, i = 2, 3, ...,n, the corresponding

vector is z(B+) = [z1(B+), ..., zn(B+)]T, zP(B+) = Pz(PTB+P) and for the given i ∈ N the corresponding index
ki ∈ {1, 2, ...,m} is chosen in such a way that min

1≤ j≤m
{hP j

i (B+)} = h
Pki
i (B+).

Proof: Since A is a Π−Nekrasov B−matrix, B+ is a Π−Nekrasov matrix with positive diagonal entries
and also a Z−matrix. Thus, B+ is an M−matrix and (B+)−1 is nonnegative. Hence, from A = B+ +C we have

A−1 = (B+(I + (B+)−1C))−1 = (I + (B+)−1C)−1(B+)−1,

which implies that
||A−1

||∞ ≤ ||(I + (B+)−1C)−1
||∞||(B+)−1

||∞.
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Note that C = (r+1 , ..., r
+
n )Te is a nonnegative matrix. Therefore, (B+)−1C can be written as (p1, ..., pn)Te where

pi ≥ 0 for all i ∈ N. By Lemma 3.3 we get

||(I + (B+)−1C)−1
||∞ ≤ n − 1.

Since B+ is a Π−Nekrasov matrix, from Theorem 1.4 it follows

||A−1
||∞ ≤ (n − 1) max

i∈N

z
Pki
i (B+)
|bii |

1 − min
1≤ j≤m

{
h

Pj
i (B+)
|bii |
}

,

where ki ∈ {1, 2, ...,m} is chosen in such a way that min
1≤ j≤m

{hP j

i (B+)} = h
Pki
i (B+).

□
Now we give an upper bound of max

di∈[0,1]n
||(I −D +DA)−1

||∞ when A is a Π−Nekrasov B−matrix.

Theorem 3.5. Let A = [ai j] ∈ Rn,n be a Π−Nekrasov B-matrix with positive diagonal entries for a given set of
permutation matrices Π = {P1,P2, ...,Pm} and let D = dia1(d1, ..., dn) with 0 ≤ di ≤ 1 for each i ∈ N. Then

max
di∈[0,1]n

||(I −D +DA)−1
||∞ ≤ (n − 1) max

i∈N

max
1≤ j≤m

{θ
P j

i (B+)}

1 − min
1≤ j≤m

{
h

Pj
i (B+)

bii
}

, (4)

where the matrix B+ = [bi j] is defined in (3),

θ1(A) =
1

min{|a11|, 1}
,

θi(A) =
i−1∑
j=1

|ai j|

|aii|
θ j(A) +

1
min{|aii|, 1}

, i = 2, 3, ...,n,
(5)

the corresponding vector is θ(A) = [θ1(A), ..., θn(A)]T and θP(A) = Pθ(PTAP).

Proof: With a slightly different notation, in [11], it is proved that for a {P1,P2}−Nekrasov matrix A with
positive diagonal entries, for each i ∈ N, it holds

zi(PT(I −D +DA)P)
(PT(I −D +DA)P)ii

≤ θi(PTAP),

where P ∈ {P1,P2}. Therefore, it follows that

zP
i (I −D +DB+)

|1 − di + dibii|
=

(Pz(PT(I −D +DB+)P))i

1 − di + dibii
≤ θP

i (B+) ≤ max
1≤ j≤m

{θ
P j

i (B+)}.

Since, from [12, 22]
hP

i (I −D +DB+)

|1 − di + dibii|
≤

hP
i (B+)

|bii|
,

for P ∈ Π, we first apply the result of Theorem 3.4, with ki chosen as above, and with B̄+ = I−D+DB+ = [b̄i j],
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we obtain

max
di∈[0,1]n

||(I −D +DA)−1
||∞ ≤ (n − 1) max

i∈N

z
Pki
i (B̄+)

|bii |

1 − min
1≤ j≤m

{
h

Pj
i (B̄+)

|bii |
}

= (n − 1) max
i∈N

z
Pki
i (I−D+DB+)
|1−di+dibii |

1 − min
1≤ j≤m

{
h

Pj
i (I−D+DB+)
|1−di+dibii |

}

≤ (n − 1) max
i∈N

max
1≤ j≤m

{θ
P j

i (B+)}

1 − min
1≤ j≤m

{
h

Pj
i (B+)

bii
}

.

□
Now, we can apply our result in measuring the sensitivity of the solution of the linear complementarity

problem of a P−matrix. In [3], a constant for a P−matrix A was introduced:

βp(A) = max
di∈[0,1]n

||(I −D +DA)−1D||p,

where || · ||p is a matrix norm induced by a vector norm for p ≥ 1. The constant βp(A) is considered to be an
indicator of perturbation sensitivity and has been used in error analysis of the LCP.

For p = ∞, according to the fact that

β∞(A) ≤ max
di∈[0,1]n

||(I −D +DA)−1
||∞ · max

di∈[0,1]n
||D||∞

and Theorem 3.5, we obtain the following perturbation bound for linear complementarity problem of
Π−Nekrasov B−matrices.

Corollary 3.6. Let A = [ai j] ∈ Rn,n be aΠ−Nekrasov B−matrix,Π = {P1,P2, ...,Pm}, with positive diagonal entries.
Then

β∞(A) ≤ (n − 1) max
i∈N

max
1≤ j≤m

{θ
P j

i (B+)}

1 − min
1≤ j≤m

{
h

Pj
i (B+)

bii
}

,

where the matrix B+ = [bi j] is defined in (3), θi(A) for i ∈ N is defined in (5), the corresponding vector is
θ(A) = [θ1(A), ..., θn(A)]T and θP(A) = Pθ(PTAP).

4. Numerical examples and concluding remarks

With the following examples we illustrate the results and improve some already known bounds.

Example 4.1. Matrices with all diagonal entries equal to zero are called hollow matrices. These matrices often appear
in practical applications. For instance, hollow matrices play a role in modelling ecological systems consisting of several
populations with no self interactions, see [15]. Matrices that appear in applications often have large dimensions, but
also a certain block structure. Therefore, it is suitable to use block approach in order to collect information on the
original, large matrix through analyzing a comparison matrix of a smaller format.
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Consider the following matrix.

A1 =



0 −2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1
2 0 −2 1 0 0 10−3 0 0 10−3 0 0 10−3 0 0 10−3 0 0 10−3 0 0
0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.1 0
1 0 0 0−2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10−3

−1 1 0 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 10 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10−3 0 0 0 0 1 0 −2 2 0 0 0 0 0 0 0 0 0 0 0 10−3

0 0 0 0 0 2 2 0 −2 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0

10−3 0 0 0 0 0 0 0 0 0 −2 2 0.4 0 0 0 0 0 0 0 10−3

0 0 0 0 0 0 0 0 0 2 0 −2 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0

10−3 0 0 0 0 0 0 0 0 1 0 0 0 −2 2 0 0 0 0 0 10−3

0 0 0 0 0 0 0 0 0 0 10−3 10−3 2 0 −2 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 1.5 0 0 0

10−3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 10−3

0 0 0 0 0 0 0 0 0 0 0 0 0 0.4−0.5 2 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 0

0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0.50 0 10−3 0 0 10−3 0 0 10−3 0 0 10−3 0 010−3 2 0 2
0 0.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0



.

Matrix A1 was considered in [22]. Since all the diagonal entries are equal to zero, A1 does not belong to the class
of H−matrices in the point-wise sense and, therefore, neither of the point-wise bounds for the norm of the inverse
can be applied. However, for the partition π into 3 by 3 blocks, and for P1 being identical and P2 counteridentical
permutation of order 7, this matrix does belong to π− {P1,P2}−Nekrasov matrices of type II. In [22], for identical and
counteridentical permutation of order 7, the obtained bound for the norm of the inverse is 10.5111, while the exact
value is equal to 2.86631.
If, in addition to identical permutation P1 and counteridentical permutation P2, we also consider the permutation

P3 =



0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0


it follows that matrix ⟨A1⟩

π is a Π−Nekrasov matrix, where Π = {P1,P2,P3} and by

applying our bound from Theorem 2.8 we have improved the result from [22] by obtaining 9.630199.
Therefore, involving additional permutation matrices can lead, in some cases, to tighter norm estimation.

Example 4.2. Consider the following matrix

A2 =


1 1

3
1
3

1
2

1
5 1 2

5
2
5

−1 0 1 −
1
6

1
4

1
2

1
2 1

 .
Matrix A2 can be written A2 = B+ + C as in (3), where

B+ =


1
2 −

1
6 −

1
6 0

−
1
5

3
5 0 0

−1 0 1 −
1
6

−
1
4 0 0 1

2

 , C =


1
2

1
2

1
2

1
2

2
5

2
5

2
5

2
5

0 0 0 0
1
2

1
2

1
2

1
2

 .
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Since
h1(B+) =

1
3
, h2(B+) =

2
15
, h3(B+) =

5
6
, h4(B+) =

1
6
,

it follows that B+ is a Nekrasov matrix and hence A2 is {P1,P2}−Nekrasov B−matrix for P1 = I and any permutation
P2. In [12] the same matrix is observed and an LCP bound for B − S−Nekrasov matrices is applied and obtained
bound is 25.3636. As mentioned in [12], the bound from Theorem 2 in [13] cannot be used. Here, we apply our bound

(4) and for P1 = I and P2 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 improve the bound from [12] by obtaining

max
di∈[0,1]n

||(I −D +DA2)−1
||∞ ≤ 23.7321.

Example 4.3. Consider the following matrix

A3 =


5.6 −5.6 0 0
−1.3 4.1 −3 0.1

0 −2.2 7 −2.9
0.4 0 0 3.4

 .
Matrix A3 can be written A3 = B+ + C as in (3), where

B+ =


5.6 −5.6 0 0
−1.4 4 −3.1 0

0 −2.2 7 −2.9
0 −0.4 −0.4 3

 , C =


0 0 0 0

0.1 0.1 0.1 0.1
0 0 0 0

0.4 0.4 0.4 0.4

 .
By computations, matrix A3 is neither S−Nekrasov nor B−S−Nekrasov matrix for any S and, therefore, the LCP bound
from [12] cannot be applied. However, matrix A3 is a {P1,P2}−Nekrasov B−matrix for identical and counteridentical
permutations P1 and P2 and by (4) we obtain max

di∈[0,1]n
||(I −D +DA3)−1

||∞ ≤ 28.9524.

Example 4.4. Consider the following matrix

A4 =



1 −0.2 −0.2 −0.2 −0.2 −0.2 −0.2
−0.1 1 −0.2 0 0 −0.3 0
−0.2 0 1 −0.3 −0.1 0 0
−0.2 −0.2 −0.2 1 −0.2 −0.2 −0.2

0 −0.2 −0.1 0 1 −0.2 0
−0.1 −0.2 0 0 −0.3 1 0
−0.2 −0.2 −0.2 −0.2 −0.2 −0.2 1


.

For P1 =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, P2 =



0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
1 0 0 0 0 0 0


, P3 =



0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 1 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0


,

it can be easily shown that matrix A4 is neither P1−Nekrasov, P2−Nekrasov, P3−Nekrasov nor {P1,P2}−Nekrasov,
{P1,P3}−Nekrasov, {P2,P3}−Nekrasov matrix, but A4 does belong to Π−Nekrasov class, where Π = {P1,P2,P3}.
Therefore, neither of the well-known bounds for the inverse for P−Nekrasov and {P1,P2}−Nekrasov matrices can be
applied. However, we can apply the new bound (1) and obtain 18.61349 while the exact value is 6.2492.
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As we can see from these examples and the previous considerations, the benefits of the presented results
are the following. First, the matrix classes we investigated cover some matrices that are not H−matrices
(in the point-wise sense). Therefore, already known bounds for different subclasses of H−matrices cannot
be applied to these matrices. Second, infinity norm bounds given for the block Π−Nekrasov matrices
are tighter, or at least as tight as the bounds in [22]. The main results, error bounds for LCP involving
Π−Nekrasov B−matrices, are tighter, in some cases, than already known error bounds for S−Nekrasov
and B − S−Nekrasov matrices. Furthermore, our error bounds work in some cases where already known
bounds for S−Nekrasov and B − S−Nekrasov matrices cannot be applied at all. For future work, it would
be interesting to further investigate the criteria for choosing suitable permutation matrices in some more
specific problems in applications. Also, it would be interesting to consider other block generalizations
of these matrix classes, as well as different modifications and generalizations of linear complementarity
problems.
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[7] Lj. Cvetković, V. Kostić, K. Doroslovački, Max-norm bounds for the inverse of S−Nekrasov matrices, Appl. Math. Comput. 218

(2012) 9498–9503.
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