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Abstract. We begin the investigation of the variety of semilattices of Mal’cev blocks, which we call SMB
algebras.

1. Motivation, History and Overview

This paper, the first in a series of at least two, is a conglomerate of old and new results. The last two
authors have written a note [15] in 2009 in an effort to identify the “worst” case of Taylor algebras for the
classification of the complexity of the Constraint Satisfaction Problem (CSP). We defined algebras which
were almost the same as SMB algebras, though a slightly narrower definition, proved they occur naturally
as subalgebras of reducts in Taylor algebras and solved some cases of the CSP. Then M. Maróti proved in
2010, see [17], that some more cases of SMB algebras were tractable for CSP. Finally, in 2019, A. Bulatov
resolved the CSP for SMB algebras in the general case, and also defined SMB algebras in the most general
form in [4]. Since Bulatov’s definition of SMB algebras is also the most natural, we use his definition in this
paper (as the generalization doesn’t affect the correctness of our old proofs). Bulatov went on to resolve the
general CSP Dichotomy using the case of SMB algebras as a template.

In an effort to unify the proofs of the CSP Dichotomy by Zhuk and by Bulatov, Barto et al. investigated
minimal Taylor algebras in [2] (see also [3] for the conference version). These minimal Taylor algebras have
a binary absorbing subuniverse which behaves somewhat similarly to the least ∼-class in SMB algebras,
which is the underlying reason why, with a lot of effort, Bulatov’s proof of the tractability of the CSP
transfers from SMB algebras to general Taylor algebras.

We decided to revisit the SMB algebras, both to finally publish the early results, since it seems that SMB
algebras are more significant than we first thought, and to see if there are more results to be proved about
them which may be generalized to Taylor algebras. Our effort is divided between (1) trying to unify the two
CSP Dichotomy proofs into a simpler argument which can be generalized to more complex topics in model
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checking and (2) trying to see what other problems we can solve for SMB algebras and then generalize to
Taylor algebras. In the course of our research we amassed a lot of results and decided to split them into
two papers by topic. This paper contains algebraic results which establish some useful properties of SMB
algebras. These properties will be used in the second paper, which is devoted to the complexity of the
CSP. The final part of this paper contains some partial results toward proving Park’s Conjecture for SMB
algebras.

After this, introductory section, we give the necessary mathematical background and notation in Section
2. Section 3 is giving some justification why the SMB algebras we consider are not so unusual. It seems
probable that the results of this section can also be obtained using ideas from [12] and [11], but here we
pursue a different approach, using the weak near-unanimity operation, thus making our arguments more
elementary and self-contained. The results of Section 3 first appeared in the unpublished manuscript by
the last two authors of this paper, see [15].

Section 4 proves that the class of all SMB algebras is a finitely based variety with a Taylor term. Section
5 defines regular SMB algebras and proves that they form a finitely based variety by finding a finite base.
Moreover, in Section 5 we prove that in any finitely generated variety V of SMB algebras there exist two
terms such that theV-algebras with these two terms replacing the fundamental operations form a variety
of regular SMB algebras.

Section 6 investigates the principal congruences in SMB algebras and Section 7 proves partial results
towards Park’s conjecture for SMB algebras.

To conclude this section, we mention that the order of authors does not reflect in any way the contribution
of any of the authors. We were forced to put A. Prokić in the first place to comply with a new rule for PhD
students in Serbia requiring a candidate to be the first author on at least one paper. The rule was instituted
to stop certain abuses of the system by researchers in some nonmathematical areas, and was protested
unsuccessfully by the mathematical community as contrary to the established practice in our area.

2. Preliminaries

2.1. Universal Algebra

We assume that the reader is familiar with the basics of Universal Algebra. The readers who need these
facts and definitions are referred to classic textbooks [6] and [19]. Moreover, we need some basic results of
Tame Congruence Theory, an advanced theory in Universal Algebra which was developed in [7].

Following [19], we use the notation Clo A and ClonA for the clone of term operations and the set of
n-ary term operations of the algebra A, respectively. Also, Pol A and PolnA denote the clone of polynomial
operations and the set of n-ary polynomial operations of the algebra A, respectively, while Con A denotes
the congruence lattice of A.

An operation f of an algebra A is said to be idempotent if the identity f (x, x, . . . , x) ≈ x holds in A. An
algebra is idempotent if all of its fundamental operations (equivalently, term operations) are idempotent.
We will assume all algebras are idempotent in this paper. Secondly, unless we explicitly state otherwise, all
algebras in this paper will be assumed to be finite by default.

The third restriction on the algebras under consideration is that we are interested in algebras which
generate varieties that omit type 1 covers (in the language of Tame Congruence Theory), equivalently
algebras which have a Taylor term. A Taylor term for A is a term t which is idempotent in A and satisfies
in A a finite set Σ of identities of the form

t(u1, . . . ,un) ≈ t(v1, . . . , vn)

such that each ui, v j ∈ {x, y} and such that for each i ≤ n there exists an identity in Σ in which ui = x and
vi = y. According to [18], we may assume for any algebra A that there exists a particular kind of a Taylor
term w such that the identities

w(x, x, . . . , x, y) ≈ w(x, x, . . . , x, y, x) ≈ . . . ≈ w(y, x, x, . . . , x)
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hold in A. Those identities, plus idempotence (which we need not assume again) make w a weak near-
unanimity term of A, or a wnu term for short. We introduce the notation x◦w y for the binary term operation
w(x, x, . . . , x, y). A wnu term w of A is special if A satisfies the additional identity x ◦w (x ◦w y) ≈ x ◦w y. We
repeat here the following well-known result (probably folklore) since its proof will be useful to us.

Lemma 2.1 (Lemma 4.7 of [18]). Any finite algebra which has a wnu term must also have a special wnu term.

Proof. When f is an n-ary and 1 an m-ary operation, then f ◁ 1 stands for the mn-ary operation given by

( f ◁ 1)(x1, . . . , xmn) =
f (1(x1, . . . , xm), 1(xm+1, . . . , x2m), . . . , 1(xmn−m+1, . . . , xmn)).

Let w be the wnu term of A. Consider the term

v = w ◁ w ◁ · · · ◁ w,

where the composition ◁ occurs |A|! − 1 times. Note that v has k|A|! many variables if w was k-ary. From
idempotence and the fact that w is wnu it follows that v is also wnu and that

x ◦v y = x ◦w (x ◦w (. . . x ◦w (x ◦w y) . . . )),

where the operation ◦w occurs |A|!− 1 times in the above formula. It is a basic fact about selfmaps of a finite
set that, for any map f : A→ A, the composition of |A|! copies of f is idempotent for composition, i.e.

f |A|!( f |A|!(y)) = f |A|!(y).

Applying this to the maps of the form f (y) = a ◦w y we obtain

a ◦v (a ◦v y) = f 2|A|!(y) = f |A|!(y) = a ◦v y.

Since a ∈ A can be chosen arbitrarily, the conclusion follows.

2.2. Tame Congruence Theory
Tame Congruence Theory analyzes finite algebras according to local behavior of the polynomial oper-

ations of the algebra. We assume the reader is familiar with Tame Congruence Theory, as exposed in the
book [7] and refer to this book for further information the reader may require. Polynomial operations are
term operations in which some of the variables may have been substituted by fixed constants (elements of
the algebra). The tame congruence theory classifies the covers in the congruence lattice of a finite algebra by
first finding a minimal image of an idempotent unary polynomial which distinguishes the two congruences
(this is the minimal set). The structure of the minimal set together with the polynomial operations of the
algebra which are compatible with that minimal set depend only on the congruences which constitute the
cover. It may be of five types, unary (type 1), affine (type 2), Boolean (type 3), lattice (type 4) and semilattice
(type 5). Absence of the unary type, not only in the finite algebra A, but also in any finite algebra in the
variety A generates, is equivalent to the existence of the wnu term in A, see [18]. Thus we may assume no
type 1 occurs.

If α ≺ β in Con A, and the type of that cover is 5, then in any minimal set U ∈ MA(α, β), one β-class
restricts to U as B, which intersects exactly two α-classes, while α and β restrict the same way to U\B. We call
B the body of U. The polynomials of A restricted to B/(α|B) are those of a two-element semilattice. If there
is a body of some (α, β)-minimal set which intersects two α-classes C1 and C2, then any other (α, β)-minimal
set which intersects the classes C1 and C2 imposes the same semilattice order on the two of them. Hence, we
can say that an α-class C1 is below another α-class C2 (both within the same β-class) whenever there exists
an (α, β) minimal set U and its body B so that the in the semilattice order C1 ∩ B is below C2 ∩ B. Moreover,
for any β-class, the transitive closure of the semilattice orders coming from all bodies of minimal sets is a
connected partial order ≤ of all α-classes inside that β-class, and ≤ is compatible with all operations of A/α
(i.e. ≤ is a subuniverse of (A/α)2).
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3. Maximal type 5 covers

This section serves as motivation to show that SMB algebras are both natural and ubiquitous in Taylor
algebras. At the time when we defined them, we were looking for a “worst case” of Taylor algebras for
proving tractability of the Constraint Satisfaction Problem. To avoid the tractability results of [1], [8] and
[16], we were looking for idempotent finite Taylor algebras in which a type 5 cover β ≺5 γ is directly above
a type 2 cover α ≺2 β in the congruence lattice (this is almost, but not quite, forced in some finite algebra in
the finitely generated varietyV whenV avoids the cases covered by those three papers). By factoring out
α and restricting to one class of γ, and going to a proper subalgebra, one constructs an idempotent finite
Taylor algebra A with a maximal congruence ∼ such that A/∼ is a type 5 simple algebra and each ∼-class is
an Abelian algebra, or more generally a Mal’cev algebra (recall that each congruence block is a subuniverse
in idempotent algebras). In this section we show that only a small additional assumption is needed to force
A to be an SMB algebra, which we will define.

We will assume in this section that A = ⟨A; w⟩ is a finite algebra with a wnu operation w as its only
fundamental operation. We also assume that ∼ ∈ Con A is an Abelian congruence such that ∼ ≺ 1A and
that typ(∼, 1A) = 5. Since the top congruence of the cover is 1A, then, in all minimal sets, the body is the
same as the whole minimal set.

From now on and throughout this section, the partial order ≤, strict order < and covering relation ≺will
always refer to the partial order on ∼-classes defined at the end of the last section. We say x ≤ y (x < y,
x ≺ y) in A iff [x]∼ ≤ [y]∼ ([x]∼ < [y]∼, [x]∼ ≺ [y]∼). Throughout the paper, we will write a ∼ b instead of
(a, b) ∈ ∼.

Lemma 3.1. Let O ≺ I be two ∼-classes. Then O ∪ I is a subuniverse of A and w(x1, . . . , xn) ∈ I iff {x1, . . . , xn} ⊆ I,
in other words on the semilattice ⟨{O, I};∧⟩, wA/∼

|{O,I}(x1, . . . , xn) = x1 ∧ . . . ∧ xn.

Proof. Since O ≺ I and our algebra is idempotent, any term applied to elements of O∪ I must be in a ∼-class
which lies in the interval [O, I]. But since O ≺ I, this interval consists only of classes O and I, so O ∪ I is a
subuniverse of A.

Moreover, there must exist a subtrace {0, 1} ⊆ O∪I such that 0 ∈ O, 1 ∈ I and the pseudo-meet polynomial
of the minimal set U ∈ MA(∼, 1A) containing {0, 1} acts like the meet with respect to order 0 < 1 (we don’t
have to mention that they are in the trace - or body - of U, as the upper congruence is 1A). We know
that there exists an idempotent polynomial e ∈ Pol1A such that e(A) = U. Moreover, for the polynomial
ew(x1, . . . , xn) ∈ PolnA|U, we know that ew is equal to meet of some of its variables, or is constant. Since
ew(0, 0, . . . , 0) = 0, ew(1, 1, . . . , 1) = 1 and 0 / 1, we know that ew is not constant modulo ∼. We see that
ew must be the meet of some of its variables modulo ∼|U, and let x j be included in this meet. On the
other hand, assume that xi is not included in the meet, so ew does not depend on xi on U/(∼|U). Then
1 = ew(1, 1, . . . , 1) ∼ ew(1, 1, . . . , 1, 0, 1, 1, . . . , 1), where 0 is in the ith place. But we know that ew does depend
on x j, so ew(1, 1, . . . , 1, 0, 1, 1, . . . , 1) ∼ 0, where 0 is now in the jth place. The weak near-unanimity of the
operation w implies that 0 ∼ 1, a contradiction. So ew(x1, . . . , xn) = x1 ∧ . . . ∧ xn on U/(∼U).

Our task will be complete when we prove the same for w|O∪I. Let {x1, . . . , xn} ⊆ O ∪ I. Clearly, if
{x1, . . . , xn} ⊆ I, then w(x1, . . . , xn) ∈ I. Otherwise, for some i ≤ n, xi ∈ O. Therefore, (0, 0, . . . , 0) ≤
(x1, . . . , xn) ≤ (y1, . . . , yn), where yi = 0 and y j = 1 for all j , i. Therefore, 0 = w(0, 0, . . . , 0) ≤ w(x1, . . . , xn) ≤
w(y1, . . . , yn) = 1 ◦w 0 ∼ 0. So we get that w(x1, . . . , xn) ∈ O in this case.

Corollary 3.2. Let y < x be two elements of A. Then y ≤ x ◦w y < x.

Proof. This follows from the last part of the proof of Lemma 3.1 and monotonicity of operations. Namely,
there exists z ∈ A such that y ≤ z ≺ x. Therefore, (x ◦w y) ≤ (x ◦w z) ∼ z ≺ x.

We define weak near-unanimity operations wi and binary operations ◦i in Clo A so that x ◦i y =
wi(y, x, x, . . . , x), w1(x1, . . . , xn) = w(x1, . . . , xn) and

wi+1(x1, . . . , xn) =
wi(wi(x1, . . . , xn) ◦i x1,wi(x1, . . . , xn) ◦i x2, . . . ,wi(x1, . . . , xn) ◦i xn).
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Theorem 3.3. If O, I ∈ A/∼ and O < I, then O∪ I is a subuniverse of ⟨A; w|A|⟩, and where {x1, . . . , xn} ⊆ {O, I} and
∧ is the meet semilattice operation on {O, I} defined by the order O < I, we have wA/∼

|A| (x1, . . . , xn) = x1 ∧ . . . ∧ xn.

Proof. Define y ≺k x to mean that y < x and any covering chain from y to x has length at most k (in particular,
≺1=≺ ∪∼). We claim that if y ≺k x, then x ◦k y ∼ y.

We prove this claim by induction on k. The base case is a consequence of Lemma 3.1. Let the claim hold
for k. Let y ≺k+1 x. Then y ≺1 z ≺k x for some z, and

y ≤ x ◦k+1 y = ((x ◦k y) ◦k x) ◦k ((x ◦k y) ◦k y) ≤
((x ◦k z) ◦k x) ◦k ((x ◦k z) ◦k y) ∼ (z ◦k x) ◦k (z ◦k y) ∼

(z ◦k x) ◦k y ≤ (x ◦k z) ◦k y ∼ z ◦k y ∼ y

The inequality z ◦k x ≤ x ◦k z follows from z ≤ x and monotonicity of wk, as z ◦k x = wk(z, z, z, . . . , z, x) ≤
wk(z, x, x, . . . , x, x) = x ◦k z. The remaining inequalities and equalities modulo ∼ are from the inductive
assumption and monotonicity.

Now for any x ∈ I and y ∈ O, we know that y < x, so y ≺|A| x. Therefore, x ◦|A| y ∼ y, so x ◦|A| y ∈ O. Let
(x1, . . . , xn) ∈ (O ∪ I)n be arbitrary and (y1, . . . , yn) ∈ {x, y}n be such that xi ∼ yi for all i. If there exists i such
that xi ∈ O, then

y ≤ w|A|(x1, . . . , xn) ∼ w|A|(y1, . . . , yn) ≤
w|A|(x, x, . . . , x, y, x, x, . . . , x) = x ◦|A| y ∼ y,

where the only occurrence of y in the final w|A| is at the ith position. Therefore, w|A|(x1, . . . , xn) ∈ O.
In the remaining case, all xi are in I, and since A is an idempotent algebra and w|A| is its term, then
w|A|(x1, . . . , xn) ∈ I.

Corollary 3.4. Let B0 < B1 < . . . < Bk be ∼-classes. Then B = B1 ∪ . . . ∪ Bk is a subuniverse of ⟨A; w|A|⟩.

Proof. Let x1, . . . , xn ∈ B and assume that xi is in the least, while x j in the greatest ∼-class among them. Then
xi ≤ w|A|(x1, . . . , xn) ≤ w|A|(x j, x j, . . . , x j, xi, x j, x j, . . . , x j) = x j ◦|A| xi ∼ xi.

Corollary 3.5. Assume that w is a special weak near-unanimity term. If x > y then B = x/∼ ∪ (x ◦w y)/∼ is a
subuniverse of A and w acts on B (modulo ∼) like the meet of all variables.

Proof. Using the previous ideas, it suffices to prove that, where x1, . . . , xn ∈ B and exactly one of xi is in
(x ◦w y)/∼, then w(x1, . . . , xn) ∈ (x ◦w y)/∼. But, in this case

w(x1, . . . , xn) ∼ w(x, x, . . . , x, x ◦w y, x, x, . . . , x) = x ◦w (x ◦w y) = x ◦w y.

For the next three Lemmas and Theorems, ◦will denote ◦w|A| .

Lemma 3.6. Let B,C and D be ∼-classes and B ≤ D, C ≤ D. Then for any x ∈ B and y ∈ C, x ◦ y is in a ∼-class E
which is the greatest lower bound of B and C.

Proof. Let z ∈ D be arbitrary. According to Theorem 3.3, x ≤ x ◦ z ≤ z ◦ x ∼ x, so x ◦ z ∼ x, and also z ◦ y ∼ y.
Therefore, from x ◦ y ≤ x ◦ z ∼ x and x ◦ y ≤ z ◦ y ∼ y, we get that x ◦ y is in a ∼-class which is a lower bound
for [x]∼ and [y]∼. On the other hand, let us assume that a ≤ x and a ≤ y is any element of a class which is
a lower bound for [x]∼ and [y]∼. Then a = a ◦ a ≤ x ◦ y, so [x ◦ y]∼ is the greatest lower bound for [x]∼ and
[y]∼.

Theorem 3.7. In the order ≤ there always exists the least ∼-class.
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Proof. Assume that B is a minimal ∼-class and that it is not the smallest. Then there exists a ∼-class C
which is not greater than or equal to B. By connectedness of ≤ on A/∼, we know that there is a fence
B = B0 ≤ B1 ≥ B2 ≤ B3 ≥ . . . ≥ B2k = C. Let us consider such a fence with k minimal. According to
Lemma 3.6 there exists a common lower bound B′1 for B and B2. But since B′1 is a lower bound for B, and B
is minimal, then B′1 = B and B ≤ B2 ≤ B3. So, B = B0 ≤ B3 ≥ . . . ≥ B2k = C is also a fence which contradicts
minimality of k.

Theorem 3.8. Let ≤ have the largest element. Then every pair of ∼-classes has a greatest lower bound and
w|A|(x1, . . . , xn) ∈ [x1]∼ ∧ . . . ∧ [xn]∼. In particular, if A is simple (i. e. ∼ = 0A), and ≤ has a greatest element, then
A has a semilattice term-reduct.

Proof. This follows in a straightforward way from Lemma 3.6.

Theorem 3.9. Let A = (A,w) be a wnu algebra, ∼ ∈ Con A a maximal congruence, typ(∼, 1A) = 5 and ∼ is an
Abelian congruence. If there exists a largest ∼-class with respect to ≤, then there is a binary term operation ∧ of A
such that (A/ ∼,∧) is a semilattice, and on each ∼-class the restriction of ∧ acts as the second projection.

Proof. First we iterate w like in the proof of Theorem 3.3 until we obtain the wnu term w|A|. Then Theorem 3.8
guarantees that (A/ ∼, ◦w|A| ) is a semilattice. Next we iterate w|A| like in Lemma 2.1 until we obtain a special
wnu term v. Since the iteration used in the proof of Lemma 2.1 implies that

x ◦v y = x ◦w|A| (x ◦w|A| (. . . x ◦w|A| (x ◦w|A| y) . . . )),

hence the operations ◦w and ◦v act the same way in A/∼, i.e. (A/ ∼, ◦v) is a semilattice.
Now we assume some ∼-class B ∈ A/∼ is fixed and consider the operation x ◦v y, where x, y ∈ B. By

Abelianness, there exists a ring R and a faithful (the ring elements injectively correspond to the endomor-
phisms) R-module B with universe B such that all term operations of A which map Bn into B are polynomial
operations of the module B.

Hence, the restriction of ◦v to B equals in B to

x ◦v y = αx + βy + c,

Plugging the zero of the module for x and y we obtain c = 0 from idempotence, while the idempotence of
A implies (α + β)x = x and the faithfulness implies that

α + β = 1.

From the special condition x ◦v (x ◦v y) = x ◦v y and we obtain (α + αβ)x + β2y = αx + βy, so plugging zero
for x and by faithfulness we obtain

β2 = β.

From this follows αβ = (1 − β)β = β − β2 = 0 and α2 = 1 − 2β + β2 = 1 − β = α. Now we define

x ∧ y := (y ◦v x) ◦v y.

On each ∼-class B we have by the above argument that

x ∧ y = α2y + αβx + βy = (α + β)y = y.

On the other hand, in A/∼ by the laws of semilattices ∧ acts in precisely the same way as ◦v and ◦w|A|! .

On the other hand, in any finite Taylor algebra, there is a ternary term operation d(x, y, z) which acts
as a Mal’cev operation on each congruence class of an Abelian (or even a solvable) congruence. This
follows from [7], Theorem 9.6 and Lemma 9.4. This observation and Theorem 3.9 inspire the definition of
semilattices of Mal’cev blocks, or SMB algebras:
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Definition 3.10. Let A = (A;∧, d) be an idempotent algebra and ∼ ∈ Con A. We say that A is a semilattice of
Mal’cev blocks with respect to ∼, SMB algebra over ∼ for short, if

(i) (A/∼;∧A/∼) is a semilattice and
(ii) on each ∼-class D, the operation ∧↾D acts as the second projection, while d↾D acts as a Mal’cev operation.

We say that A = (A;∧, d) is a semilattice of Mal’cev blocks, SMB algebra for short, if A is an idempotent algebra
such that there exists a congruence ∼ ∈ Con A so that A is an SMB algebra over ∼. We denote the class of all SMB
algebras by S.

We feel that the assumptions we needed for Theorem 3.9 are not too restrictive. If type 2 does not appear
inV(A), thenV(A) is congruence meet-semidistributive, a significantly better understood class than Taylor
varieties. Similarly, if type 5 does not appear inV(A), thenV(A) satisfies a nontrivial congruence identity,
another more restrictive class. Whenever both types 2 and 5 appear in the congruence lattice of the same
Taylor algebra, and some type 2 cover α ≺ β is directly below a type 5 cover β ≺ γ, by restricting to the
subuniverse which is one γ-class and factoring out α, we arrive at a situation which is not exactly the same
as the one we had in Theorem 3.9, but similar enough to make our proofs work. The idea is to note that β
is still Abelian, and one can take a nonminimal β-class C (with respect to the type 5 order) and the union
of all β-classes below or equal to C within the chosen γ-class constitute a subalgebra on which Theorem 3.9
applies. Thus we obtain an SMB algebra consisting of C and all β-classes below it.

Now we turn to a bad example which shows that, when the type 5 order is flat, pretty much anything
can happen, i.e. we have almost no control of the wnu operation or its derived operation ◦w:

Proposition 3.11. Let A = ⟨A; w⟩ be any finite wnu algebra. Then there exists a finite simple algebra B = ⟨B; v⟩ of
type 5 such that v is a weak near-unanimity operation on B of the same arity as w and A ≤ B.

Proof. Let A = {a1, . . . , an}. We define B = A ∪ {0, s, an+1}, and define a weak near-unanimity term v on B so
that v|A = w and

• v(x, x, . . . , x) = x.

• 0 is an absorbing element for v, that is, whenever there is a 0 among the entries of v, the result is 0.

• For all evaluations of v which are neither fully in A, nor nearly unanimous, the result is 0.

• For all 1 ≤ i ≤ n, s ◦v ai = ai ◦v s = ai+1.

• For all 1 ≤ i ≤ n, an+1 ◦v ai = an+1 and ai ◦v an+1 = s.

• s ◦v an+1 = 0 and an+1 ◦v s = a1.

We will prove that B is simple. We make the following two claims: (1) any nontrivial congruence α on
B contains (an+1, 0) and (2) CgB(an+1, 0) = 1B. Define the unary polynomials l1(x) := s ◦v x, l2(x) := an+1 ◦v x,
r1(x) := x ◦v s and r2(x) := x ◦v an+1.

To prove the first claim, assume that (x, y) ∈ α ∈ Con B for some x , y ∈ B. If (x, y) = (ai, a j) for some
i < j, or (ai, 0), then (ln+1−i

1 (x), ln+1−i
1 (y)) = (an+1, 0). If (x, y) = (s, ai), for some 1 ≤ i ≤ n + 1, or (x, y) = (s, 0),

then (ln1 l2(x), ln1 l2(y)) = (an+1, 0).

To prove the second claim, let α = CgB(an+1, 0). Then we have (a j, 0) = (l j−1
1 r1(an+1), l j−1

1 r1(0)) ∈ α for each
1 ≤ j ≤ n. Moreover, from (a1, 0) ∈ α, we get (s, 0) = (r2(a1), r2(0)) ∈ α.

Finally, the subset U = {0, an+1} is clearly equal to l22(B) for the idempotent unary polynomial l22(x).
Therefore, it must be a (0A, 1A)-minimal set. It is also a subuniverse of B with v playing the role of n-ary
meet of variables with respect to order 0 < an+1. So the type of (0A, 1A) must be 3, 4, or 5. However, the
possibilities that it may be other than 5 are excluded since 0 is absorbing for any polynomial p of B|U in each
variable on which p actually depends, so there can be no polynomial q ∈ Pol2B|U which is a binary join.
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4. Semilattices of Mal’cev blocks are a variety

Proposition 4.1. The class S of all SMB algebras is a quasivariety.

Proof. Let A be an SMB algebra over ∼ ∈ Con A and let a, b ∈ A. If a ∼ b, then a ∧ b = b and b ∧ a = a, using
Definition 3.10 (ii). On the other hand, if a ∧ b = b and b ∧ a = a, then

[a]∼ = [b ∧ a]∼ = [b]∼ ∧ [a]∼ = [a]∼ ∧ [b]∼ = [a ∧ b]∼ = [b]∼.

So,

a ∼ b iff a ∧ b = b and b ∧ a = a. (1)

Then it is easy to express that ∼ is a congruence by two quasiidentities per operation:

(x1 ∧ x2 = x2 & x2 ∧ x1 = x1 & y1 ∧ y2 = y2 & y2 ∧ y1 = y1)⇒
(x1 ∧ y1) ∧ (x2 ∧ y2) = (x2 ∧ y2)

(x1 ∧ x2 = x2 & x2 ∧ x1 = x1 & y1 ∧ y2 = y2 & y2 ∧ y1 = y1)⇒
(x2 ∧ y2) ∧ (x1 ∧ y1) = (x1 ∧ y1)

and similarly, two quasiidentities express that ∼ is compatible with d.
The fact that A/∼ is a meet semilattice can now be expressed as a finite set of identities: we are expressing

the facts that (x∧ x) ∼ x, (x∧ y) ∼ (y∧ x) and ((x∧ y)∧ z) ∼ (x∧ (y∧ z)) using two identities for each relation
as in (1). Thus Definition 3.10 (i) is expressed with (quasi)identities. Finally, for Definition 3.10 (ii), we need
to express “if x ∼ y, then x∧ y = y”, “if x ∼ y and x ∼ z, then x ∼ d(x, y, z)”, “if x ∼ y, then d(y, x, x) = y” and
“if x ∼ y, then d(x, x, y) = y”. All of these are clearly equivalent to quasiidentities using the characterization
(1) for x ∼ y.

Lemma 4.2. Let A = ⟨A;∧, d⟩ be an SMB algebra over ∼ ∈ Con A and let θ ∈ Con A. If (a, b) ∈ ∼ ∨ θ, then there
exists some e ∈ [a]∼∨θ such that [e]∼ ≤ [a ∧ b]∼ and

{[x]θ : x ∈ [a]∼} ∪ {[x]θ : x ∈ [b]∼} ⊆ {[x]θ : x ∈ [e]∼}.

Proof. Let

a = c0, d0, c1, d1, . . . , cn, dn = b

be such that

for all 0 ≤ i ≤ n, [ci]∼ = [di]∼

and

for all 0 ≤ i < n, [di]θ = [ci+1]θ.

We think of n as the “distance” between a and b. We will prove, by an induction on n, the following
Claim. Let

e := (. . . ((c0 ∧ c1) ∧ c2) ∧ . . . ) ∧ cn.

Then

{[x]θ : x ∈ [a]∼} ⊆ {[x]θ : x ∈ [e]∼}.

Proof of the Claim. We first prove the Claim when n = 1. Let e = c0 ∧ c1. Clearly,

[e]θ = [c0 ∧ c1]θ = [c0 ∧ d0]θ = [d0]θ. (2)



A. Prokić et al. / Filomat 37:13 (2023), 4083–4101 4091

For any x ∈ [a]∼ = [c0]∼, we have

[e ∧ x]∼ = [(c0 ∧ c1) ∧ x]∼ = [c0 ∧ c1]∼ ∧ [c0]∼ = [c0 ∧ c1]∼ = [e]∼

and

[e ∧ x]θ
(2)
= [d0 ∧ x]θ = [x]θ.

So, any θ-class which intersects [a]∼ in x also intersects [e]∼ in e ∧ x and the base case is proved.
Now suppose that the Claim is true for all a and b which are at the distance n− 1 in the same ∼∨θ-class,

and prove it for distance n. Define

c′i := di ∧ ci+1 for all 1 ≤ i < n,
a′ = c′0 := c1 ∧ a

d′i := c′i ∧ di+1 for all 0 ≤ i < n,
b′ := c′n−1 ∧ b (= d′n−1, since b = dn).

We see that

[d′0]∼ = [(c1 ∧ a) ∧ d1]∼ = [(c1 ∧ a) ∧ c1]∼ = [c1 ∧ a]∼ = [a′]∼,
[d′i ]∼ = [(di ∧ ci+1) ∧ di+1]∼ = [(di ∧ ci+1) ∧ ci+1]∼ = [di ∧ ci+1]∼ = [c′i ]∼,

[d′i ]θ = [(di ∧ ci+1) ∧ di+1]θ = [ci+1 ∧ di+1]θ = [di+1]θ = [ci+2]θ,
[c′i+1]θ = [di+1 ∧ ci+2]θ = [ci+2]θ = [d′i ]θ.

Also note that all c′i and all d′j are in the same ∼∨θ-class as a and b (since all ci and d j are in that class, which
is closed under ∧ by idempotence). We conclude that the inductive assumption can be applied to a′ and b′.
Thus

{[x]θ : x ∈ [a′]∼} ⊆ {[x]θ : x ∈ [e′]∼},

where e′ = (. . . ((c′0 ∧ c′1) ∧ c′2) ∧ . . . ) ∧ c′n−1. As

[e′]∼ = [c′0]∼ ∧ . . . ∧ [c′n−1]∼ =
[c1]∼ ∧ [a]∼ ∧ [c1]∼ ∧ [c2]∼ ∧ [c2]∼ ∧ [c3]∼ ∧ . . . ∧ [cn−1]∼ ∧ [cn]∼ =

[c0]∼ ∧ [c1]∼ ∧ . . . ∧ [cn]∼ = [e]∼,

we obtain that

{[x]θ : x ∈ [a′]∼} ⊆ {[x]θ : x ∈ [e]∼}. (3)

Now note that [a′]∼ = [a ∧ c1]∼ = [c0 ∧ c1]∼. From the proof of the base case of the Claim we obtain

{[x]θ : x ∈ [a]∼} ⊆ {[x]θ : x ∈ [a′]∼}. (4)

Putting (3) and (4) together, we get

{[x]θ : x ∈ [a]∼} ⊆ {[x]θ : x ∈ [e]∼},

completing the inductive proof of the Claim.
Now notice that the statement of the Claim is symmetric: by flipping a and b and also looking at the

chain of cis and dis “backwards”, we would get

{[x]θ : x ∈ [b]∼} ⊆ {[x]θ : x ∈ [e′]∼},
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where

e′ = (. . . ((dn ∧ dn−1) ∧ dn−2) ∧ . . . ) ∧ d0.

However, since (A/∼;∧) is a semilattice and (ci, di) ∈ ∼ for all 0 ≤ i ≤ n, we get [e]∼ = [e′]∼. Therefore,
by proving the Claim for [a]∼ and some distance n, we have also proved the Claim for [b]∼ and the same
distance n, using the same [e]∼, and thus Lemma 4.2 follows from the Claim.

Theorem 4.3. The class S of all SMB algebras is a variety.

Proof. According to Proposition 4.1, S is a quasivariety and hence closed under the class operators S and
P. It remains to prove that H(S) ⊆ S.

Let A be an SMB algebra over ∼ ∈ Con A. Let B ∈ H(A). We know that B � A/θ, where θ ∈ Con A is the
kernel of the surjective homomorphism from A to B. It suffices to prove that A/θ is an SMB algebra, as the
notion is invariant under isomorphism.

From Isomorphism Theorems, we know that (∼∨θ)/θ ∈ Con A/θ. We prove that A/θ is an SMB algebra
over (∼ ∨ θ)/θ. We have that

((A;∧)/θ)/((∼ ∨ θ)/θ) � (A;∧)/(∼ ∨ θ) �
((A;∧)/∼)/((∼ ∨ θ)/∼) ∈ H((A;∧)/∼).

Therefore, ((A;∧)/θ)/((∼ ∨ θ)/θ) is a semilattice.
Now assume that ([a]θ, [b]θ) ∈ (∼ ∨ θ)/θ. Hence (a, b) ∈ ∼ ∨ θ. According to Lemma 4.2, there exists

e ∈ [a]∼∨θ and a′, b′ ∈ [e]∼ such that [a]θ = [a′]θ and [b′]θ = [b]θ. As A is an SMB algebra over ∼, we know
that a′ ∧ b′ = b′ and d(b′, b′, a′) = a′ = d(a′, b′, b′). Using (a, a′) ∈ θ and (b, b′) ∈ θ, we obtain

[a]θ ∧ [b]θ = [b]θ and d([b]θ, [b]θ, [a]θ) = [a]θ = d([a]θ, [b]θ, [b]θ).

Since [a]θ and [b]θ were chosen arbitrarily in the same (∼ ∨ θ)/θ-class, this means that ∧ acts as the second
projection on each (∼ ∨ θ)/θ-class, while d acts as a Mal’cev operation on each (∼ ∨ θ)/θ-class. (Of course,
each (∼∨θ)/θ-class is closed under d because of idempotence.) We proved that A/θ is an SMB algebra over
(∼ ∨ θ)/θ, as desired.

Corollary 4.4. The variety S of SMB algebras is finitely based.

Proof. By Proposition 4.1 and Theorem 4.3, S is a variety which is finitely axiomatizable by quasiidentities.
Then by Compactness Theorem S is finitely based.

Note that we don’t actually know a finite equational basis for S, we just know that one exists. In the
next section we will define a subvariety of S for which we know a finite equational base.

Proposition 4.5. The variety S of SMB algebras has a Taylor term.

Proof. We define the term t in the following way:

t(x1, x2, x3, x4, x5, x6) := d(x1 ∧ x2, x3 ∧ x4, x5 ∧ x6).

Note that [x ∧ y]∼ = [y ∧ x]∼. From Definition 3.10 (ii) and idempotence we obtain

t(x, y, x, y, x, y) = d(x ∧ y, x ∧ y, x ∧ y) ≈ x ∧ y
t(y, x, y, x, x, y) = d(y ∧ x, y ∧ x, x ∧ y) ≈ x ∧ y
t(x, y, y, x, y, x) = d(x ∧ y, y ∧ x, y ∧ x) ≈ x ∧ y.

Hence, t is a Taylor term in S.
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5. Regular SMB algebras

Definition 5.1. We say that an SMB algebra A = ⟨A;∧, d⟩ over ∼ ∈ Con A is regular if

(i) for all a, b, c ∈ A, [d(a, b, c)]∼ = [(a ∧ b) ∧ c]∼,
(ii) for all a, b ∈ A such that [a]∼ ≥ [b]∼, a ∧ b = b,

(iii) A |= d(x, y, z) ≈ d((y ∧ z) ∧ x, (x ∧ z) ∧ y, (x ∧ y) ∧ z), and
(iv) A |= (x ∧ y) ∧ y ≈ x ∧ y.

Lemma 5.2. Any regular SMB algebra satisfies also the following identity:

A |= x ∧ y ≈ d(x, x, y) ≈ d(y, x, x).

Therefore, in regular SMB algebras, the clone of all terms is generated by d.

Proof. Using Definition 5.1 (iii) and (iv), idempotence and the fact that d is Mal’cev on∼-classes, we compute

d(x, x, y) ≈ d((x ∧ y) ∧ x, (x ∧ y) ∧ x, (x ∧ x) ∧ y) ≈
d((x ∧ y) ∧ x, (x ∧ y) ∧ x, x ∧ y) ≈ x ∧ y and

d(y, x, x) ≈ d((x ∧ x) ∧ y, (y ∧ x) ∧ x, (y ∧ x) ∧ x) ≈
d(x ∧ y, y ∧ x, y ∧ x) ≈ x ∧ y.

Proposition 5.3. Let A be an SMB algebra, not necessarily finite. Then there are terms d′(x, y, z) and x∧′ y of A so
that the algebra A′ = ⟨A;∧′, d′⟩ is an SMB algebra which satisfies identities (i) − (iii) in the definition of a regular
SMB algebra. Moreover, the congruence ∼ remains unchanged and whenever a, b, c are in the same ∼-class, then
d′(a, b, c) = d(a, b, c).

Proof.

We define ∧′ in the following way:

x ∧′ y := (x ∧ y) ∧ y.

Now, whenever [a]∼ ≥ [b]∼, we have [a ∧ b]∼ = [b]∼, implying that

a ∧′ b = (a ∧ b) ∧ b = b. (5)

Hence, Definition 5.1 (ii) holds. Also, for all a, b ∈ A, we have

[a ∧′ b]∼ = [a ∧ b]∼ ∧ [b]∼ = [a ∧ b]∼.

Hence, modulo ∼, ∧ and ∧′ are the same semilattice operation, and from (5) it follows that ∧′ acts as the
second projection on each ∼-class.

Next, we define d′ in the following way:

d′(x, y, z) := d((y ∧′ z) ∧′ x, (x ∧′ z) ∧′ y, (x ∧′ y) ∧′ z).

If a, b and c are in the same ∼-class, we have

(b ∧′ c) ∧′ a = a,
(a ∧′ c) ∧′ b = b, and

(a ∧′ b) ∧′ c = c,
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and hence d′(a, b, c) = d(a, b, c) whenever a, b and c are in the same ∼-class. Moreover, this implies that d′ is
a Mal’cev operation on ∼-classes. Together with the above observations about ∧′, we have that ⟨A;∧′, d′⟩ is
an SMB algebra which satisfies (iii) of Definition 5.1.

Finally, for all a, b, c ∈ A,

[(b ∧′ c) ∧′ a]∼ = [(a ∧′ c) ∧′ b]∼ = [(a ∧′ b) ∧′ c)]∼ = [a]∼ ∧ [b]∼ ∧ [c]∼,

so by the idempotence of d, [d′(a, b, c)]∼ = [(a ∧ b) ∧ c]∼. On the other hand, we proved [x ∧′ y]∼ = [x ∧ y]∼
for all x, y ∈ A, and therefore

[(a ∧′ b) ∧′ c]∼ = [(a ∧ b) ∧ c]∼ = [a]∼ ∧ [b]∼ ∧ [c]∼.

Thus, Definition 5.1 (i) holds, too.

Proposition 5.4. Let A be a finite SMB algebra. Then there are A-terms d′(x, y, z) and x∧′ y such that ⟨A;∧′, d′⟩ is
a regular SMB algebra. Moreover, the congruence ∼ remains unchanged and whenever a, b, c are in the same ∼-class,
then d′(a, b, c) = d(a, b, c).

Proof. Using Proposition 5.3, we assume that A already satisfies (i) − (iii) from the definition of a regular
SMB algebra. We define ∧′ in the following way:

x ∧′ y := ((. . . (x ∧ y) ∧ y . . . ) ∧ y) ∧ y,

where the operation ∧ occurs |A|! times. We use the well-known fact that by composing |A|! many times a
map f : A→ A with itself, we obtain a map 1 : A→ A which satisfies 1(1(x)) = 1(x) for all x ∈ A. Therefore,

(x ∧′ y) ∧′ y ≈ x ∧′ y,

while still for all a, b ∈ A, [a ∧′ b]∼ = [a ∧ b]∼ and if [a]∼ ≥ [b]∼, then a ∧′ b = b. Hence, ∧′ satisfies the
properties (ii) and (iv) of Definition 5.1.

Next, d′ is defined from d and ∧′ the same way as in the proof of Proposition 5.3 and the proof of the
properties (i) and (iii) of Definition 5.1 proceeds the same way as in Proposition 5.3.

Lemma 5.5. Let A be a regular SMB algebra over ∼ ∈ Con A. Then for every A-term t(x1, . . . , xn) and all
a1, . . . , an ∈ A,

[t(a1, . . . , an)]∼ = [a1]∼ ∧ . . . ∧ [an]∼.

Proof. It is a straightforward induction on the complexity of t, since all variables and both fundamental
operations of A satisfy the statement.

Proposition 5.6. The following list of identities is an equational base for the variety R of regular SMB algebras:

Idem1) x ∧ x ≈ x

Idem2) d(x, x, x) ≈ x

Comm) (x ∧ y) ∧ (y ∧ x) ≈ y ∧ x

Assoc1) (x ∧ (y ∧ z)) ∧ ((x ∧ y) ∧ z) ≈ (x ∧ y) ∧ z

Assoc2) ((x ∧ y) ∧ z) ∧ (x ∧ (y ∧ z)) ≈ x ∧ (y ∧ z)

Mal) d(x ∧ y, y ∧ x, y ∧ x) ≈ d(y ∧ x, y ∧ x, x ∧ y) ≈ x ∧ y

Regi1) ((x ∧ y) ∧ z) ∧ d(x, y, z) ≈ d(x, y, z)

Regi2) d(x, y, z) ∧ ((x ∧ y) ∧ z) ≈ (x ∧ y) ∧ z
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Regii1) x ∧ (x ∧ y) ≈ x ∧ y

Regii2) x ∧ (y ∧ x) ≈ y ∧ x

Regiii) d(x, y, z) ≈ d((y ∧ z) ∧ x, (x ∧ z) ∧ y, (x ∧ y) ∧ z)

Regiv) (x ∧ y) ∧ y ≈ x ∧ y

Proof. Let A be any model of the above equations. First we define the relation ∼: x ∼ y iff x ∧ y = y and
y ∧ x = x. We need to show that ∼ is a congruence. By definition and Idem1), it is clearly a reflexive and
symmetric relation.

Claim. If x ∧ y = y and y ∧ z = z, then x ∧ z = z.
From the assumptions, Assoc1) and Regiv), we get

z = y ∧ z = (x ∧ y) ∧ z = (x ∧ (y ∧ z)) ∧ ((x ∧ y) ∧ z) =
(x ∧ z) ∧ (y ∧ z) = (x ∧ z) ∧ z = x ∧ z,

and the Claim is proved. From two applications of the Claim we obtain that ∼ is transitive, so it is an
equivalence relation.

Next we need to prove that ∼ is compatible with the operations. Assume that a ∼ a′, b ∼ b′ and c ∼ c′.
Then we have a ∧ a′ = a′ by assumption and a′ ∧ (a′ ∧ b′) = a′ ∧ b′ by Regii1). By Claim, it follows that

a ∧ (a′ ∧ b′) = a′ ∧ b′ (6)

Similarly, from the assumption we know that b ∧ b′ = b′ and from Regii2) that b′ ∧ (a′ ∧ b′) = a′ ∧ b′. By
Claim we obtain

b ∧ (a′ ∧ b′) = a′ ∧ b′. (7)

From Assoc2) we get

((a ∧ b) ∧ (a′ ∧ b′)) ∧ (a ∧ (b ∧ (a′ ∧ b′))) = a ∧ (b ∧ (a′ ∧ b′)). (8)

Using first Regiv), and then the above equations, we compute

(a ∧ b) ∧ (a′ ∧ b′) = ((a ∧ b) ∧ (a′ ∧ b′)) ∧ (a′ ∧ b′)
(6)
=

((a ∧ b) ∧ (a′ ∧ b′)) ∧ (a ∧ (a′ ∧ b′))
(7)
=

((a ∧ b) ∧ (a′ ∧ b′)) ∧ (a ∧ (b ∧ (a′ ∧ b′)))
(8)
=

a ∧ (b ∧ (a′ ∧ b′))
(7)
= a ∧ (a′ ∧ b′)

(6)
= a′ ∧ b′.

Analogously (by flipping primes in the above argument) we get

(a′ ∧ b′) ∧ (a ∧ b) = a ∧ b,

so (a ∧ b) ∼ (a′ ∧ b′), hence ∼ is compatible with ∧.
From Regi1) and Regi2) we know that d(a, b, c) ∼ ((a ∧ b) ∧ c) and d(a′, b′, c′) ∼ ((a′ ∧ b′) ∧ c′), so the

compatibility of ∼with ∧ implies that ∼ is also compatible with d. Thus, ∼ is a congruence of A.
Now the identities Idem1), Comm), Assoc1) and Assoc2) imply that A/ ∼ is a semilattice. From the

definition of ∼ follows that ∧ is the second projection on each ∼-class. Taken together with that fact, Mal)
implies that d is Mal’cev on each ∼-class. Therefore, A is an SMB algebra.

As we noted a couple of paragraphs above, Regi1) and Regi2) are equivalent to Definition 5.1, property
(i) (given our definition of the relation ∼).



A. Prokić et al. / Filomat 37:13 (2023), 4083–4101 4096

Next, assume that [a]∼ ≥ [b]∼. Therefore, [a∧ b]∼ = [b]∼, and by definition of ∼, (a∧ b)∧ b = b. By Regiv)
we know that (a∧ b)∧ b = a∧ b, so by transitivity we obtain a∧ b = b, thus proving Definition 5.1, property
(ii).

Definition 5.1, properties (iii) and (iv) are actually identities which are included in the equational base
as Regiii) and Regiv). Therefore, A is a regular SMB algebra. On the other hand, the base identities are
easily verifiable in each regular SMB algebra, so the proposition is proved.

Corollary 5.7. Let A be a regular SMB algebra and t(x1, . . . , xn) a term in which each variable actually appears.
Then for all a1, . . . , an ∈ A,

[t(a1, . . . , an)]∼ = [a1]∼ ∧ . . . ∧ [an]∼.

Proof. The proof is a standard induction on the complexity of t. When t is a variable it is clear, while the
step follows from the definition of SMB algebras and from the property (i) of Definition 5.1 (depending on
which operation, ∧ or d, we use in the step).

6. Principal congruences of regular SMB algebras

This section is devoted to limiting the length of Mal’cev chains needed to generate a principal congruence
of an SMB algebra. We start with a well-known lemma, whose proof we include for reader’s convenience.

Lemma 6.1. Let M = (M; d) be a Mal’cev algebra. R ⊆M×M is a congruence of M iff R is a subuniverse of M×M
which contains the diagonal.

Proof. Assume R is reflexive and compatible with d. We need to prove that R is symmetric and transitive.
If (a, b) ∈ R then by reflexivity and compatibility

(b, a) = (d(a, a, b), d(a, b, b)) = dM×M((a, a), (a, b), (b, b)) ∈ R.

If (a, b), (b, c) ∈ R, then by reflexivity and compatibility

(a, c) = (d(a, b, b), d(b, b, c)) = dM×M((a, b), (b, b), (b, c)) ∈ R.

Definition 6.2. Let A be an SMB algebra and a, b ∈ A. By D{a,b} we denote the subuniverse of A ×A generated by
{(a, b), (b, a)} ∪ {(c, c) : c ∈ A}.

We note that D{a,b} = {(p(a, b), p(b, a)) : p ∈ Pol2A}. Moreover, if A is a regular SMB algebra, (c, d) ∈ D{a,b}
and c , d, then ((a ∧ b) ∧ c) ∼ ((a ∧ b) ∧ d). Let us only sketch out this argument, as it is easy. Assume
that (c, d) = (p(a, b), p(b, a)), p(x, y) = t(x, y, c1, . . . , ck) for some term t, and ci ∈ A are constants. Then we can
apply Corollary 5.7 to the term t(x, y, z1, . . . , zk) and make a case analysis based on how many among x and
y actually occur in t. In all three cases we obtain from Corollary 5.7 that c ∼ d.

Theorem 6.3. Let A be a regular SMB algebra and a, b ∈ A. Then

Cg(a, b) = D{a,b} ◦D{a,b} ◦D{a,b}.

Proof. D{a,b} ◦D{a,b} ◦D{a,b} is clearly reflexive and symmetric because D{a,b} is, and any finite composition of
compatible relations is compatible. It remains to prove transitivity. Suppose that

(x1, x2), (x2, x3), (x3, x4), (x4, x5), (x5, x6), (x6, x7) ∈ D{a,b}.

Moreover, assume that at most two of these pairs are on the diagonal (or we would be done), and that
x1 , x2 and x6 , x7 (or we would move the diagonal pair into the middle of our sequence x1, . . . , x7).
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In view of the remarks immediately preceding the theorem and Definition 5.1 (ii), there are essentially
two cases:

Case 1: a ∧ x1 = x1, a ∧ x7 = x7, b ∧ x2 = x2 and b ∧ x6 = x6. From Definition 5.1 (ii) we know that
b ∧ (a ∧ x2) = a ∧ x2 and, similarly, b ∧ (a ∧ x6) = a ∧ x6. Then we obtain the following pairs in D{a,b}:

(x1, a ∧ x2), (a ∧ x2, b ∧ (a ∧ x3)), (b ∧ (a ∧ x3), b ∧ (a ∧ x4)),
(b ∧ (a ∧ x4), b ∧ (a ∧ x5)), (b ∧ (a ∧ x5), a ∧ x6), (a ∧ x6, x7) ∈ D{a,b}.

(9)

Since for i = 2, 3, 4, 5 there exist polynomials pi ∈ Pol2A such that

{pi(a, b), pi(b, a)} = {xi, xi+1},

by Corollary 5.7 we obtain that b ∧ (a ∧ xi) ∼ b ∧ (a ∧ xi+1) for i = 2, 3, 4, 5. Therefore, all pairs in (9), except
for (x1, a ∧ x2) and (a ∧ x6, x7) are in the same ∼-class B. By Lemma 6.1, D{a,b} ∩ (B × B) is a congruence of
the Mal’cev algebra (B; d) and therefore it is transitive. Hence, (a ∧ x2, a ∧ x6) ∈ D{a,b}, and since we already
know that (x1, a ∧ x2), (a ∧ x6, x7) ∈ D{a,b}, we are done in this case.

Case 2: a ∧ x1 = x1, b ∧ x7 = x7, b ∧ x2 = x2 and a ∧ x6 = x6. Similarly as above we have that

(x1, a ∧ x2), (a ∧ x2, b ∧ (a ∧ x3)), (b ∧ (a ∧ x3), b ∧ (a ∧ x4)),
(b ∧ (a ∧ x4), b ∧ (a ∧ x5)), (b ∧ (a ∧ x5), b ∧ x6), (b ∧ x6, x7) ∈ D{a,b}.

(10)

The only difference perhaps requiring comment is that we used b ∧ x6 = b ∧ (a ∧ x6) to conclude (b ∧ (a ∧
x5), b ∧ x6) ∈ D{a,b}. Now, as above, a ∧ x2, b ∧ (a ∧ x3), b ∧ (a ∧ x4), b ∧ (a ∧ x5) and b ∧ x6 all lie in the same
∼-class and the case concludes by an application of Lemma 6.1, just like the previous one.

Corollary 6.4. If A is a regular SMB algebra and a, b, c, d are such that (c, d) ∈ Cg(a, b), then there exist unary
polynomials p1, . . . , p6 ∈ Pol1A and elements c = e0, e1, . . . , e5, e6 = d ∈ A so that {pi(a), pi(b)} = {ei−1, ei} for
i = 1, 2, . . . , 6.

Proof. We use Theorem 6.3 and the description of D{a,b} from the remarks above Theorem 6.3 to obtain
e2, e4 ∈ A and binary polynomials q1, q2, q3 ∈ Pol2A such that {qi(a, b), qi(b, a)} = {e2i−2, e2i} for i = 1, 2, 3 (where
e0 = c and e6 = d). Then we introduce e2i−1 := qi(a, a) for i = 1, 2, 3. The result follows.

7. Toward Park’s Conjecture for SMB algebras

In this section we write our partial results towards Park’s Conjecture for SMB algebras. If we manage
to complete its proof, we will probably write another paper, and call it SMB III.

The next lemma is very basic and can be stated much more generally, we include it just to clarify some
steps in later proofs.

Lemma 7.1. Let A be an SMB algebra over ∼ (not necessarily regular) and a, b, c, d ∈ A. Then the following are
equivalent:

(i) ([c]∼, [d]∼) ∈ CgA/∼([a]∼, [b]∼).
(ii) (c, d) ∈ (CgA(a, b) ∨ ∼).

(iii) There exist k ∈ ω, unary polynomials p1, . . . , pk ∈ Pol1A and c = c0, d0, c1, d1, . . . , ck, dk = d in A such that
{d1−1, ci} = {pi(a), pi(b)} and ci ∼ di for all i ≤ k.

Proof. (i) ⇒ (iii): If ([c]∼, [d]∼) ∈ (CgA/∼([a]∼, [b]∼) then there exist k ∈ ω, unary polynomials q1, . . . , qk ∈

Pol1A/∼ and [c]∼ = [e0]∼, [e1]∼, . . . , [ek]∼ = [d]∼ such that {[ei−1]∼, [ei]∼} = {qi([a]∼), qi([b]∼)}. We con-
struct the polynomials pi ∈ Pol1A from qi by selecting representatives of ∼-classes so that whenever
qi = ti(x, [u1]∼, . . . , [un]∼), we define pi = ti(x,u1, . . . ,un). If qi([a]∼) = [ei−1]∼, we say di−1 := pi(a) and
ci := pi(b), while in the event that qi([a]∼) = [ei]∼, we say di−1 := pi(b) and ci := pi(a). The obtained sequence
of ci, d j is as desired since from qi([u]∼) = qi+1([v]∼) follows pi(u) ∼ pi(v).

(iii) ⇒ (ii) is obvious, and (ii) ⇒ (i) follows by taking the Mal’cev chains used in generating pairs in
CgA(a, b) and replacing the parameters with their ∼-classes.
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Lemma 7.2. LetV be a finitely generated variety of SMB algebras, A ∈ V an SMB algebra over ∼, a, b, c, d ∈ A and
(c, d) ∈ (Cg(a, b) ∨ ∼). Then there exist e, f ∈ A such that (c, e), (d, f ) ∈ Cg(a, b), e ∼ f and that [c]∼ ∧ [d]∼ ≥ [e]∼.

Proof. Let c = c0, d0, c1, d1, . . . , ck, dk = d satisfy ci ∼ di and (di−1, ci) ∈ Cg(a, b) for all i ≤ n. In view of
Propositions 5.4 and 5.6, we can use as ∧ and d theV-terms such that (A;∧, d) is a regular SMB algebra over
∼. Define

e0 := c, eℓ := cℓ ∧ (cℓ−1 ∧ (. . . ∧ (c1 ∧ c) . . . )) and e := ek.

Using Definition 5.1 (ii) and dℓ−1 ∼ cℓ−1, we conclude that

dℓ−1 ∧ eℓ−1 = dℓ−1 ∧ (cℓ−1 ∧ (cℓ−2 ∧ (. . . ∧ (c1 ∧ c) . . . ))) =
cℓ−1 ∧ (cℓ−2 ∧ (. . . ∧ (c1 ∧ c) . . . )) = eℓ−1.

Hence we obtain

(eℓ, eℓ−1) = (cℓ ∧ eℓ−1, dℓ−1 ∧ eℓ−1) ∈ Cg(a, b).

By transitivity, (c, e) = (e0, ek) ∈ Cg(a, b).
A completely analogous proof shows that, if we define

fk := d, fℓ := dℓ ∧ (dℓ+1 ∧ (. . . ∧ (dk−1 ∧ d) . . . )) and f := f0,

then ( fℓ, fℓ+1) ∈ Cg(a, b) and, by transitivity, ( f , d) = ( f0, fk) ∈ Cg(a, b). It remains to note that

[e]∼ = [ck]∼ ∧ [ck−1]∼ ∧ . . . ∧ [c1]∼ ∧ [c0]∼ =
[dk]∼ ∧ [dk−1]∼ ∧ . . . ∧ [d1]∼ ∧ [d0]∼ =

[d0]∼ ∧ [d1]∼ ∧ . . . ∧ [dk−1]∼ ∧ [dk]∼ = [ f ]∼,

which completes the proof.

Corollary 7.3. LetV be a finitely generated variety of SMB algebras, A ∈ V an SMB algebra over∼ and a, b, c, d ∈ A.
Then (c, d) ∈ Cg(a, b) ∨ ∼ iff (c, d ∧ c), (d, c ∧ d) ∈ Cg(a, b), where ∧ is the V-term such that (A;∧, d) is a regular
SMB algebra over ∼.

Proof. (⇐) follows from (d ∧ c) ∼ (c ∧ d). To prove (⇒), let us assume (c, d) ∈ Cg(a, b) ∨ ∼. According to
Lemma 7.2, there exist e′, f ′ ∈ A such that (c, e′), (d, f ′) ∈ Cg(a, b), e′ ∼ f ′ and [e′]∼ ≤ [c ∧ d]∼. Moreover,
(d ∧ c) ∧ c = d ∧ c, while [d ∧ c]∼ ≥ [e′]∼, so (d ∧ c) ∧ e′ = e′ by Definition 5.1 (ii). Hence,

(d ∧ c, e′) = ((d ∧ c) ∧ c, (d ∧ c) ∧ e′) ∈ Cg(a, b),

and from (c, e′) ∈ Cg(a, b), (c, d ∧ c) ∈ Cg(a, b) follows by transitivity. The proof that (d, c ∧ d) ∈ Cg(a, b) is
analogous.

Corollary 7.4. LetV be a finitely generated variety of SMB algebras, A ∈ V an SMB algebra over∼ and a, b, c, d ∈ A.
Then

CgA(a, b) ∩ CgA(c, d) ⊆ ∼ iff

CgA/∼([a]∼, [b]∼) ∩ CgA/∼([c]∼, [d]∼) = 0A/∼.

Proof. (⇐) Let (e, f ) ∈ (CgA(a, b) ∩ CgA(c, d)) \ ∼. Then we know

([e]∼, [ f ]∼) ∈ CgA/∼([a]∼, [b]∼) and ([e]∼, [ f ]∼) ∈ CgA/∼([c]∼, [d]∼)

by using the same Mal’cev chains modulo the congruence ∼ as in CgA (the terms from which the unary
polynomials are constructed are the same, while each parameter u ∈ A is replaced by [u]∼). Hence,

CgA/∼([a]∼, [b]∼) ∩ CgA/∼([c]∼, [d]∼) , 0A/∼.
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(⇒) Assume that

([e]∼, [ f ]∼) ∈ [CgA/∼([a]∼, [b]∼) ∩ CgA/∼([c]∼, [d]∼)] \ (0A/∼).

By Lemma 7.1, we obtain

(e, f ) ∈ CgA(a, b) ∨ ∼, (e, f ) ∈ CgA(c, d) ∨ ∼ and e / f .

By Corollary 7.3, this implies

(e, f ∧ e), ( f , e ∧ f ) ∈ CgA(a, b) ∩ CgA(c, d) and e / f .

Since e ∧ f ∼ f ∧ e, at least one of the pairs (e, f ∧ e) and ( f , e ∧ f ) is not in the same ∼-class, which finishes
the proof.

The following theorem summarizes what we can say in the direction of Park’s Conjecture by the results
we obtained thus far:

Theorem 7.5. LetV be a finitely generated variety of SMB algebras and A ∈ V an SMB algebra over ∼.

(i) For any a, b, c, d ∈ A,

[CgA/∼([a]∼, [b]∼),CgA/∼([c]∼, [d]∼)] = 0A/∼ iff

[CgA(a, b),CgA(c, d)] ⊆ ∼.

(ii) There exists a first order formula F(x, y, z,u) such that for all A ∈ V and all a, b, c, d ∈ A,

A |= FA(a, b, c, d) iff [Cg(a, b),Cg(c, d)] ⊆ ∼.

Proof. (i) First, note that A/∼ is an algebra which has a semilattice term operation. Therefore, A/∼ lies in a
congruence meet-semidistributive variety. By [13] and [14], [α, β] = α ∩ β for congruences α, β ∈ Con A/∼.
So,

[CgA/∼([a]∼, [b]∼),CgA/∼([c]∼, [d]∼)] = 0A/∼ iff

CgA/∼([a]∼, [b]∼) ∩ CgA/∼([c]∼, [d]∼) = 0A/∼, which implies

CgA(a, b) ∩ CgA(c, d) ⊆ ∼.

The last implication was by Corollary 7.4. Of course, since the commutator is a subset of the intersection,
we have proved that

[CgA/∼([a]∼, [b]∼),CgA/∼([c]∼, [d]∼)] = 0A/∼ implies

[CgA(a, b),CgA(c, d)] ⊆ ∼.

On the other hand, assume that

[CgA/∼([a]∼, [b]∼),CgA/∼([c]∼, [d]∼)] , 0A/∼.

For shorter notation, denoteα := CgA(a, b) and β := CgA(c, d). By the above considerations and Corollary 7.4,
there exist (e, f ) ∈ α∩β such that e / f . Moreover, by considering e∧ f , which must be in the same α∩β-class
as e and f , we may assume, without loss of generality, that [e]∼ > [ f ]∼. Consider the following (α, β)-matrix:[

e ∧ e f ∧ e
e ∧ f f ∧ f

]
=

[
e f ∧ e
f f

]
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(we used the term t(x, y) := y ∧ x). The first row is not in ∼, since [ f ]∼ ∧ [e]∼ = [ f ]∼ < [e]∼, while the
second row is in the equality relation, and thus in [α, β]. The term condition C(α, β; [α, β]) implies that
(e, f ∧ e) ∈ [α, β], and therefore [α, β] is not a subset of ∼.

(ii) Use the formula from Willard’s proof that

CgA/∼([a]∼, [b]∼) ∩ CgA/∼([c]∼, [d]∼) = 0A/∼

is first-order definable. One can find it in [21], Theorem 4.4 (see also Definition 2.1 of [21]).

Remarks. All results of this Section proved thus far, with a little work, can be extended to algebras in a
finitely generated variety such that the generating finite algebra has a term reduct which is an SMB algebra.

At a first glance, one may think that we are close to first-order definition of [Cg(a, b),Cg(c, d)] = 0A,
which would be a major step toward proving Park’s conjecture for SMB algebras. After all, we have found
a first-order formula which forces [Cg(a, b),Cg(c, d)] to be within the congruence ∼, and each ∼-block is a
Mal’cev algebra. Also, the fourth author first-order defined [Cg(a, b),Cg(c, d)] = 0A in congruence modular,
and therefore in Mal’cev, setting in [20]. Unfortunately, there are further obstacles to overcome.

Recall that a difference term forV is a ternary term t(x, y, z) such thatV |= t(y, y, x) ≈ x and moreover,
for all A ∈ V, all θ ∈ Con A and all (x, y) ∈ θ,

(t(x, y, y), x) ∈ [θ, θ].

Consider the following recent result:

Theorem 7.6 (Theorem 4.29 (1)⇔ (2) of [10]). A varietyV has a difference term iffV has a Taylor term and for
all A ∈ V and all α, β ∈ Con A, [α, β] = [β, α].

Indeed, in the case of a Taylor algebra A without a difference term, Kearnes in [10] constructs a factor B
of such an algebra and two congruences α, β ∈ Con B such that 0B < α < β, [α, β] = 0B, but [β, α] = α (cf. the
proof of Theorem 4.28 of [10]).

We will prove presently that there are SMB algebras without a difference term. The significance of this is,
that in all previous proofs of Park’s Conjecture, the formulaφ(x, y, z,u) which defined [Cg(a, b),Cg(c, d)] = 0A
satisfied the sentence

(∀x, y, z,u)φ(x, y, z,u)⇔ φ(z,u, x, y),

but in the case of SMB algebras, if we manage to find a formula φ which defines [Cg(a, b),Cg(c, d)] = 0A,
we will probably have examples where this sentence fails. In order to prove that there exist SMB algebras
without a difference term, we recall an old characterization of difference term varieties:

Theorem 7.7 (Theorem 1.1 of [9]). LetV be a variety such that FV(2) is finite. V has a difference term iff for all
finite A ∈ V, 1 < typ{A} and type 2 minimal sets of A have empty tails.

And now we give an example of an SMB variety without a difference term.

Example 7.8. Let A = {0, 1, 2} and let d be a ternary operation on A given by

d(x, y, z) =
{

x + y + z, if 2 < {x, y, z} and
2, otherwise.

In the above formula, the addition is modulo 2. If we define x∧ y := d(x, x, y), it is not hard to verify that A = (A;∧, d)
is a regular SMB algebra modulo ∼, where x ∼ y iff x = y or x, y ∈ {0, 1}. Moreover, 0A≺2 ∼ in Con A. Finally, we
note that A is an (0A,∼)-minimal algebra and its tail is {2}, i.e. it is nonempty. This follows since 2 is an absorbing
element for any term operation of A, so 2 ∈ p(A), whenever p is a nonconstant unary polynomial. Now Theorem 7.7
implies thatV(A) has no difference term.
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